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Investigating the Perceptual Validity of Evaluation 
Metrics for Automatic Piano Music Transcription
Adrien Ycart*, Lele Liu*, Emmanouil Benetos* and Marcus T. Pearce*,†

Automatic Music Transcription (AMT) is usually evaluated using low-level criteria, typically by counting 
the number of errors, with equal weighting. Yet, some errors (e.g. out-of-key notes) are more salient 
than others. In this study, we design an online listening test to gather judgements about AMT quality. 
These judgements take the form of pairwise comparisons of transcriptions of the same music by pairs 
of different AMT systems. We investigate how these judgements correlate with benchmark metrics, and 
find that although they match in many cases, agreement drops when comparing pairs with similar scores, 
or pairs of poor transcriptions. We show that onset-only notewise F-measure is the benchmark metric 
that correlates best with human judgement, all the more so with higher onset tolerance thresholds. We 
define a set of features related to various musical attributes, and use them to design a new metric that 
correlates significantly better with listeners’ quality judgements. We examine which musical aspects were 
important to raters by conducting an ablation study on the defined metric, highlighting the importance of 
the rhythmic dimension (tempo, meter). We make the collected data entirely available for further study, 
in particular to evaluate the perceptual relevance of new AMT metrics.
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1 Introduction
Automatic Music Transcription (AMT) is a widely discussed 
problem in Music Information Retrieval (MIR) (Benetos et al., 
2019). Its ultimate goal is to convert an audio signal into 
some form of music notation, such as sheet music, which we 
refer to as Complete Music Transcription (CMT). A common 
intermediate step is to obtain a MIDI-like representation, 
describing notes by their pitch, onset and offset times in 
seconds, leaving aside problems such as stream separation, 
rhythm transcription, or pitch spelling. We refer to this 
as AMT. It has applications in various fields, in particular 
in music education, music production and creation, 
musicology, and as pre-processing for other MIR tasks, such 
as cover song detection or structural segmentation.

The performance of AMT systems is commonly assessed 
using simple, low-level criteria, such as by counting the 
number of mistakes in a transcription (Bay et al., 2009). In 
particular, deciding whether a note is a mistake is typically 
a binary decision, and all errors have the same weight in 
the final metric. Yet, not all mistakes are equally salient to 
human listeners: for instance, an out-of-key false positive 
will be much more noticeable than an extra note in a big 
chord, all the more so if it fits with the harmony.

In this study, we aim to investigate to what extent the 
current evaluation metrics correlate to human perception 
of the quality of an automatic transcription. We reframe 
the problem of AMT evaluation as a symbolic music 
similarity problem: we try to assess how similar to the 
target the output transcription sounds, rather than simply 
counting the number of incorrectly detected notes. We 
gather judgements of similarity by conducting a listening 
test, and use these answers to examine how human 
perception of AMT quality correlates with the evaluation 
metrics commonly used. We investigate what musical 
features are most important to raters, and use them to 
define a new metric, that correlates significantly better 
with human ratings than benchmark metrics.

Gathering similarity ratings in a meaningful way is not 
straightforward. In particular, inter-rater agreement is 
infamously low for music similarity tasks (Flexer and Grill, 
2016). One of the reasons, besides intrinsic disagreement 
between raters, is that it is a difficult and ill-defined task. 
Our main concern is thus to make the test as easy as 
possible. As argued by Allan et al. (2007), the difficulty 
of rating the absolute similarity between two excerpts, be 
it on a continuous or Likert scale (Likert, 1932), leads to 
low inter-rater agreement, as different raters might use 
different scales, and these scales might evolve throughout 
the experiment. To avoid that problem, we choose to give 
raters a binary choice: given one reference excerpt, and 
two possible transcriptions of that excerpt, participants 
have to answer the question, “Which transcription sounds 
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most similar to the reference?” Another reason that makes 
rating difficult is having to remember long excerpts for 
subsequent comparison. In order to make the task easier, 
such that participants can rely mostly on their working 
memory, we use short audio excerpts, which prevents us 
from drawing any conclusions on the similarity of longer 
excerpts. Since we are mostly interested in notes rather 
than timbre or sound quality, we can afford to run this 
study in more loosely controlled acoustic conditions. We 
thus run this study online, in order to gather as much 
data as possible. A major concern is to make the test easily 
accessible; in particular, it is designed so participants can 
answer as many or as few questions as they want.

We choose to focus our study on Western classical piano 
music, as it is by far the most discussed sub-domain of 
AMT, mostly due to the availability of big datasets for that 
instrument and style (Emiya et al., 2010; Hawthorne et al., 
2019). The validity of the present study is thus limited to 
this instrument and style, and should not be generalised 
e.g. to singing voice, or jazz music.

Our main contributions include:

•	 Gathering a dataset of more than four thousand indi-
vidual perceptual ratings of transcription quality;

•	 Investigating the correlation between these ratings and 
traditional AMT metrics, depending on various factors;

•	 Proposing a set of musically-relevant features that can 
be computed on pairs of target and AMT output;

•	 Proposing a new evaluation metric in the form of a 
simple logistic regression model trained to approxi-
mate listener ratings;

•	 Investigating which musical parameters are most 
important to raters through an ablation study of the 
classifier.

In particular, we make the stimuli, gathered data, website 
code, pre-trained metric and feature implementation all 
available for further study (See Section 7).

In what follows, we present the benchmark evaluation 
metrics used for AMT and other works on transcription 
system evaluation in Section 2, and describe the design of 
the listening tests in Section 3. In Section 4, we analyse the 
results of the listening tests, and in particular the agreement 
between ratings and benchmark evaluation metrics. We 
then define a new metric based on musical features and 
analyse which features were most important to users in 
Section 5. Finally, we discuss our results in Section 6.

2 Related work
2.1 Benchmark evaluation metrics
In this section we describe the most commonly-used 
evaluation metrics for AMT of a single instrument. Some 
other metrics exist (see Bay et al. (2009) for a complete 
description); we only briefly describe here those that are 
most often used to compare systems.

2.1.1 Framewise metrics
These metrics are computed on pairs of piano rolls. A piano 
roll is a binary matrix M, such that M[p,t] = 1 if and only 
if pitch p is active at frame t, where a frame is a temporal 

segment of constant duration. We use a timestep of 10 ms, 
as in the MIREX multiple-F0 estimation task (Bay et al., 
2009). When comparing an estimated piano roll M̂  to a 
target piano roll M, a true positive is counted whenever 
ˆ [ , ] 1M p t =  and M[p,t] = 1. False positives and false negatives 

are counted analogously. We use TP, FP and FN to refer to 
the total number of true positives, false positives and false 
negatives, respectively, summed across frames.

The framewise Precision (Pf), Recall (Rf) and F-Measure 
(Ff) are then computed as follows (the subscript f 
represents the fact that metrics are computed framewise):
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2.1.2 Notewise metrics
Notewise metrics are computed on lists of notes, where 
each note is a tuple (s,e,p) where s and e are the start 
and end times, and p is the MIDI pitch of the note. For 
onset-only notewise metrics, an estimated note ˆ ˆ ˆ( , , )s e p  is 
considered as a true positive if and only if there is a ground-
truth note (s,e,p) such that ˆp p=  and ˆ| |<50 mss s− . In 
addition, ground-truth notes can be matched to at most 
one estimated note. Precision, Recall and F-Measure 
(respectively Pn,On, Rn,On and Fn,On) are then computed as in 
Section 2.1.1, with the difference that TP, FP and FN are 
counted in number of notes, instead of time-pitch bins. The 
subscript n represents the fact that metrics are computed 
notewise.

Recently, as Fn,On performance for AMT systems has 
improved, onset-offset notewise metrics have been 
increasingly used. Onset-offset metrics add the extra 
constraint that, for an estimated note to be considered 
a true positive, ê must be within 20% of the duration of 
the ground-truth note or within ±50 ms of the ground 
truth offset, whichever is greatest. Again, Precision, Recall 
and F-Measure (respectively Pn,OnOff, Rn,OnOff and Fn,OnOff) are 
computed as in Section 2.1.1.

In all cases, metrics are computed for each test piece, 
and then averaged over the whole dataset. In particular, 
we do not weight each piece according to its duration.

2.2 Efforts for better evaluation metrics
Recently, various evaluation methods were proposed for 
CMT (Cogliati and Duan, 2017; McLeod and Steedman, 
2018), but they focus mostly on typesetting problems, 
and do not address the problem of perceptually-relevant 
pitch assessment. Some efforts were also made for singing 
voice transcription and melody estimation (Molina et al., 
2014; Bittner and Bosch, 2019), but still consider pitches 
as being either correct or incorrect. Another method was 
proposed for automatic solfège assessment by Schramm 
et al. (2016), using a classifier trained on experts’ ratings 
to classify each note as correct or incorrect, but again, this 
decision is mostly binary, and focuses on small deviations 
in pitch (less than a semitone) rather than the correctness 
of a pitch in a tonal context.

An older study was conducted on AMT by Daniel et al. 
(2008). The study assessed the perceptual discomfort 
created by some specific types of mistakes (e.g. note 
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insertions, deletions, replacement, onset displacement) 
by comparing pairs of artificially-modified music excerpts. 
This data was then used to define new evaluation metrics. 
However, the types of mistakes considered were relatively 
limited (for instance, for note insertions, the study only 
compared octave insertions, fifth insertions and random 
insertions), and did not take into account musical concepts 
such as tonality, melody, harmony, or meter. Moreover, the 
modified MIDI files only contained one type of mistake, 
and did not consider the potential interactions between 
several kinds of mistakes. By contrast, we choose to use 
real AMT system outputs, in order to maintain ecological 
validity, and study a wider range of features.

The evaluation of AMT systems is related to symbolic 
music similarity, as the end goal is to assess how similar 
the output and the target sound. Symbolic melodic 
similarity is a widely-discussed problem (see Velardo et al. 
(2016) for a survey). Here, we are focusing on polyphonic 
music similarity, which is much less common. A method 
is described by Allali et al. (2009), relying on sequence-to-
sequence alignment, and an edit distance adapted from 
Mongeau and Sankoff (1990). However, this method was 
designed for quantised note durations only, which makes 
it potentially suitable for CMT, but not for AMT. Moreover, 
we aim here to use a bottom-up approach, to investigate 
what factors are important to listeners and using them to 
define a new metric.

3 Study design
3.1 Stimulus design
We obtain automatic transcriptions using several 
benchmark AMT systems. Using the best systems available 
currently would have led to very similar transcription 
mistakes, as they are all based on the same underlying 
methods. Instead, we aim to use a diverse sample of 
commonly used AMT methodologies. We thus use:

OAF:  The current state of the art based on neural networks 
(Hawthorne et al., 2019), trained to jointly detect 
note onsets and pitches.

CNN:  A simple framewise convolutional neural network 
(Kelz et al., 2016).

NMF:  A piano-specific system, based on non-negative 
matrix factorisation (Cheng et al., 2016).

STF:  A system based on handcrafted spectral and temporal 
features (Su and Yang, 2015).

CNN is a framewise system: at each timestep, it outputs a 
list of active pitches. This is equivalent to a piano roll, but 
requires post-processing to obtain a list of note events. 
To get note events, we consider any silence followed by 
a note as an onset (and vice versa for offsets), and apply 
gap-filling and short-note-pruning, both with a threshold 
of 80 ms, corresponding to two processing frames in this 
system.

We use the pieces present in the MAPS dataset (Emiya 
et al., 2010) of MIDI-aligned piano recordings, as it 
remains the most common benchmark dataset for AMT. 
We use only the full music pieces in MAPS, with the 
two recording conditions that correspond to real piano 

recordings, namely ENSTDkCl (close-field recordings) 
and ENSTDkAm (ambient recordings), the two most 
commonly-used evaluation subsets. To preserve musical 
validity, we manually segment the pieces into musical 
phrases, so that each excerpt lasts between five and ten 
seconds and roughly corresponds to a coherent, self-
contained musical unit. We try as much as possible to 
keep an integer number of bars, using the A-MAPS (Ycart 
and Benetos, 2018) bar and beat annotations. When 
material within a piece is repeated without transposition, 
we only keep the first repetition. The start and end times 
of each segment are made available for future study (see 
Section 7). We keep duplicate pieces, recorded with two 
different recording conditions. Eventually, we obtain 1552 
reference examples.

To be as consistent as possible in terms of timbre 
between the reference and the transcriptions, all example 
MIDI files were rendered using the Yamaha Disklavier 
Pro Grand Piano soundfont.1 Some systems could not 
transcribe note velocities, so for uniformity, we used a 
default MIDI velocity of 100 for every note of the output 
transcriptions. We kept the original velocities when 
rendering references to be able to use them later on in 
the analysis, as most of the time they are available in the 
ground-truth files.

3.2 User data
Before answering questions, users read an information 
sheet and gave their consent for participating. We collected 
their age, gender, and whether they had a hearing disability. 
They then had to answer questions from the Gold-MSI test 
(Müllensiefen et al., 2014) corresponding to the Perceptual 
Abilities and Musical Training subscales. Each user also 
had the option to give comments on the strategies they 
used and the aspects that were most important to them 
when choosing between transcriptions. All data were 
anonymised, and the procedure was approved by Queen 
Mary University of London’s ethics committee (reference 
QMREC2066).

3.3 Setup
The test was conducted online, as the main focus of this 
study was not sound quality, but rather the note content of 
the transcriptions. Participants were advised to do the test 
using good headphones, in a quiet environment. In what 
follows, we call a set {reference,transcription1,transcript
ion2} a question, where transcription1 and transcription2 
are two transcriptions of the reference, made by two 
different systems. There are six questions per reference, 
one for each unordered pair of AMT systems. For each 
question, participants were presented with one “reference” 
audio player, two “transcription” audio players, and were 
asked to answer the question “Which transcription sounds 
most similar to the reference?”, as a two-alternative forced 
choice (see Figure 1 for a screenshot of the interface). 
To strike a balance between comparison robustness and 
number of answered questions, each question was rated 
by four participants, taking care to balance the order 
(transcription1, transcription2) and (transcription2, 
transcription1) in which the two transcription players 



Ycart et al: Investigating the Perceptual Validity of Evaluation Metrics for Automatic Piano Music Transcription 71

are presented in the interface. Participants were allowed 
to listen to each example as many times as they wanted; 
however, to encourage them to rely on perception rather 
than analytical thinking, we advised participants to 
listen to each example as few times as possible. A five-
minute time limit was also included. For each question, 
participants could report if they knew the reference by 
ticking an additional “I know this piece” box.

While designing the test, it became apparent that 
in some instances, making a choice was very difficult, 
for instance when the two transcriptions were nearly 
identical, or different but equally poor. We did not want 
to include a third alternative (such as “I don’t know”, or 
“both transcriptions are equally similar to the target”), as 
this would have made it much more difficult to produce 
a meaningful analysis of the difficult cases. Instead, we 
added an extra question: “How difficult was it to answer 
the question?”, on a five-point Likert scale (Likert, 1932) 
from “Very easy” to “Impossible”. Guidelines were given 
to answer this question in terms of number of listenings 
required for each file, difficulty of making a choice, and 
confidence in that choice.

Getting participants to spend 30 minutes or more on a 
listening test without compensation can be difficult. To 
allow more flexibility, we designed the test so that each 
participant could rate as many examples as they wanted. 
If we had randomly picked questions, given the large 
number of examples, it would have been very difficult 
to ensure that several people answered each question. 
Instead, questions were presented to participants using 
the following rules:

1. Each participant cannot hear a reference more than 
once.

2.  Each question cannot be rated more than four 
times.

3.  Each new question is chosen among remaining 
 candidates using the following steps:
(a)  Choose a reference among those that have 

already been seen by other participants, and 
have not been fully rated (i.e. at least one of 
the six questions using that reference has less 
than four answers).

(b)  If no such reference is available, choose a ran-
dom new question.

(c)  Otherwise, choose a question using that refer-
ence that has already been answered by other 
participants.

(d)  If no such question is available, choose a new 
question using the same reference.

When choosing a reference among those that have been 
seen by other participants (step 3.(a)), we skewed the 
random choice towards references that had more answers, 
in order to maximise the number of fully-rated references 
(i.e. references for which all system pairs were rated by 
four participants). Thanks to this procedure, the size of 
the pool of examples adapted dynamically to the number 
of gathered answers.

3.4 Participants
In total, 186 people participated in our study (excluding 
the 40 people who registered but did not answer any 
questions): 126 males, 58 females and 2 non-binary, with 
a median age of 28. We did not perform any selection 
on participants. Many of them were trained musicians, 
as the median Gold-MSI score is 5.06 on a scale from 
1 to 7 (compared to 4.81 in the general population for 

Figure 1: Screenshot of the listening test website.
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the subscales considered (Müllensiefen et al., 2011)). 
The median number of answered questions was 20, with 
22 participants answering 50 questions or more (up to 
several hundred). Overall, we gathered 4501 answers, 1080 
questions with four ratings, and 153 examples for which 
all pairs of systems have four ratings. Four participants 
reported a hearing disability, for a total of 53 answers. We 
decided to keep them anyway, as they amount to a small 
proportion of answers, and we are not interested in fine 
judgement about sound quality.

4 Results
In what follows, we analyse the results of the participants’ 
ratings. We only keep questions for which four answers 
have been gathered. We keep all such questions, even 
when the corresponding example has not been rated 
for all pairs of systems. When comparing proportions 
(e.g. user preference, or agreement between raters and 
benchmark metrics), error bars are obtained by bootstrap 
analysis (Efron, 1992), resampling with same dataset size 
100 times. The standard deviation of bootstrapped results 
is displayed.

4.1 Benchmark system performance
First, we run the chosen systems on all the test files. We 
evaluate them using the benchmark metrics described in 
Section 2.1. Results are presented in Table 1. Notewise 
metrics are computed using the mir_eval Python 
library (Raffel et al., 2014).

As expected, OAF is by far the best of all, for all metrics. 
The second-best is NMF, which can also be explained by 
the fact that is was trained on that specific instrument 
model, while this piano model is new to the other systems. 
The CNN comes in third position, and STF comes last.

It has to be noted that these results vary quite a lot 
between the two subsets ENSTDkCl and ENSTDkAm: results 
are usually worse on ENSTDkAm, since it corresponds to 
ambient piano recordings, which are usually noisier. In 
particular, for NMF, which was trained on isolated notes 
played on ENSTDkCl, Fn,On drops from 76.1 to 55.6 on 
ENSTDkAm. For CNN and STF, Fn,On drops by around 5%. 
Interestingly, OAF works similarly on both subsets. This 
can be explained by the fact that it was trained on the 
MAESTRO dataset (Hawthorne et al., 2019), a dataset 
containing mostly concert piano recordings, in conditions 
arguably closer to ENSTDkAm.

It also appears that although the performance in Ff is 
within a relatively small range of values, there are much 

bigger differences in performance in terms of Fn,On and 
Fn,OnOff.

4.2 Perceptual ranking of systems
Using the ratings, we evaluate the systems from a 
perceptual point of view (pairwise results shown in 
Figure 2). The ratings are generally in accordance with 
the benchmark metrics: a system is preferred when its 
Fn,On is better (we focus on Fn,On as this metric correlates 
best with ratings, as discussed in Section 4.3). The relative 
ranking of the systems is also the same: OAF beats all 
other systems, NMF beats CNN and STF, and CNN beats 
STF. There seems to be a relation between the difference 
in benchmark metrics and the magnitude of the majority: 
for instance, OAF has a bigger majority when compared to 
STF than to NMF. But that is not strictly the case: although 
CNN is much better than STF in terms of Fn,On and Fn,OnOff, 
it is only preferred about 65% of the time.

4.3 Agreement between ratings and benchmark metrics
In this section, we assess the extent to which ratings agree 
with Ff, Fn,On and Fn,OnOff. We also investigate what factors 
influence the agreement between raters and benchmark 
metrics.

We define the agreement with a given metric as follows. 
For each given answer, we check whether the choice made 
by the participant corresponds to the ordering of the two 
transcriptions according to this metric. If the participant 
chose the transcription for which the metric is highest, 
we consider that the participant and the metric agree. 
We then compute the proportion of ratings that agree 
with this metric. We do this for Ff, Fn,On and Fn,OnOff. For Ff, 

Table 1: Benchmark evaluation metrics for all systems, evaluated on the MAPS subsets ENSTDkCl and ENSTDkAm, 
with best values in bold.

System Pf Rf Ff Pn,On Rn,On Fn,On Pn,OnOff Rn,OnOff Fn,OnOff

STF 67.2 60.0 62.7 49.8 32.0 38.3 16.5 11.3 13.2

CNN 80.2 58.2 66.1 77.0 54.9 63.2 33.5 24.6 28.0

NMF 71.3 63.3 66.4 79.6 57.0 65.7 35.7 26.4 30.0

OAF 89.0 79.5 83.8 85.9 84.1 84.9 66.9 65.5 66.2

Figure 2: Vote proportion in pairwise comparisons of the 
systems. Blue bars represent the proportion of times the 
system on the left was chosen over the one on the right. 
For each pair, the percentage in parentheses is the aver-
age Fn,On computed on the specific examples included in 
the comparison.
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we investigate various frame sizes: 10, 50, 75, 100, and 
150 ms. For notewise metrics, we investigate how this 
agreement varies depending on the onset and offset 
tolerance thresholds: for onsets, we use 25, 50, 75, 100, 
125, and 150 ms, and for offsets, we use 10, 20, 30, 40, and 
50% of the note duration.

Results on the agreement between ratings and bench-
mark metrics are shown in Figures 3 and 4. In terms of 
frame size for Ff, there is no clear tendency. It does appear 
nonetheless that using a 100 ms frame size improves 
the agreement with ratings slightly but significantly 
compared to a 10 ms frame size (p < 10–3 with a Welch 
t-test). When examining the influence of the onset for 
Fn,On, we can see in Figure 3 that the agreement of Fn,On 
with ratings is highest for onset thresholds between 75 
and 150 ms. For Fn,OnOff, we can see in Figure 4 that the 
agreement is highest for an onset threshold of 100 ms 
and an offset tolerance of 50%, although it is still lower 
than Fn,On with onset threshold above 50 ms. Agreement 
might be even higher for higher offset tolerance 
thresholds, as Fn,OnOff becomes more and more similar to 
Fn,On (Fn,On can be seen as Fn,OnOff with an infinite offset 
tolerance).

To investigate further what factors might influence 
agreement, we perform a linear fixed effects analysis 
(Allison 2009), using as the dependent variable for each 
question whether the rater agrees with Fn,On (1 if they do, 0 
otherwise). We use as fixed effects the best Fn,On of the pair 
(Fbest), the difference in Fn,On between the two transcriptions 
(ΔF), the Gold-MSI score of the rater (Gold-MSI), whether 
the piece was recognised (Known), and the reported 
difficulty (Difficulty).

The resulting coefficients and associated p-values are 
given in Table 2.

It appears that ΔF and Fbest have a strong and significant 
effect on agreement. When the difference in performance 
between the two systems is high, people tend to agree 
more with the F-measure, as the choice is clearer. However, 
for a given ΔF, when both systems produce outputs of 
poor quality, the agreement is lower.

When looking at other features, Difficulty is negatively 
correlated with agreement: when people report the choice 
as being more difficult, they tend to disagree more with 
the F-measure. To investigate this further, we compute the 
proportion of agreement between ratings and F-measure 
for each reported difficulty level (Figure 5). For high levels 
of difficulty, agreement is very poor, close to chance (50% 
for a two-alternative forced choice question), which is 
consistent with the guidelines given to raters for reporting 
difficulty. Still, even for low levels of reported difficulty, 
there is a fair amount of disagreement between ratings 
and Fn,On (10 to 20%), which shows that disagreement with 
Fn,On does not exclusively result from random choices in the 

Table 2: Coefficients and p-values for the linear fixed 
effects model using agreement with Fn,On as dependent 
variable and features as fixed effects.

Feature Coefficient P-value

ΔF 0.539 <0.001

Fbest 0.330 <0.001

Gold-MSI –0.007 0.232

Known 0.014 0.391

Difficulty –0.044 <0.001

Figure 3: Proportion of agreement, across all examples, 
between raters and various evaluation metrics (Ff with 
various frame sizes, and Fn,On with various tolerance 
thresholds).

Figure 4: Proportion of agreement, across all examples, 
between raters and Fn,OnOff, with various onset and offset 
tolerance thresholds.

Figure 5: Agreement between ratings and Fn,On for each 
reported difficulty level.
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difficult cases. Musical training (Gold-MSI) and familiarity 
(Known) have no significant effect on agreement with Fn,On.

4.4 Reported difficulty
In this section, we examine the reported level of 
difficulty for each answer, and investigate the factors that 
influenced it.

In Figure 6, we display the proportion of ratings for 
each difficulty level. When comparing this figure to the 
results in Table 1, it appears that, as a general trend, the 
higher the difference in Fn,On, the more confident raters 
are. Moreover, difficulty is highest when comparing the 
two worst performing systems according to benchmark 
metrics, which suggests that difficulty is higher when 
both transcriptions are poor.

To get a better understanding of how the difficulty varies 
depending on various parameters, we perform another 
linear fixed effects analysis, this time using difficulty as 
dependent variable. We use as fixed effects the best Fn,On 
of the pair (Fbest), the difference in Fn,On between the two 
transcriptions (ΔF), the Gold-MSI score of the rater (Gold-
MSI), whether the piece was recognised (Known), and 
whether the rater agreed with Fn,On (Agree). The resulting 
coefficients and associated p-values are given in Table 3.

All of the these factors are significant predictors of 
reported difficulty. From this, we can draw the following 
conclusions. First, musicians found the task easier than 
non-musicians. This could be explained either in terms 
of better auditory skills, or because musicians tend to be 
more confident in their judgements. People also find it 
easier to make a choice when they know the reference. 
One user commented: “Songs that I knew already felt 
easier to judge as I could remember the original much 

better”, in other words they only had to listen to and 
remember two excerpts instead of three. This highlights 
a difficulty of investigating musical similarity perception 
due to effects of memory, as we mentioned in Section 1. It 
also appears that the more confident people are in their 
choices, the more they agree with F-measure, which is 
coherent with the results presented in Section 4.3. Finally, 
when investigating the effect of ΔF and Fbest, we can see 
that the larger the difference between the two systems, 
the easier the decision, and all the more so when both 
systems perform well.

4.5 Analysis of confident answers
When discussing the agreement between ratings and 
Fn,On, it is not straightforward to distinguish cases when 
participants chose randomly from cases where they 
actually disagreed with Fn,On, in particular when the two 
options have similar Fn,On, or when both options are poor. 
To avoid cases of random choice, we analyse the subset 
of answers that are confident (Difficulty = 1 or 2, which 
represents 2856 answers), and investigate whether 
different factors influence the agreement between ratings 
and Fn,On in this case.

We perform the same linear fixed effect analysis as in 
Section 4.3, on that subset. The results are shown in Table 4 
and are quite similar to the full analysis, except that now there 
is a significant negative correlation between Gold-MSI and 
agreement. For confident answers, it appears that musicians 
tend to disagree more with Fn,On than non-musicians. This 
could indicate that musicians focus more on certain high-
level aspects of the music (e.g. melody, harmony, meter) that 
are not taken into account by Fn,On: even if it contains more 
mistakes, a transcription might be preferred by a musician 
as long as it gets these aspects right.

When investigating the effect of the difference in Fn,On 
on agreement, we see once again the same trend: the 
smaller the difference between the two transcriptions, 
the greater the disagreement, as shown in Figure 7. When 
the difference in Fn,On is above 50%, people always agree 
with Fn,On. However, below this threshold, agreement 
declines, especially when the difference is below 20%.

4.6 Inter-rater agreement
We have seen that there is a fair amount of disagreement 
between the F-measure and ratings. To get an idea of how 
consistent the ratings are, we investigate the level of inter-
rater agreement, and the factors that influence it.

Figure 6: Distribution of difficulty ratings (lightest = 1, 
darkest = 5) for each pair of systems.

Table 3: Coefficients and p-values for the linear fixed 
effects model using difficulty as dependent variable and 
features as fixed effects.

Feature Coefficient P-value

ΔF –1.564 <0.001

Fbest –0.608 <0.001

Gold-MSI –0.227 <0.001

Known –0.153 0.002

Agree –0.423 <0.001

Table 4: Coefficients and p-values for the linear fixed effects 
model using agreement with Fn,On as dependent variable 
and features as fixed effects, on confident answers only.

Feature Coefficient P-value

ΔF 0.584 <0.001

Fbest 0.349 <0.001

Gold-MSI –0.014 0.011

Known 0.002 0.912

Difficulty –0.036 <0.001
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We begin by computing Fleiss’s Kappa coefficient 
(Fleiss, 1971), that represents inter-rater agreement for 
an arbitrary number of raters. When computed over the 
whole dataset, we obtain a Kappa coefficient of 0.59, 
which can be interpreted as borderline between moderate 
and substantial agreement. When computing the same 
coefficient on the confident answers only (keeping only 
questions for which four confident answers were given, 
315 questions in total), we obtain a Kappa coefficient of 
0.90, which can be interpreted as near-perfect agreement. 
This is a very conservative estimate, as we keep only the 
questions that were unanimously considered as easy to 
answer. Moreover, inter-rater agreement is high because 
most of the time, raters tend to agree with F-measure.

We run a linear fixed effect analysis using the amount 
of agreement between raters as dependent variable (2 if 
all four raters agree, 1 if one rater disagrees with the other 
three, and 0 in the case of a draw), only on the subset 
of confident answers, and keeping only the questions 
with four confident answers. We use as fixed effects the 
difference of Fn,On between the two systems (ΔF), the best 
Fn,On of the pair (Fbest), the average and standard deviation 
of the Gold-MSI scores of the four raters for each question 
(Gold-MSIavg and Gold-MSIstd respectively), and the average 
reported difficulty (Difficultyavg). The resulting coefficients 
and associated p-values are given in Table 5.

Once again, we observe that the bigger the difference 
in Fn,On, the higher the agreement among raters. However, 
this time, the Fn,On of the best solution does not seem to 
have a significant effect (noting that we also have many 
fewer data points). Raters also tend to disagree more 
with each other when the reported difficulty is higher 
on average. It also appears that when raters have a high 
average Gold-MSI, they tend to disagree more with each 
other. This could be due to the fact that trained musicians 
might favour different aspects of music (rhythm rather 
than melody for instance) when making a choice. Disparity 
in Gold-MSI among raters has no significant effect on 
whether they agree.

4.7 Discussion
It appears that the best correlation with ratings is achieved 
for much higher tolerance thresholds than what is usually 
used for transcription system evaluation, both for Fn,On 
and Fn,OnOff. This suggests people are generally relatively 
forgiving with respect to onset precision, and probably 
focus on other aspects of music than just onset and offset 
precision to make their choices. Moreover, the OnOff-
Note metric, presented as the most perceptually-relevant 
evaluation metric by Hawthorne et al. (2018), is actually 
not the best metric in terms of agreement with human 
ratings, at least in the case of piano music. On-Note 
metrics should be favoured, though this may relate to the 
focus on piano which generally has very salient onsets, 
but less clear offsets, especially for long notes. OnOff-Note 
metrics are still useful from an engineering perspective, as 
they represent a meaningful objective that is difficult to 
achieve, but they are not the most representative indicator 
of the perceptual quality of a transcription system.

Figure 7 also shows that when the difference in Fn,On is 
smaller than 10%, raters confidently disagree with Fn,On as 
to which transcription is best nearly 40% of the time. This 
means that in these cases, Fn,On should not be considered 
as a good descriptor of the quality of a transcription, at 
least from a perceptual point of view. This is particularly 
worrying, as very often, differences between systems are 
of the order of a few percentage points. On the other 
hand, we compare short segments, which means that a 
few errors could influence Fn,On greatly, while AMT systems 
are often compared over hours-long datasets. Also, in 
these difficult cases, raters tend to disagree more with 
each other, so personal judgement also comes into play. In 
summary, however, the majority of the previous analysis 
seems to indicate that Fn,On is a good enough metric in 
clear-cut cases where the differences in performance are 
large, but should probably be treated with caution for 
small differences between AMT systems.

5 Defining a new metric
Given the relatively low agreement between ratings and 
current evaluation metrics, in particular in borderline 
cases, we propose to define a new evaluation metric, 
based on the ratings. The general idea is to compute a 
set of musical features on pairs (AMT output, target), and 
then train a classifier to output a value between 0 and 1 

Table 5: Coefficients and p-values for the linear fixed 
effects model using agreement among raters as depend-
ent variable and features as fixed effects.

Feature Coefficient P-value

ΔF 0.496 <0.001

Fbest –0.092 0.423

Gold-MSIavg –0.071 0.004

Gold-MSIstd –0.016 0.778

Difficultyavg –0.176 0.003

Figure 7: Proportion of agreement depending on the dif-
ference in Fn,On between the two options, computed on 
confident answers only.
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for each pair based on these features, using the ratings as 
training data.

5.1 Comments from participants
We first consider feedback from participants. Out of all 
participants, twelve left comments related to their decision-
making strategies. The melody was mentioned as important 
in nine comments, making it the most important aspect 
according to comments, followed by rhythmic aspects 
(beat/meter/tempo, eight mentions) and harmony (four 
mentions). Some comments also mentioned higher level, less 
clearly defined aspects of music: three comments mentioned 
that the “overall impression” was most important, and 
two comments mentioned the presence of major artefacts 
or out-of-key notes. Overall, three comments mentioned 
explicitly that the presence of errors was not important as 
long as other aspects of the music were preserved, and most 
comments mentioned combinations of the above factors.

5.2 Feature description
From the previous comments, we define several features 
to capture various aspects of music, as well as typical 
AMT mistakes. In the following, we provide high-level 
definitions for each of these features. Full definitions can 
be found in the technical report accompanying this paper 
(Ycart et al., 2020).

5.2.1 Mistakes in highest and lowest notes
We use the highest and lowest notes at any time, defined 
with a skyline approach, as a proxy for the melody and 
the bass line, respectively. We define these metrics both 
framewise and notewise. For the highest note metric, we 
define true positives and false negatives as notes among 
the highest notes of the target that have been correctly 
detected or missed (respectively). We count as a false 
positive any extra note that is above the highest note in 
the target. From these values, we compute P, R, and F as 
described in Section 2.1. The lowest note metric is defined 
similarly. To better capture the score rather than the audio 
signal, we define the highest and lowest notes on targets 
without taking the pedal into account, while the pedal is 
used in the computation of Ff, Fn,On and Fn,OnOff.

5.2.2 Loudness of false negatives
We assume that missing a note that was loud in the 
original piece is more salient than missing a quiet one. We 
define two corresponding metrics:

•	 Average false negative loudness: the average MIDI 
velocity of false negatives. Each MIDI velocity is nor-
malised by the average velocity in the ground truth in 
a two-second window centred on the false negative 
onset.

•	 False negative loudness ratio: the average ratio be-
tween the loudness of false negatives and the maxi-
mum loudness of active notes at the time of the false 
negative onset. We take into account the decay of 
long notes when computing the maximum loudness 
at the time of the onset.

5.2.3 Out-of-key false positives
We assume that out-of-key extra notes are much more 
noticeable than in-key ones. Instead of relying on key 
annotations, we define the key of a piece as the set of pitch 
classes that are active more than 10% of the time. The 
threshold of 10% is defined heuristically. This definition 
shows its limits when there are key modulations. We also 
define a non-binary key-disagreement as the proportion 
of the time that a pitch class is inactive. We then define 
two sets of metrics:

•	 Binary out-of-key: We count the number of false posi-
tives whose pitch is out-of-key. We then compute the 
proportion of out-of-key false positives among false 
positives, and among all notes in the output.

•	 Non-binary out-of-key: we compute the average key-
disagreement of false positives, and the ratio between 
the sum of key-disagreements of false positives and 
the sum of key-disagreements of all detected notes.

5.2.4 Repeated and merged notes
A common type of mistake in AMT is to have repeated 
(i.e. fragmented) notes, or incorrectly merged notes. We 
count as a repeated note any false positive that overlaps 
with a ground-truth note of the same pitch for at least 
80% of its duration, and is preceded by at least one note 
of the same pitch that overlaps with the same ground-
truth note. Conversely, we count as a merged note any 
false negative that overlaps for at least 80% of its duration 
with a detected note of the same pitch and is preceded 
by at least one note of the same pitch that overlaps with 
the same detected note. In both cases, we compute the 
proportion of mistakes among all false positives, and 
among all detected notes.

5.2.5 Specific pitch mistakes
It is also fairly common to have false positives in specific 
pitch intervals compared to ground-truth notes: semitone 
errors (neighbouring notes), octave errors (first partial), 
and 19 semitone errors (second partial). For these types of 
mistakes, we define both framewise and notewise metrics, 
for a given number of semitones ns (here ns ∈ {1,12,19}).

For framewise metrics, we count a specific pitch false 
positive for any false positive such that there is a ground 
truth note ns semitones above or below. For notewise 
metrics, we count a specific pitch false positive for any 
false positive that overlaps for at least 80% of its duration 
with a ground truth note ns semitones above or below. For 
ns = 19, we only consider ground truth notes 19 semitones 
below, as second partial mistakes usually only happen 
19 semitones above the ground truth. In both cases, 
we compute the proportion of mistakes among all false 
positives, and among all detected notes.

5.2.6 Polyphony level difference
We assume that a mistake is more salient when it is the 
only note being played and that it will also be noticeable if 
only a few notes of a big chord are transcribed. To account 
for this, we compute the absolute difference in polyphony 
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level between the target and the output, at each timestep. 
We then use the mean, standard deviation, minimum and 
maximum values of this time series as features.

5.2.7 Rhythm histogram flatness
Rhythm is another important aspect of music according 
to raters. We thus define a metric to account for rhythmic 
imprecision as follows. We first compute the inter-onset 
interval sequence of the output and the target. We keep 
simultaneous onsets, resulting in an IOI of 0. We then com-
pute a histogram of the IOI values, with bin size of 10 ms 
for IOIs below 100 ms, and 100 ms from 100 ms to 2s (we 
drop IOIs above that value). This histogram should be more 
peaky for quantised MIDI files than outputs with rhythm 
imprecision. To describe this quantitatively, we compute 
the log-flatness, as defined for spectra (Johnston, 1988), of 
both histograms (output and target). We use as a feature 
the flatness of the output histogram, and the difference in 
flatness between the output and target histograms.

5.2.8 Rhythm dispersion
We also propose another approach to characterising 
rhythm quality, based on K-means clustering (Murphy, 
2012) of the IOI set. The general idea is to first run K-means 
clustering on the target IOIs, and then run K-means 
clustering on the output IOIs using the cluster centres of 
the target as initial values. We then compute the distance 
between cluster centres for the target and the output, as 
well as the relative difference in standard deviation within 
each cluster. We use as features the mean, maximum and 
minimum values across clusters.

Choosing the number of clusters is necessarily heuristic. 
We determine the number of clusters by computing an IOI 
histogram as described in 5.2.7, but with wider bins, and 
choosing the peaks of that histogram as initial values for 
target IOI clustering.

5.3 Model fitting
Eventually, we aim to obtain a model that, given a set 
of features for a pair (AMT output, target), will output a 
scalar between 0 and 1. The main difficulty is that in our 
dataset, we do not have such absolute ratings, we only 
have pairwise comparison ratings. To achieve our goal, 
we draw inspiration from the contrastive loss approach 
(Hadsell et al., 2006). The original contrastive loss is 
defined as follows: given two inputs x1 and x2, a model f 
and a variable y such that y = 1 if x1 and x2 are considered 
similar, y = 0 otherwise:

2 2
1 2 1 2| ( ) ( )| + (1 )max( | ( ) ( )|,0)L y x x y x x     f f f f  (2)

In other words, if x1 and x2 are similar, the loss tries to 
bring their outputs together, and if they are dissimilar, it 
tries to push them apart. The α parameter is called the 
margin: if the distance between f (x1) and f (x2) is already 
greater than α, they are not moved further.

Given a target T, and two transcriptions of that target O1 
and O2, we have, in place of x1 and x2, g (T,O1) corresponding 
to the set of features computed on T and O1, and g (T,O2), 
the set of features computed on T and O2. In our ratings, 

all transcriptions are considered dissimilar, so y is always 
equal to 0. Also, we do not only want f (g (T,O1)) and 
f (g (T,O2)) to be different, we also care about their order. 
We thus introduce a new variable z such that z = 0 if O1 
was chosen by the rater, and z = 1 if O2 was chosen. We 
want to have f (g (T,O1)) > f (g (T,O2)) if z = 0, and the other 
way around if z = 1. We thus define our loss function as:

2
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We incorporate the difficulty ratings in the margin: when 
ratings are confident, we use a higher margin. In practice, 
we use α = 0.5 when Difficulty = 1, and decrease it by 0.1 
for each difficulty level, until α = 0.1 when Difficulty = 5.

We choose to use a simple model, allowing for inter-
pretability of its parameters. Indeed, we want our metric 
to fit perceptual ratings, but also to serve as a diagnosis 
tool, allowing to easily investigate the contribution of each 
feature in the end result. For that reason, we use logistic 
regression, using as input all the above-defined features, in 
addition to the benchmark metrics.

5.4 Experiments
5.4.1 Setup
We use as input data to the logistic regression model 
the above features, along with the benchmark metrics 
defined in Section 2.1. We split our dataset between 
training, validation and test sets using a 90%-5%-5% 
partition, and use 20-fold cross-validation. The splits are 
made so there is no overlap in targets between the three 
subsets. There can be some overlap in terms of raters, 
which means that there is a possibility that the model 
learns the preferences of some specific participants. 
Our main concern is that the model should generalise 
to unseen input, so we still keep these ratings. In each 
fold, the data is z-normalised (mean = 0 and variance = 1). 
The weights of the logistic regression are all initialised to 
0. The model is then trained using the Adam optimiser 
(Kingma and Ba, 2015) with a learning rate of 0.01 for a 
total of 3000 batches with a batch size of 100, which in 
practice is enough to ensure convergence. The parameters 
that achieve the lowest loss on the validation set are then 
used for testing. In each fold, we train 100 versions of the 
model (training a model takes about 15s), to account for 
potential variation in performance due to the randomness 
of the training process. We test whether our model agrees 
with ratings significantly better than Fn,On by running an 
independent-samples T-test on each fold, and then testing 
whether the resulting T-values are significantly different 
from 0. We use 20 folds to have more data points when 
running the second test, and thus better statistical power 
in our results.

We focus the evaluation of our models on confident 
ratings. We thus compute the proportion of agreement 
between the output of our model and the confident 
ratings only, i.e. with Difficulty = 1 or 2 (notated Aconf).

5.4.2 Results and ablation study
All results averaged across folds are shown in Figure 8. 
The dotted line corresponds to Aconf for Fn,On.
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First, we train our model using all metrics. We manage 
to improve the agreement with the ratings slightly (1%) 
but significantly (p < 10–6), which is encouraging. It has to 
be noted that the model we use is very simple, and that 
more sophisticated models should be able to improve 
even further, though it may not be easy to achieve this 
without deteriorating interpretability.

In what follows, we investigate feature importance. 
One approach would be to inspect the weights of the 
trained logistic regression. However, it might happen 
that one feature has a high weight in a given model, 
but when removing it, its absence can be compensated 
by combinations of other features without decreasing 
performance. We thus favour an ablation approach to 
study how essential features are to model ratings, removing 
groups of features from the feature set and re-training 
our model as in Section 5.4.1. Table 6 summarises the 
configurations we investigate.

Three configurations perform significantly worse 
than All: NoFeatures, NoFramewise, and NoRhythm. 
Besides, NoFeatures is the only configuration that does 
not perform significantly better than Fn,On (p = 0.33), 
which shows the usefulness of the feature set we have 
proposed. The low performance of NoRhythm compared 
to All shows the importance of the rhythm descriptors we 
used. This is somewhat contradictory with results from 
Section 4.3: we found that high tolerance thresholds for 
onsets and offsets gave better agreement, which seemed 
to indicate that temporal aspects are not important to 
raters. We suggest that our rhythm descriptor better 
captures higher-level aspects of rhythm reported as 
important to raters, such as the presence of a steady pulse 
and meter, rather than onset precision of individual notes. 

The fact that NoFramewise performs significantly worse 
than All shows that while Ff is indeed less correlated to 
ratings than Fn,On, some framewise metrics are useful and 
complementary to notewise metrics in modelling the 
ratings.

On the other hand, it appears that NoHighLow is not 
significantly worse than All. Yet, melody was the musical 
aspect that was most mentioned in user comments. We 
hypothesise that the reason this is not reflected in feature 
importance is that for the vast majority of examples in our 
dataset, the highest voice notewise F-measure, which best 
describes how well the melody was transcribed, is equal 
to 1. The model probably learns to give a low importance 
to that feature, as it is often constant. Another hypothesis 
is that our skyline approach to define the melody and 
the bassline might not correspond to perception. In the 
future, we might have to rely for instance on automatic 
melody estimation methods for symbolic music to better 
represent the melody.

Interestingly, it appears that some of the metrics we 
designed, in particular the out-of-key false positives and 
specific pitch errors, are actually counter-productive: 
removing them appears to increase Aconf, but not 
significantly (p = 0.40 and p = 0.76 respectively). We 
hypothesise that this is due to the definition of these 
metrics. For instance, if there are no specific pitch mistakes, 
this could either mean that there were no false positives 
(which is good), or there were a lot of false positives, none 
of which corresponded to a specific pitch (which is bad). 
This could lead to an interaction between specific pitch 
mistakes and benchmark precision metrics (e.g. penalise 
low specific pitch and low precision, but not low specific 
pitch and high precision). The same can be said of out-
of-key false positives. However, such interactions cannot 

Figure 8: Aconf measure for each tested configuration, 
averaged across folds. The dotted line represents Aconf 
for Fn,On. Descriptions of each configuration are given 
in Table 6. Colors represent the p-value when testing 
whether each metric is different from the “All” configu-
ration. Asterisks represent results significantly different 
from All (*: p < 0.1, **: p < 0.05, ***: p < 0.01).

Table 6: Description of each tested feature configuration.

Configuration Removed features

All None

NoBench Benchmark metrics

NoFeatures All features, except benchmark metrics

NoHighLow Mistakes in highest and lowest notes

NoLoud Loudness of false negatives

NoOutKey Out-of-key false positives

NoRepeat Repeated and merged notes

NoSpecific Specific pitch mistakes

NoPoly Polyphony level difference

NoRhythm Rhythm histogram flatness and rhythm 
dispersion

NoFramewise Framewise benchmark metrics, framewise 
highest and lowest note mistakes, framewise 
specific pitch errors, polyphony level differ-
ence, consonance measures

NoSpecOut Specific pitch mistakes and out-of-key false 
positives
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be represented by our model (simple logistic regression 
without interaction terms). As a result, out-of-key and 
specific pitch mistakes end up distracting the model more 
than they help. When removing both of these metrics 
(NoSpecOut configuration), our model reaches an Aconf 
of 89.1%. Removing other features that have either no 
impact or a negative impact on Aconf also seems to slightly 
decrease Aconf compared to NoSpecOut, but again, not 
significantly.

We make a pre-trained version of our metric available 
for future use (NoSpecOut configuration). We train it 
using all the data, without keeping out a validation or test 
set. Experiments show that in practice, the model does not 
overfit the training set: the training and validation losses 
are similar. We thus choose as final parameters those that 
minimise the loss over the whole training set. Given that 
we do not keep a held-out test set, we cannot report test 
performance of this specific released model.

6 Discussion
In this study, we presented a listening test to rate pairs of 
AMT systems. We compared perceptual ratings to results 
given by benchmark evaluation metrics. We have seen that 
most of the time, ratings agree with benchmark evaluation 
metrics, but in some cases (when both transcriptions have 
low Fn,On, and when the difference in Fn,On between the two 
transcriptions is low), the agreement greatly decreases. 
We have proposed new quantitative measures describing 
musical features, and used them to define a new metric, 
that agrees with ratings significantly better than Fn,On. 
We also provide greater insight into which features were 
important to raters through an ablation study, illustrating 
in particular the importance of rhythm-related aspects.

Various aspects of this study could be improved. One of 
the most important would be to try more sophisticated 
models (e.g., artificial neural networks) to define a new 
metric. Indeed, the current approach only brings marginal 
improvement in Aconf compared to Fn,On, some more 
involved approaches could improve further agreement 
with ratings. In particular, it would be theoretically 
possible to define a metric without using handcrafted 
features, directly by feeding the target and output into the 
system, but this approach would require more ratings to 
be trained robustly, and would lack interpretability. Still, 
some of the features might not have a linear influence on 
the quality of the transcription, and some may interact. 
Incorporating such factors into a model may improve 
performance. We chose a simple but interpretable logistic 
regression, which allowed us to verify the contribution of 
each metric to the final score easily.

Moreover, although we believe that absolute similarity 
rating between two excerpts is a difficult and ill-defined 
task (Allan et al., 2007; Flexer and Grill, 2016), it could be 
interesting to develop a listening test based on absolute 
similarity ratings between a reference and a single 
transcription. Provided inter-rater agreement is high 
enough, it would be interesting to train a regression model 
to approximate these ratings, and compare the results to 
those obtained with the current ranking paradigm.

Deeper investigation of the reasons for disagreement 
between ratings and Fn,On would also be useful to motivate 
the creation of new metrics. One way to investigate this 
would be to reproduce the above ablation study, but with 
a model trained and tested exclusively on ratings that 
disagree with Fn,On, although the lack of data could make it 
difficult to achieve significant results, requiring collection 
of further ratings.

The generalisability of the metric we have designed 
should also be investigated. First, this metric was only 
designed for Western classical piano music. It would be 
interesting to investigate the extent to which it could 
be applied to other genres (e.g. jazz, non-Western music) 
and other instruments (e.g. guitar, multi-instrument 
ensembles). The protocol presented above could be applied 
with different stimuli to design metrics for other contexts, 
and potentially define a unified metric that works in every 
situation. But even in the context of Western classical 
piano music, some further experiments would have to be 
run to test the generalisability of our metric. In particular, 
this metric was trained only on short segments; it remains 
to be seen whether it scales properly to longer pieces. One 
way to test our metric would be to run another similar 
listening test, once again using pairwise comparisons, 
but choosing specific, potentially artificial stimuli, to 
investigate specific points of disagreement: for instance, 
pairs of examples where our metric and Fn,On disagree as to 
which is best. By choosing representative examples with 
the specific aim of comparing these two metrics, much 
less data would be needed to validate which metric is 
most closely correlated to human perception.

Finally, this metric was designed to reflect perceptual 
similarity between the AMT output and the target. Such 
an evaluation criterion might not be relevant for every 
application. It is important when the overall musical 
quality of the transcription matters more than precise 
transcription of every note, for instance in the context 
of music creation and production (e.g. quick dictation of 
musical ideas) or tasks such as automatic accompaniment 
or cover detection. However, it might not be relevant in 
cases such as music education, where exact transcription 
of every note is paramount to properly assess the 
mistakes made by a student. In this case, reaching an 
Fn,OnOff of 1 should be the main objective, regardless of 
how the transcription sounds. In that regard, our metric 
complements the usual benchmark metrics to reflect 
perceptual quality of AMT outputs, but does not replace 
them.

7 Reproducibility
To allow further study of the data collected, we make it 
fully available, along with the stimuli, and the locations 
in seconds of the manually-selected cut points: https://
zenodo.org/record/3746863.

We also provide the code of the website: https://github.
com/adrienycart/AMT_perception_website.

A Python implementation of the used features and the 
pre-trained metric can be found here: https://github.
com/adrienycart/PEAMT.

https://zenodo.org/record/3746863
https://zenodo.org/record/3746863
https://github.com/adrienycart/AMT_perception_website
https://github.com/adrienycart/AMT_perception_website
https://github.com/adrienycart/PEAMT
https://github.com/adrienycart/PEAMT
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Note
 1 Soundfont download link: http://freepats.zenvoid.

org/Piano/acoustic-grand-piano.html.
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