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Computational Modeling of Rhythm Perception and the Role
of Enculturation 
Bastiaan van der Weij, Marcus T. Pearce, Henkjan Honing

This chapter compares a variety of computational models of rhythm perception and discusses them in

three sections, each focusing on one of various di�erent theoretical perspectives that exist in cognitive

modeling, namely cognitivism, embodied cognition, and predictive processing. The di�erent

perspectives suggest di�erent computational modeling techniques, which this chapter uses to

di�erentiate models of rhythm perception. Cognitivism most naturally accommodates rule-based

models, coupled oscillation models use mathematical tools associated with embodied cognition, and

probabilistic generative models are consistent with predictive processing theories of cognition. Each

section provides a short description of a theoretical perspective, followed by a discussion of rhythm

perception models consistent with that perspective. Furthermore, the chapter draws attention to the

in�uence that Western music theory may have had on models and theories of rhythm perception. This

potential in�uence is of interest because rhythm perception is thought to be shaped by the history of

experiences and activities of listeners, enabling the culture in which a listener is embedded to

in�uence their perception. The chapter brie�y reviews what e�ects this in�uence may have on rhythm

perception, suggesting the need for modeling enculturated rather than “universal” listeners.

Throughout, the chapter notes that rule-based models do not take previous experiences and activities

of listeners into account, while some coupled oscillation models and probabilistic generative models,

computational paradigms that gained popularity more recently, do, albeit to varying degrees.

Additionally, probabilistic generative models, consistent with predictive processing, suggest a

normative explanation of how previous experiences and activities shape perception.
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Introduction

In the music cognition literature, a conceptual distinction is often drawn between rhythm and meter.

Rhythm refers to a temporal pattern of sounds, while meter refers to a subjective phenomenon (Honing and

Bouwer 2019). Listening to rhythms tends to induce a sense of pulsation in listeners (Povel and Essens

1985). This pulsation, known as beat or tactus (Lerdahl and Jackendo� 1983), provides a temporal reference

with which movements can be coordinated (Repp 2005; Repp and Su 2013). We speak of meter when some

beats appear as more accented than others and these accented beats recur more or less regularly (Cooper

and Meyer 1960). Pulse and meter form the basis of temporally coordinated musical activities such as

clapping, dancing, singing, or playing an instrument. While these characteristics of meter are generally

regarded as uncontroversial among music cognition scholars, two aspects that elude consensus are the

precise nature of the cognitive phenomenon known as meter and the degree to which it is shaped by a

listener’s history of prior musical experiences and activities.

Regarding the nature of the cognitive mechanisms, multiple approaches have been proposed. Some of these

highlight abstract hierarchical structures (Longuet-Higgins 1978; Longuet-Higgins and Lee 1984; Lerdahl

and Jackendo� 1983), others entrainment of attention (Jones and Boltz 1989; Large and Jones 1999), neural

resonance (Large and Snyder 2009), or embodied and ecological aspects of rhythm perception (Shove and

Repp 1995; Iyer 1998; Clarke 1987; Todd and Lee 2015). More recently, approaches based on predictive

processing have been proposed (Vuust and Witek, 2014; Van der Weij, Pearce, and Honing 2017).

Computational cognitive models of rhythm and meter perception (for brevity, we refer to such models

collectively as rhythm perception models) are the focus of this chapter. By computational models, we mean

models that are described—ideally in a formal language—with a level of precision allowing them to be

implemented as a computer program, without the need to �ll in many details (see also Temperley 2013).

Such models may be distinguished from verbal-conceptual models, which are expressed in prose or as

conceptual diagrams, and may be consistent with multiple computational models.

We discuss rhythm perception models in the context of three broad theoretical perspectives, namely

cognitivism (cf. Anderson 2003), embodied cognition (Brooks 1991; Van Gelder 1995; Anderson 2003;

Chemero 2009), and predictive processing (Clark 2013). Each of the above approaches can be associated with

one of these perspectives. In turn, these perspectives can be associated with di�erent computational

modeling principles that underlie the models discussed in this chapter.

Brie�y, cognitivism views cognition as being primarily involved in rule-governed information processing.

This perspective is associated strongly with classical arti�cial intelligence approaches (e.g., see Newell and

Simon 1976). Among rhythm perception models, classic rule-based models (e.g., Longuet-Higgins and

Steedman 1971; Longuet-Higgins and Lee 1982) and preference-rule models (Temperley and Sleator 1999;

Temperley 2001) may be associated with this perspective (see the section “The Cognitive Perspective”).

Embodied cognition may be characterized by a rejection of the idea that information processing and

abstract representation provide the most appropriate explanation of many behaviors. It instead emphasizes

the role of continuous dynamic interaction between brain, body, and environment. Many characteristics of

adaptive oscillator (e.g., McAuley 1995; Large and Palmer 2002), and neural resonance (e.g., Large, Herrera,

and Velasco 2015) models harmonize well with this perspective (see “The Embodied Perspective”). Finally,

the term predictive processing (introduced by Clark 2013) covers a class of theories that build on the

Bayesian brain hypothesis (Knill and Pouget 2004) and predictive coding (Rao and Ballard 1999). These

theories propose that perception and cognition can be understood as prediction-error minimization in a

probabilistic generative model. Probabilistic generative approaches to rhythm perception (Temperley, 2007;

Van der Weij, Pearce, and Honing 2017) are consistent with this perspective (see “The Predictive Processing

Perspective”).
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The question of the degree to which rhythm perception of individual listeners is shaped by their history of

prior experiences and activities is often considered in the context of cultural background. Cultural

background is one predictor of stable tendencies in histories of prior musical experiences and activities of

individual listeners. If these stable tendencies have the power to in�uence rhythm perception, cultural

background may predict certain individual characteristics of rhythm perception in listeners from di�erent

cultural backgrounds. We use the term enculturation to refer to the acquisition of implicit cultural knowledge

by exposure to, and participation in, cultural activities. The predictive processing perspective most

prominently draws attention to the role that enculturation might play in the shaping of perception and

cognition. Although neither cognitivism nor embodied cognition are explicitly incompatible with this role,

predictive processing accounts for it normatively, namely as a consequence of a domain-independent

prediction-error minimization mechanism.

While there is considerable evidence, some of which is discussed in the next chapter, suggesting that

enculturation shapes rhythm perception, enculturation plays little to no role in the majority of existing

rhythm perception models. Some of these models take inspiration from Western music theory and have

been evaluated only on Western tonal music. A similar lack of diversity can be observed in the stimulus

materials and participants used in empirical and experimental music cognition research (Huron 2008;

Jacoby et al. 2020). If rhythm perception is indeed shaped by enculturation, studying it predominantly in the

context of Western music is problematic since the resulting knowledge may depend on familiarity with

Western music.

Among models that do not account for e�ects of enculturation, some explicitly limit their scope to Western

tonal music (e.g., Longuet-Higgins 1979). Others aim to re�ect universal constraints on perception and

cognition (Povel and Essens 1985; Large 2010b). Parameters of such models are typically determined by

musical intuition (e.g., Longuet-Higgins 1976; Povel and Essens 1985; Temperley and Sleator 1999), or by

optimal �t to experimental data (e.g., Shmulevich and Povel 2000). On the other hand, some models aim to

simulate the e�ects of prior exposure (one aspect of enculturation) to certain kinds of music on rhythm

perception (Van der Weij et al. 2017; Tichko and Large 2019). Parameters of these models are derived from

empirical samples of rhythms that are intended to represent previous exposure to rhythms (see also Patel

and Demorest 2013; Pearce 2018; Morrison, Demorest, and Pearce 2019). Some of these models are

probabilistic generative models, which are consistent with the mechanisms posited by the predictive

processing perspective.

In summary, this chapter discusses computational cognitive models of rhythm perception and aligns them

with three broad theoretical perspectives on cognition. It furthermore considers the role that enculturation

may play in rhythm and meter perception and the degree to which models take this role into account. The

next section reviews research related to the role of enculturation in shaping rhythm perception. The

remaining sections of this chapter are dedicated to each of the three broad theoretical perspectives on

cognition: cognitivism, embodied cognition, and predictive processing. Each section opens with a brief

discussion of the theoretical perspective before turning to the rhythm perception models that are consistent

with it.

Finally, we note that evaluating the performance of the discussed models and the connection between

model predictions and empirical observations receives less attention in this chapter than the reader might

have expected. This is partly because the emphasis lies on theoretical di�erences between cognitive models,

and partly because extensive comparisons between computational models, especially on culturally diverse

datasets, are simply not available (but for an exception, see Desain and Honing 1999).
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Cross-Cultural Perspective on Rhythm Perception

Perhaps in part due to its high level of pervasiveness,  Western tonal music has, explicitly or implicitly,

played a signi�cant role in the formation of theories and models in music cognition (see also Jacoby et al.

2020). However, this musical tradition represents only a small slice of the variety in musical cultures that

exists around the world (Trehub et al. 2015; Savage et al. 2015; Mehr et al. 2019). If rhythm perception is

shaped by enculturation, it can be expected to vary for individual listeners depending on the kind of music

they are familiar with. Below we discuss studies that suggest that this is the case. The discussion considers

three aspects of rhythm perception: the relation between metrical hierarchies and the likelihood of events,

constraints for tactus beats to be isochronous, and the shape of perceptual categories for temporal intervals.

3

Metrical Hierarchies and Event Likelihood

Metrical hierarchy plays a prominent role in theories of rhythm perception. The way such hierarchies are

commonly conceptualized can be attributed in part to the in�uential work of Lerdahl and Jackendo� (1983),

Longuet-Higgins (1978), and Longuet-Higgins and Lee (1984). These authors describe meter as a hierarchy

of metrical levels, popularly depicted as metrical grids by Lerdahl and Jackendo� (see Figure 1). Each metrical

level consists of isochronous (spaced evenly in time) beats. Beats are described as duration-less points in

time, represented abstractly in the mind of the listener. The resulting representation imposes a pattern of

alternating strong and weak beats onto a perceived rhythm, where the metrical strength (sometimes called

metrical accent, or metrical salience) of a beat is determined by the highest metrical level in which it occurs.

Lerdahl and Jackendo� (1983) distinguish between phenomenal accents, which are due to the way a piece of

music is performed, and metrical accents, which are due to the metrical interpretation of the music by a

listener and occur on metrically strong beats. This distinction highlights the conceptual di�erence between

rhythm and its metrical interpretation by a listener.

Figure 1:

A metrical grid visualizing the putative hierarchical organization of two bars of a ternary time signature (such as 3/4 time). The
hierarchy contains three metrical levels. The dots represent beats, the horizontal dimension represents time (which flows from
le� to right), and the vertical dimension represents metrical salience (towards the top of the figure is more salient). The top level
usually indicates the bar-level periodicity. Note that between each pair of dots on a higher level, two or three dots occur at a
lower level. For each top-level beat, there are three middle-level beats, and for each middle-level beat there are two beats on the
lowest level, indicating ternary subdivision of the top level and binary subdivision of the middle level. Also, note that beats at
each level are equidistant in time.

It is commonly assumed in computational and verbal-conceptual theories of rhythm perception that the

metrical strength of a beat represents the strength of prediction or expectation that an event will occur

(Temperley 2007; Large 2008). The metrical phenomena of “loud rests” (London 1993) and syncopation are

commonly related to this assumption. A loud rest occurs when an event unexpectedly does not occur at a

metrically salient beat. Syncopation occurs when a metrically salient beat passes silently or unaccented and

is preceded by an onset or accent at a metrically weaker beat (Longuet-Higgins and Lee 1984). These

phenomena are generally described as deviations from the norm, or as violations of expectation (Fitch and

Rosenfeld 2007; Bouwer et al. 2018). Consequently, measures of syncopation are sometimes used to

estimate the perceptual complexity of rhythms based on the idea that rhythms whose constituent events
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have unpredictable timing will be experienced as more complex (e.g., see Witek et al. 2014). However, recent

studies have suggested that the presumed correlation between metrical strength and degree of event

expectation may not apply to all listeners.

Palmer and Krumhansl (1990) hypothesized that the “frequency with which musical events in a piece occur

in a given metrical context may provide important perceptual cues to meter.” Using a set of Western

classical music compositions by four di�erent composers, Palmer and Krumhansl constructed event-

frequency distributions based on the relative frequency of onsets at di�erent positions in a bar. Such

distributions were constructed separately for di�erent meters and composers. In support of their

hypothesis, Palmer and Krumhansl found that metrical salience more or less predicts the relative frequency

of events and that this e�ect is stable for di�erent composers. Palmer and Krumhansl furthermore

conducted a pair of behavioral experiments, the results of which indicated that expectations of listeners

(especially if they are musicians) for notes to occur in di�erent metrical contexts correlated with metrical

salience of those contexts.

While Palmer and Krumhansl highlight the role of statistical regularities in music, they interpret this role in

the context of multileveled representations of metrical hierarchies. They suggest that observed frequency

distributions of musical events in di�erent metrical contexts result from the presence of such metrical

hierarchies in the minds of composers and listeners, rather from stylistic constraints in the music.

However, Palmer and Krumhansl qualify this �nding by noting that their observations are limited to

Western classical music. Indeed, subsequent corpus studies applying the same methodology to rhythms

from di�erent musical idioms suggest a more prominent role for stylistic constraints in the shaping of

frequency distributions of event timing.

Holzapfel (2015) analyzed event-frequency distributions derived from a corpus of Turkish makam music

(Karaosmanoğlu 2012). Turkish makam music is a style of both classical and folk music in which rhythmic

organization is centered around the notion of an usul (Marcus 2001). Usuls are rhythmic modes,

characterized by a pattern of drum strokes. Holzapfel derived these distributions for Turkish makam music

by collapsing over usul cycles, which are annotated in the corpus. The results show that, compared to

Western music, onsets in Turkish makam music were more spread out over di�erent positions in the

metrical cycle and that usul patterns could be used to classify the usul underlying makam compositions.

London, Polak, and Jacoby (2017) examined a set of Malian djembe ensemble recordings using event-

frequency distributions. This music does not make use of music notation, so London and colleagues relied

on onset annotations of the recordings. After correcting for tempo changes, the observed onsets were

collapsed over metrical cycles. Results show that the relative frequencies of events at di�erent positions in

the metrical cycle do not appear to be structured by metrical salience patterns, even though the rhythms are

metrically structured and the consistent timing of subdivisons suggests the presence of a regular beat.

The above �ndings are consistent with the idea that the distribution of events over positions in the metrical

cycle provides a cue for meter. However, metrical hierarchy, as predicted by theories based on Western

music theory (Longuet-Higgins 1978; Longuet-Higgins and Lee 1984; Lerdahl and Jackendo� 1983),

appears not to be the only predictor of those patterns. Based on their �ndings in Malian djembe ensemble

recordings, London, Polak, and Jacoby (2017) claim that “the shared presumption that onset frequency is

correlated with metrical accent holds only contingently, that is, for the corpora of Western classical and

popular music that were used in these studies, and for which these models were developed” (p. 478). This

also calls into question the view that syncopations necessarily re�ect violations of expectation. Iyer (1998)

anticipated this, suggesting that one “should not regard the global musical preponderance of

“syncopation” (o�-beat accents) as a vast set of exceptions to the “normal” accentual rules of meter, but

rather as convincing counterexamples to such proposed accentual rules. (p. 44).
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Meters with Non-isochronous Tactus Beats

Perceptual Categories for Temporal Duration Ratios

Theories of metrical structure often include constraints for the beats at the tactus level to be evenly spaced

(isochronous). Longuet-Higgins (1978) and Longuet-Higgins and Lee (1984) described meter generatively

as the recursive subdivision of intervals into two or three evenly spaced beats. Similarly, Lerdahl and

Jackendo� (1983) suggested that beats in well-formed metrical hierarchies must be more or less evenly

spaced. The authors cited here have indicated that their theories apply primarily to Western music, but their

ideas have nevertheless shaped subsequent research, which does not always acknowledge this quali�cation.

Meters with uneven (non-isochronous) intervals between tactus beats, while relatively uncommon in

Western classical music, are prevalent in many musical styles (e.g., see London 1995; Polak et al. 2018).

Cross-cultural studies have suggested that these meters are readily processed by listeners familiar with

these structures. London (1995) calls such non-isochronous meters “complex,” and argues that a non-

isochronous tactus beat needs to be anchored in a faster, and isochronous, underlying pulse, such that

tactus beats are measured by either two or three of these faster pulses. This suggestion has been challenged

by observations that non-isochronous tactus beats do not always adhere to an underlying isochronous grid

(Kvifte 2007). Furthermore, it has been suggested that the purported complexity of non-isochronous

meters is overridden by familiarity: adults and infants with exposure to non-isochronous meters can detect

violations of the meter while adults with limited exposure to such meters can only do this for isochronous

meters (Hannon and Trehub 2005b; Soley and Hannon 2010; Hannon et al. 2012). For such listeners,

rhythms in a non-isochronous meter are no more complex than those in an isochronous meter.

It is thought that ratios between continuous time intervals in rhythms are perceived as a small number of

discrete perceptual categories (Clarke 1987; Desain and Honing 2003). These categories appear to be

centered around small-integer ratios (such as 1:2:1 and 1:2:3), but their size and shape vary, resulting in

perceptual biases (Desain and Honing 2003; Jacoby and McDermott 2017). It has been hypothesized that

small-integer ratios are a universal constraint on perceptual categories for duration intervals (Mehr et al.

2019). In support of this hypothesis, Mehr et al. found that simple-integer duration ratios are prevalent in a

culturally diverse sample of music recordings. Furthermore, Savage et al. (2015) found evidence for the

widespread occurrence of binary and ternary subdivision as well as isochronous beats across a range of

musical cultures worldwide.

Jacoby and McDermott (2017) found evidence that biases in categorical perception of temporal intervals—

that is, the size and shape of perceptual categories—may be attributable in part to enculturation. In a cross-

cultural study involving adult members of a native Amazonian society (the Tsimané) and North American

adults, they found that the size and shape of perceptual categories for temporal intervals di�ered

signi�cantly between these two groups, but also that, in both groups, perceptual categories appeared to be

centered around small-integer ratios. Since the musical practices of the Tsimané and North American

participants are di�erent enough to cause the observed di�erences in perceptual biases, this commonality is

especially remarkable and consistent with the potential universality of small-integer ratio categories for

ratios between temporal intervals in rhythms.

Polak, London, and Jacoby (2016) and Polak et al. (2018), however, present work that challenges the

hypothesized universality of (perceptual categories for) small-integer duration ratios in rhythms. Malian

djembe ensemble performances commonly contain “swung” subdivisions—intervals subdivided into

intervals related by a complex ratio. Polak and colleagues show that these non-isochronous subdivisions

a�ord the production of precise and consistent timing patterns in an ensemble context. This seems to

suggest that these Malian musicians can entrain to complex-ratio beat subdivisions. Polak et al. (2018)
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Reconciling Enculturation with Universal Tendencies in Rhythm Perception

Enculturation and Embodiment

suggest that the production of such non-isochronous subdivisions may be supported by non-isochronous

perceptual categories that depend on experience and training and, in a cross-cultural study, found evidence

for the presence of such a category in expert musicians from Mali, but not in expert musicians from

Germany or Bulgaria.

Musical features that are surprisingly prevalent across a range of musical cultures worldwide, known as

statistical universals (Savage et al. 2015), are sometimes seen as evidence for the presence of innate

cognitive constraints on music perception and production. While the presence of such constraints may

plausibly give rise to statistical universals, there seem to be other ways in which such universals could arise.

For example, individuals from di�erent cultures share more than genes. Bodily constraints and stable

properties of natural environments that are independent of geographic location might also give rise to

universal tendencies in music. Furthermore, it has been argued based on simulations of the dynamics of

cultural transmission using Bayesian models that statistical universals may emerge readily from weak and

defeasible cognitive biases (Thompson et al. 2016).

Some authors, such as Temperley (2000) and Agawu (1995), warn that there exists a tendency, primarily in

the ethnomusicological literature, to overstate di�erences in rhythmic practices and rhythm perception

between cultures. Others, such as Iyer (1998), Huron (2008), and, recently, Jacoby et al. (2020) lament the

sparsity of cross-cultural work in music cognition and caution against interpreting the idiosyncrasies of a

familiar musical (usually Western) culture as the norm, or of culture-speci�c perceptual constraints as

universal.

A theoretical account of rhythm perception that can potentially reconcile these views has been proposed by

London (2004). In accord with ideas of Jones and Boltz (1989) and Large and Jones (1999), London suggests

that meter perception is a form of entrainment behavior, which serves to guide our attention over time in

synchrony with musical rhythm. However, its openness to shaping—by experience, practice, music

education, and other forces of in�uence that an individual’s embeddedness in a cultural environment

entails—makes metrical entrainment a skilled behavior. Thus, meter perception is regarded more than a

passive response to music or a bottom-up analysis of sensations. However, London also argues that

although the structure of metrical entrainment behavior is plastic, it simultaneously is constrained by a set

of well-formedness conditions which he sets forth (echoing Lerdahl and Jackendo�’s [1983] approach).

London explicitly avoids proposing universal preference rules since, he argues, the relation between rhythm

and meter is malleable and ambiguous.

This theoretical account thus argues that certain aspects of rhythm perception can be shaped by

enculturation while other aspects are less adaptable and can be captured by well-formedness constraints; it

therefore occupies a middle-ground between work emphasizing cultural di�erences in rhythmic practices

and work emphasizing universal constraints on perception. Speci�cally, constraints on metrical

entrainment behavior are argued to arise universally, while an individual’s capacity for metrical

entrainment depends on their previous experiences and activities and is therefore subject to the in�uence of

enculturation.

A more radical reading of some of the above literature suggests that the enculturation of rhythm perception

may involve information that cannot be gleaned from music corpora alone. London, Polak, and Jacoby

(2017) suggest that

D
ow

nloaded from
 https://academ

ic.oup.com
/edited-volum

e/41992/chapter/444934390 by U
niversity of C

am
bridge user on 28 M

arch 2024



[…] while the frequency of onset occurrence of events doubtless plays a role in our acquisition of

rhythmic and metrical knowledge, those frequencies occur in holistic contexts that include timing,

timbre, and other auditory, visual, and sensorimotor channels of perception. Combinations of

these cues forge associations between statistically common rhythms and their characteristic

metrical orientations. (p. 479)

Some information about such holistic contexts may be encoded in music corpora, but these annotations

provide no substitute for tightly coupled sensing and acting involved in participation in music-related

cultural practices such as dancing, attending a concert, or singing in a group. These experiences involve

coordinated movements and sensations in, most prominently, the auditory, visual and proprioceptive

modalities.

An embodied view of rhythm perception acknowledges the role that these aspects might play in musical

experiences. An action-oriented interpretation of predictive processing (Clark 2013), however, in addition to

emphasizing the role of embodiment in perception, suggests how embodied experience shapes perception

(see also Clark 2016). A theory of rhythm perception based on action-oriented predictive processing might

therefore be consistent with the theoretical account described by London (2012), in that it may describe the

role of practice and training in shaping rhythm perception.

The above considerations, if true, appear troublesome for computational models of rhythm perception that

aim to simulate enculturation using samples from music corpora. Nevertheless, stable probabilistic

properties of the music to which enculturated individuals are exposed may still play a signi�cant role in

shaping rhythm perception. Samples drawn from music corpora are likely to re�ect these probabilistic

properties. Models that use these samples to simulate the e�ects of enculturation on rhythm perception

may therefore successfully capture some of these e�ects.

To conclude, the research reviewed above suggests that the experience of meter depends to a large extent on

being situated in a cultural environment. If so, it seems that rhythm perception models that aim to

accommodate music from di�erent cultures cannot rely on a bottom-up analysis of a rhythm based on

hypothetically universal mechanisms for rhythm perception. They must also account, in some way, for the

e�ects of being intimately familiar with certain musical idioms. For computational modeling, empirical

samples from music corpora may go some way toward simulating the musical exposure of enculturated

individuals. However, such corpora do not capture the holistic context in which exposure to music occurs,

possibly leaving some aspects of enculturated rhythm perception unaddressed.

The Cognitivist Perspective

We now turn to rhythm perception models associated with the �rst of the three di�erent broad theoretical

perspectives discussed in this chapter, namely cognitivism. The cognitivist perspective is characterized by

the view that cognition is most appropriately explained as pure information processing, involving rule-based

computation performed on symbolic representations. These representations are derived from sensory input

through bottom-up perceptual processes (e.g., Newell and Simon, 1976; Marr, 1982, cf. Anderson, 2003).

This emphasis on information processing is typically re�ected in the terminology used to motivate and

describe cognitivist models. Perceptual and cognitive phenomena are described as involving “problems” or

“tasks” that cognition must “solve” or “decide.” Modeling a cognitive process entails identifying the task it

performs, identifying the appropriate representations of input and output, and �nding an algorithm that

generates the appropriate output given an input.

One motivation for the epistemological value of such models is that designing an algorithm to solve a

speci�c cognitive task may provide insight into the cognitive process itself. Commonly, the process of
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Rule-Based Models of Rhythm Perception

designing such algorithms reveals unanticipated intricacies and complexities of the task itself that were

overlooked by verbal-conceptual theories. The cognitivist approach was especially popular in the early days

of cognitive science, and its methodology was signi�cantly in�uenced by contemporary developments in

arti�cial intelligence. These in�uences have been noted by authors like Longuet-Higgins (1978), Newell and

Simon (1976), and Bundy (1990).

The sections below describe a set of cognitivist rhythm perception models proposed by Longuet-Higgins

and colleagues, who pioneered computational modeling of music cognition in the 1970s and 1980s. These

models propose speci�c mechanisms for various computational problems that are hypothesized to be

involved in rhythm perception. Longuet-Higgins and colleagues point out at several occasions (Longuet-

Higgins and Steedman 1971; Longuet-Higgins 1978, 1979) that their work aims to account for perception of

Western tonal music by listeners familiar with such music. Therefore, the models described below are not

intended as universal accounts of rhythm perception, but rather as re�ections of the perception of

enculturated listeners. Clarke (1999) more extensively discusses these models and many that followed in

this early period of music cognition modeling. Some of these models are still actively used in empirical

studies (e.g., Fitch and Rosenfeld 2007; Grahn and Brett 2007; Song et al. 2013; Witek et al. 2014; Bouwer et

al. 2018).

Longuet-Higgins and colleagues described several key issues that still inspire modelers of music perception

to this day. The central issue is to understand listeners’ ability to reconstruct the rhythmic and tonal

relations, intended by the composer, between sounds from a performance of Western classical music.

Western tonal music notation contains considerable information about the tonal and temporal relations in

music. Trained musicians can reconstruct this information from “even a mediocre performance” (Longuet-

Higgins and Steedman 1971, p. 221). Therefore, it is argued, scores are likely to provide strong clues toward

the kind of rhythmic and tonal relations that listeners infer from a performance. This ability is furthermore

argued to be available to anyone “familiar with the composer’s language” (Longuet-Higgins 1978, p. 149).

In the models described below, the inference of rhythmic relations (meter) and tonal relations (key) is

treated independently. The discussion below considers only the parts of these models relevant to the

interpretation of rhythm.

Longuet-Higgins and colleagues divided the central issue into a set of sub-problems, which were addressed

individually by the computational models that we describe below. These models describe the inference

problem from the perspective of the listener who is processing a piece of music note by note. This listener

must, from the �rst few notes, infer the phase and period of the beat. This problem is addressed by

Longuet-Higgins and Lee (1982). Then, the established beat must be subdivided recursively until each note

initiates a metrical unit at some level of beat subdivision. Sometimes, notes are played slightly earlier or

later than expected. In these cases, the listener must �gure out whether these deviations represent a change

in tempo, a subdivision of the beat, or expressive timing of the performer. Tracking and subdivision of a

beat are addressed by Longuet-Higgins (1976). Finally, to �nd the correct time signature, beats must be

grouped into higher-level metrical units such as bars. This problem is addressed by Longuet-Higgins and

Steedman (1971). The sections below discuss these models in chronological order.
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Grouping Metrical Units

Beat Tracking and Subdivision

Longuet-Higgins and Steedman (1971) propose an algorithm that addresses how, based on a pattern of note

durations in a deadpan performance, a listener may identify metrical units and group them into bars.

Motivated by “the progressive character of musical comprehension” (p. 223), Longuet-Higgins and

Steedman propose a fundamental principle, which they call the rule of congruence, by which the other rules

of the model are motivated. The intuitive motivation for this principle is described eloquently by the

observation that “music would be a dull a�air if all notes had to be in the key and all accents on the beat, but

it would be incomprehensible if the key and meter were called into question before they were established”

(p. 224). The rule of congruence stresses the important role played by the temporal order of musical events.

This emphasis on the temporal incrementality of music listening sets this early approach apart from later

approaches, which ignore the temporal order of events (e.g., Povel and Essens 1985; Palmer and Krumhansl

1990).

4

The rules of the model contain many subtleties but can be summarized approximately as follows: The

duration of the �rst or second note (whichever is shorter) establishes the smallest metrical unit. By the rule

of congruence, an established metrical unit is never abandoned. The metrical hierarchy is progressively

constructed from this smallest unit by means of grouping. Such grouping is prompted by one of three cues:

(1) the occurrence of a long note beginning on an already established metrical unit; (2) a dactyl, a pattern

consisting of two long followed by one short interval; or (3) a long note followed by a short note. If any of

these is encountered, the current metrical unit is multiplied in length by two or three (depending on the

length of the cue-pattern) to form a metrical unit at the next level of the hierarchy.

Longuet-Higgins (1976) proposes an algorithm addressing a di�erent issue: How to track and subdivide a

beat in a performance with a changing tempo? While Longuet-Higgins and Steedman’s (1971) model and its

extension (Steedman 1977) assume deadpan performances, listeners can follow along with a beat despite

tempo changes and expressive timing. Another way of stating the problem that this work aims to address is

as follows: When an onset occurs close to where a beat is expected, how does a listener decide whether the

onset marks a subdivision of the beat, a change of tempo, or an expressive deviation?

Longuet-Higgins proposes the following procedure:  Assuming a given beat interval, it can be determined

where, assuming deadpan timing, the next beat is expected. Based on this, the amount of time by which the

next note deviates from this expected beat can be determined. A temporal window around the expected next

beat location is created by a parameter called tolerance. If the next note falls within the tolerance window,

the next beat interval is increased or decreased by half the amount of deviation of the note from deadpan

timing. If the next note instead occurs before the tolerance window, the beat interval is subdivided by two or

three. The upshot is that, once processing is complete, each note occurs at the beginning of a metrical unit.

5

This mechanism for adapting beat duration based on deviation from deadpan timing bears some

resemblance to beat perception models based on coupled oscillation (Large and Kolen 1994) that are

discussed in the next section. The resemblance is notable because coupled oscillation models align with a

theoretical perspective that is rather di�erent from cognitivism.
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Beat Finding

Optimization and Preference-Rule Models

Longuet-Higgins and Lee (1982) address another puzzle: Assuming that a beat can be tracked and

subdivided once established, how is the tactus beat established to begin with? How do we know whether the

rhythm begins with an anacrusis? If it does, where does the �rst beat occur? How do we know the interval

between the �rst and the second beat? Borrowing terminology used by Desain and Honing (1999), Longuet-

Higgins and Lee’s model maintains a current beat hypothesis. This hypothesis is speci�ed by two variables

representing virtual points in time: a “�rst beat”,  , and a “second beat”,  . These variables are initialized

by the onset times of the �rst and second note. Subsequent notes revise and update the current beat

hypothesis by subjecting it to two types of transformations: lengthening (stretching) it or shifting its

position. These transformations are triggered by a set of rules that, in the interest of brevity, we will not

attempt to summarize here. The algorithm aims to output values of  and  that encode the position and

duration of the �rst tactus beat interval in a performance, thereby providing an answer to the questions at

the beginning of this paragraph.

t1 t2

t1 t2

Desain and Honing (1999) note that this model and some of its successors were evaluated only qualitatively

on small toy domains. Furthermore, it is di�cult to derive general properties of their functioning since the

rules in these models interact with input in complex and unpredictable ways. Desain and Honing propose a

uni�ed framework in which the models can be expressed, and they systematically analyze the behavior of

the models using an empirical dataset and Monte-Carlo samples from the models’ input space: the set of all

possible input rhythms of up to thirty-�ve grid points. Desain and Honing’s results show that these simple

models perform surprisingly well. Their work represents one of the few existing systematic comparisons

between computational models on the same dataset.

We describe optimization models here as cognitivist models but di�er signi�cantly from the rule-based

models described above. Instead of what are sometimes called “hard and fast” rules, optimization models

employ soft constraints that can be satis�ed to various degrees. In some ways, which we return to below,

these models are similar to probabilistic generative models (described in “The Predictive Processing

Perspective”). Unlike these models, however, optimization models provide no theoretically motivated

interpretation of the metric that is optimized.

The well-known clock model of Povel and Essens (1985) is an optimization model that also contains some

rule-based aspects. This model operates by generating a combinatorically exhaustive set of “clocks,”

de�ned by a unit (period) and location (the phase of the �rst event in the rhythm relative to the clock’s

period), calculating a score for each clock given a rhythm. Input rhythms are �rst preprocessed to mark

events that, according to a set of rules, are predicted to be perceived as accented. The score that is calculated

for each clock is based on how well the clock’s ticks align with events marked as accented. The model selects

the clock that optimizes this score, and its corresponding score is used to predict the degree to which the

rhythm induces the clock.

Temperley and Sleator (1999) introduce another optimization approach, which they call a preference-rule

model. Preference rule models are intended to be a computational implementation of the system of

preference rules proposed by Lerdahl and Jackendo� (1983). Lerdahl and Jackendo�’s ideas were in�uential

but lacking in formal rigor (see Hansen 2010, for an extensive discussion), and preference-rule models are

an attempt to address this. Temperley and Sleator propose independent models for meter and harmony. As

before, our discussion considers only the meter model.

Preference rule models operate by generating an exhaustive set of analyses of a rhythm, speci�ed by a set of

well-formedness constraints. Each of these analyses receives a score based on a set of preference rules.
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Given an analysis and a piece of music, a preference rule yields a score representing the degree to which the

analysis is preferred for the piece of music. The total score of the analysis is calculated as a weighted linear

combination of the scores of the individual preference rules. The analysis with the highest total score is the

analysis that the model predicts to be correct.

For their meter model, Temperley and Sleator formalize three preference rules: the regularity rule, which

prefers analyses in which beats are equally spaced; the event rule, which prefers analyses in which beats are

aligned with events; and the length rule, which prefers analyses that align strong beats with the onsets of

longer durations. Well-formed metrical hierarchies are constrained to contain exactly �ve metrical levels.

Generalizing from Lerdahl and Jackendo� (1983), who based their theory primarily on music as notated in

scores, Temperley and Sleator allow beats to be irregularly spaced. Analyses in which beats are regularly

spaced are nevertheless preferred by the regularity rule.

The regularity rule is the only preference rule that depends only on the analysis and not on its relation to a

piece of music. This type of rule resembles the concept of a prior probability in probabilistic generative

models. This probability represents the a priori probability of an analysis which is independent of the

rhythm that is analyzed. Preference-rule as well as generative approaches entail a trade-o� between the a

priori preferability of an analysis and its congruence with a piece of music: the more unlikely an analysis is a

priori, the more strongly it needs to be supported by the piece of music.

Preference rule models have some advantages compared to rule-based models. Because preference rules

represent soft constraints, they naturally allow for a certain degree of deviation from the norm: decreased

congruence in one aspect (e.g., the degree to which beats are spaced evenly) may be compensated for by

increased congruence in another (e.g., alignment of strong beats with notes). Furthermore, some rule-

based approaches have been criticized for being opaque: it is di�cult to describe regularities in their

behavior based on the formulation of their rules because the rules interact in complex ways (Desain and

Honing 1999). Preference-rule models, by contrast, have the bene�t of being easy to interpret because

preference rules represent aspects of the relation between music and interpretation that are to be preferred.

A limitation of the optimization model of Povel and Essens (1985), but not necessarily of preference rule

models (see Temperley 2001, ch. 8), is that it does not consider the dynamic interplay between the unfolding

music and the listener’s perception and expectations. It is commonly emphasized (Longuet-Higgins and

Steedman 1971; Longuet-Higgins 1978; Lee 1991; Large and Kolen 1994) that this interplay should be central

to any account of rhythm perception.

The Embodied Perspective

The term “embodied cognition” carries a variety of connotations (Wilson and Golonka 2013). Here we

interpret it as emphasizing continuous dynamic interaction between brain, body, and environment, from

which various behavioral and cognitive phenomena are emergent (Brooks 1991; Van Gelder 1995; Chemero

2009). This poses a contrast with the emphasis that cognitivist approaches place on strict information

processing, which downplays the role of an agent’s physical interaction with its environment. The emphasis

on dynamic interaction is re�ected in the type of models typically associated with this perspective, namely

dynamical systems models (Chemero 2009).

There is a class of cognitive models of rhythm perception that proposes that pulse and meter perception is

based on coupled oscillation (Large and Kolen 1994; McAuley 1995). These models posit that constraints on

meter and how it is induced emerge jointly from the dynamics of coupled oscillation. While cognitivist

approaches describe meter perception as a cognitive mechanism that infers an abstract representation

(meter), often in a bottom-up fashion, from perceptual input (rhythm), coupled oscillation models pose no
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Adaptive Oscillator Models

sharp distinction between representations and cognitive mechanisms that infer representations from

sensory input.

Although coupled oscillation models do not necessarily emphasize a role for the body and environment in

rhythm perception, they are compatible with two central tenets of embodied cognition: a rejection or

downplay of the importance of cognitive representations (Anderson 2003; Wilson and Golonka 2013) and a

rejection of the idea that cognition is most appropriately described in terms of computation and symbol

manipulation (see Van Gelder 1995). This sentiment is re�ected strongly in the fragment below, which

appears in an introduction to neural resonance models (a type of coupled oscillation models) of music

perception (Large 2010b).

The brain does not “solve” problems of missing fundamentals, it does not “compute” keys of

melodic sequences, and it does not “infer” meters of rhythmic input. Rather, it resonates to music.

(p. 201; emphasis in original)

Coupled oscillation models can account for a remarkable number of phenomena in rhythm perception

without resorting to domain-speci�c constraints.  Among these phenomena are aspects that are argued to

pose challenges for other approaches, namely tracking a beat in rhythms with tempo changes (Large and

Jones 1999) or expressive timing (Large and Palmer 2002) and entraining to syncopated rhythms in which

the pulse frequency is absent from the Fourier spectrum of the rhythm (Velasco and Large 2011). Coupled

oscillation models have therefore emerged as popular models of rhythm perception. Below, two types of

coupled oscillation models are discussed: adaptive oscillator models and neural resonance models.

6

McAuley (1994) proposed the term adaptive oscillator for a class of oscillators that adapt their period in

response to exogenous rhythms. McAuley (1994, 1995) and Large and Kolen (1994) independently (McAuley

1995, p. 67) proposed oscillators of this type as models for rhythm perception. McAuley (1995) described the

theoretical status of these models as somewhere in between a “single-neuron model and that of a

psychological theory.” Large and Kolen (1994) describe their model as representing “a single abstract

processing unit, amenable to connectionist implementation.” Thus, both proposals describe these models

as abstract, rather than mechanistic, accounts of rhythm perception (in contrast to neural resonance

models).

Di�erent aspects of the behavior of coupled oscillators may be connected to di�erent aspects of rhythm

perception. Large and Kolen (1994) describe an oscillator that synchronizes with a periodic component of a

rhythmic pattern as “embodying the notion of musical pulse, or beat.” Similarly, McAuley (1995, p. 12)

writes that oscillators model “global dynamics of perceptual mechanisms involved in the processing of

rhythmic patterns.” Metrical hierarchy is proposed to emerge from two or more endogenous oscillators

entraining to each other, as well as to an exogenous rhythm (Large and Kolen 1994; McAuley 1995).

McAuley (1995) also raises dimensionality reduction, or e�cient memory encoding, as a motivation for the

approach: an oscillator may be seen as an e�cient memory representation of where the pulse is. Finally, it is

often stated that the oscillators encode a prediction or expectation of when events are expected.

An oscillator produces periodic behavior that is described by two state variables, period,  , and phase,  .

Period represents the amount of time required for an oscillator to complete its cycle. Phase represents the

relative position of the oscillator within its cycle and evolves from zero to one, at which point it wraps back

to zero. An oscillator is sometimes said to “�re” when its phase reaches zero.

p ϕ

The paragraphs below describe a general mathematical framework for adaptive oscillator models. This

framework is limited to describing how one oscillator is in�uenced by another. Extensions to two
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endogenous oscillators that entrain to di�erent periodicities in a rhythm are described by Large and Jones

(1999) and Large and Palmer (2002). The oscillator that is being in�uenced is the endogenous oscillator: a

source of endogenous oscillations. The other is an exogenous “oscillator,” which, in adaptive oscillator

models, is not an actual oscillator, but an exogenous rhythm. Causation is unidirectional: the exogenous

oscillator (the rhythm) exerts in�uence on the endogenous oscillator, but the endogenous oscillator does

not in�uence the behavior of the exogenous oscillator. This in�uence is called coupling and causes the phase

and period of the endogenous oscillator to be perturbed by the activity of the exogenous oscillator.

Adaptive oscillator models can be evaluated in a sequence of discrete time steps. Because the phase and

period are only perturbed by the �ring of the exogenous oscillator (or the presence of an onset, since the

exogenous oscillator is a rhythm), the dynamic behavior of the system can be described entirely by

considering only the relative phase of the two oscillators at moments when the exogenous oscillator �res.

The relative phase is the (circular) di�erence between the endogenous and exogenous oscillator’s phase.

The relative phase at the  th �ring of the exogenous oscillator, given the relative phase at the  th

�ring and the periods of the endogenous and exogenous oscillators, is described by

(n + 1) n

(1)

ϕn+1 = (ϕn + q
p
)     mod 1,

where  represents the period of the exogenous oscillator and  represents the period of the endogenous

oscillator. This equation is known as a circle map. In the above form, it describes the relative phase of two

uncoupled oscillators (e.g., two metronomes ticking away independently at their own tempos).

q p

Coupling is introduced by allowing the exogenous oscillator to perturb the phase of the endogenous

oscillator. Such phase coupling is incorporated by adding a coupling term to the circle map.

(2)

ϕn+1 = (ϕn +
q

p
+ ηϕFϕ (ϕn))    mod 1.

Here,  is a parameter that controls the coupling strength. The term  is the coupling function,

which, given the relative phase, calculates the amount by which the phase is perturbed.

ηϕ Fϕ (ϕn)

To model the relative phase of an endogenous oscillator and a rhythm, the “period,”  of the exogenous

oscillator is replaced by the  th inter-onset interval,  , in a rhythm. The equation below illustrates this:

q

n in

(3)

ϕn+1 = (ϕn + in

p
+ ηϕFϕ (ϕn))   mod 1.

If  is the  th onset in a rhythm, then the  th inter-onset interval is  .tm m n in = tn+1 − tn

Musical rhythms tend to �uctuate in tempo in a way that listeners can track (Repp 2005). To account for

this, adaptive oscillator models implement period coupling. The ability of oscillators to adapt their period to

a rhythm motivates McAuley (1994) to call these oscillators adaptive.

The function below calculates a new period at each onset  :tn
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(4)

pn+1 = pn + pnηpFp (ϕn).

The function is parameterized by a coupling-strength parameter,  , and a period coupling function, 

, which calculates the change in the period given a relative phase  .

ηp Fp (ϕn)

ϕn

Given suitable coupling functions, the endogenous oscillator will entrain (be driven to �re in synchrony) to

an approximately periodic rhythm. The degree to which this happens depends on how close the period  of

the oscillator is to a (sub)harmonic of the period of the rhythm,  .

p

q

The dynamic behavior of the system can be visualized by regime diagrams. Such illustrations (e.g., see Large

and Kolen 1994) visualize the time it takes for an oscillator to settle into a mode-locked state as a function

of the coupling strength and the ratio between the endogenous oscillator’s period and a driving pulse.

Regime diagrams reveal regions centered around  values, where  and  s are small integers, in which

stable phase-locked (entrained) states emerge readily. These entrainment regions are wider around points

where the ratio between  and  can be expressed by small integers (e.g., 1:1, 1:2, 2:3) and increase in width

as coupling strength increases. Entrainment regions describe the constraints on pulse and meter perception

predicted by adaptive oscillator models.

7

p/q p q

p q

The oscillator described so far is easily disturbed by rhythms that contain onsets far from where the

oscillator “expects” the onset. To allow an oscillator to entrain to a single periodic component in a rhythm

that contains more onsets apart from periodic ones, Large and Kolen (1994) propose period and phase

coupling functions for which the strength of their e�ect depends on how close the onset occurs to where the

endogenous oscillator predicts it to occur. The further an onset deviates from the prediction, the smaller the

in�uence it exerts on the endogenous oscillator’s phase and period. This endows the oscillator with what

Large and Kolen call a temporal receptive �eld. The width and sharpness of the temporal receptive �eld are

parameterized. In Large and Kolen’s model, these parameters remain �xed throughout a simulation, but

Large and Palmer (2002) propose a model in which the temporal receptive �eld sharpens as onsets occur

closer to where they are predicted.

In Large and Kolen’s model, another pair of parameters specify a lower and upper bound on the oscillator’s

period. The oscillator’s initial period, called its resting period, lies halfway between the lower and upper

bound. When no onsets are encountered within its temporal receptive �eld, the oscillator maintains its

current period. Large and Kolen associate this behavior with the tendency of a pulse percept to be sustained

in the absence of rhythmic events (Cooper and Meyer 1960).

A set of adaptive oscillator models proposed by McAuley (1993, 1994, 1995) are similar to Large and Kolen’s

adaptive oscillator. Instead of gradual phase adaptation, McAuley’s models reset their phase based on the

relative phase. Furthermore, these oscillators have a resting period to which they gradually return in

absence of inputs.

Both Large and Kolen (1994) and McAuley (1995) have associated their models with dynamic attending

theory (Jones and Boltz 1989). Large and Jones (1999) present an adaptive oscillator model where self-

sustained oscillations take on the role of attending rhythms (Jones and Boltz 1989). An attending rhythm

consists of periodic pulses of attention, de�ned as periods of sharp perceptual acuity during which an event

is anticipated. In Large and Jones’ model, an attentional pulse is implemented by a bell-shaped probability

density function centered around phase zero. The width of this distribution is governed by a concentration

parameter, re�ecting attentional focus. As synchronization (due to entrainment implemented by sinusoidal

phase and period coupling) increases, the pulse of attention sharpens, focusing attention in time.
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Neural Resonance Models

The adaptive oscillator of Large and Jones is further developed by Large and Palmer (2002). In this

extension, phase and period coupling depend on the strength of attention (as indexed by the attentional

pulse), creating a temporal receptive �eld. However, since the width of the attentional pulse depends on the

degree of synchrony between the oscillator and the rhythm, this temporal receptive �eld narrows as

synchrony increases. Increased synchrony thus leads the oscillator to become less sensitive to events

deviating far from where the beat is expected and more sensitive to events close to where the beat is

expected.

Large and Jones report simulation results of a model in which two adaptive oscillators, both driven by a

rhythm, are bidirectionally coupled to each other. Inter-oscillator coupling is de�ned such that the

oscillators are driven toward either a 2:1 or 3:1 period ratio to ensure metrical entrainment between them.

Simulations carried out by Large and Palmer (2002) show that such inter-oscillator coupling can improve

entrainment stability in tracking expressive piano performances and that the models can be used to detect

phrase-boundaries based on phrase-�nal lengthening and also to detect melody notes in chords which are

accentuated by being timed slightly early (melody leads). Furthermore, Large and Palmer show that in

performances performed with strong rubato, detection of melody leads in certain situations to improved

beat tracking performance of the adaptive oscillator model.

Large and Palmer (2002) also describe some of their adaptive oscillator model’s limitations. First, the model

is not suitable for �nding the initial beat and has to be provided with this information. Furthermore, for

inter-oscillator coupling, functions that actively drive the oscillators to the desired metrical ratios are

required, introducing an asymmetry between rhythm-to-oscillator and oscillator-to-oscillator coupling.

Interactions between excitatory and inhibitory populations of neurons can give rise to neural oscillations

(Large et al. 2015). It has been hypothesized that pulse and meter perception are emergent phenomena of

such oscillations (Large 2008; Large and Snyder 2009). The neural resonance theory of rhythm and meter

perception proposes an explanation based on a mathematical description of a biological mechanism rather

than an abstract model like an adaptive oscillator.

At a high level of mathematical abstraction, the dynamics of neural oscillations may be described by a

canonical model (Large 2008), which describes dynamical behavior that is shared by a large class of more

detailed models. Neural resonance models of pulse and meter perception are based on a canonical model of

neural oscillation.

These models share some characteristics with adaptive oscillator models. Both approaches propose

explanations of pulse and meter perception based on coupled oscillation. The phase dynamics (but not

amplitude dynamics) of neural resonance models can also be described by a circle map (Large 2008). Unlike

adaptive oscillator models, however, neural resonance models posit a speci�c neural mechanism from

which oscillations arise. Furthermore, neural oscillators do not exhibit period coupling: they oscillate near

their natural frequency, which does not adapt to tempo �uctuations. Instead neural resonance models posit

gradient-frequency networks of neural oscillators, in which oscillators with natural frequencies close to

(harmonics of) periodicities in the rhythm resonate to the rhythm (Velasco and Large 2011; Large, Herrera,

and Velasco 2015).

Neural resonance models exhibit three behaviors associated with di�erent aspects of pulse and meter

perception (Large 2010b). Spontaneous oscillation relates to the perception of pulse, and, in particular, the

tendency for pulse to persist in the absence of exogenous events. Entrainment of neural oscillations to

exogenous rhythms re�ects the perception of a periodic pulse in rhythms that are not strictly periodic.

Higher-order resonance—the capacity of neural oscillation to resonate at harmonics or sub-harmonics of
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Coupled Oscillation Models and Enculturation

periodicities in a rhythm—is posited to account for meter induction and for the perception of pulse at

frequencies that are absent from the Fourier spectrum of a rhythm (Velasco and Large 2011).

Large (2010a) describes how neural resonance models can be extended with plastic inter-oscillator

connections that adapt their strength based on the principles of Hebbian learning. Large, Herrera, and

Velasco (2015) note that this makes it possible to simulate the e�ect of enculturation on neural resonance

models. Recently, Tichko and Large (2019) proposed a simulation of e�ects of exposure to music with non-

isochronous meters in infants observed by Hannon and Trehub (2005a,2005b), using a gradient-frequency

network of neural oscillators inter-connected by plastic connections. This model resembles a model

proposed by Large, Herrera, and Velasco (2015), which consists of two networks connected to each other.

One represents a sensory network that receives input from a rhythm, the other represents a motor network

that is connected via bidirectional coupling to the sensory network. Citing �ndings of limited development

of movement-to-rhythm synchronization in infants, Tichko and Large only use a sensory network.

To represent exposure to non-isochronous meters in Balkan music and isochronous meters in Western

tonal music, Tichko and Large expose two instantiations of their network to a di�erent rhythm. One

network is exposed to a 4/4 rhythm, intended to represent exposure to Western tonal music, the other to a

7/8 rhythm, intended to represent exposure to Balkan music in a non-isochronous meter. Both networks,

and another network without prior exposure, are exposed to six rhythms: the two training rhythms and two

modi�ed versions of each training rhythm, one that preserves the meter and one that violates it. Analyzing

the response of the networks to the di�erent rhythms, Tichko and Large show an e�ect of training that

resembles the results obtained by Hannon and Trehub (2005a,2005b). However, because these results are

based on simulations involving a single training and a single test rhythm per condition, it remains unclear

how robust they are to variation in the speci�c rhythms used for training and testing. Furthermore, the

results appear to be in�uenced by the frequencies of periodicities in the training rhythm. It could be

periodicity, rather than the type of meter (isochronous or non-isochronous), that primarily in�uenced the

results.

Large (2010b) suggests that innate constraints on music perception may emerge from the intrinsic

dynamics of the brain. An important question for these models is therefore whether the dynamic behavior of

neural resonance models su�ciently explains empirically observed variance in metrical entrainment

behavior. Both adaptive oscillators and neural resonance models predict that perceived pulses are

constrained to be isochronous. Coupled oscillation models can entrain to periodic components related by

simple integer ratios, which may be polyrhythmic (such as 3:2 or 4:3), but they cannot entrain to a non-

isochronous beat. For example, while the networks described by Tichko and Large (2019) resonate to

rhythms in (isochronous) 4/4 and (non-isochronous) 7/8 meters, they do not entrain to the non-

isochronous tactus level of the 7/8 meter. It could be that, as Large (2008, 221) suggests, non-isochronous

meters are “compelling speci�cally because they thwart an intrinsic expectation of periodicity.” However,

as discussed earlier in “A Cross-Cultural Perspective,” there is evidence suggesting that non-isochronous

meters are readily processed given familiarity with music in which they are prevalent (Hannon and Trehub

2005b; Soley and Hannon 2010; Hannon, Soley, and Ullal et al. 2012). There also is evidence that, given the

right kind of training, metrical entrainment to non-isochronous beat-subdivisions is possible (Polak,

London, and Jacoby 2016; Polak et al. 2018). Whether rhythm perception shows more �exibility than the

constraints of coupled oscillation models allow remains an active topic of discussion.
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The Predictive Processing Perspective

The predictive processing perspective (described elaborately by Clark 2013) builds on a class of theories that

notably include predictive coding (Rao and Ballard 1999) and the Bayesian brain hypothesis (Knill and

Pouget 2004). It has recently come to be associated with several di�erent theoretical perspectives that range

from cognitivist to radically embodied (for discussions, see Allen and Friston 2018; Wiese and Metzinger

2017). Nevertheless, these perspectives share a commitment to the idea that perception is based on

minimizing prediction error, which in turn is based on Bayesian inference. Predictive processing theories

propose a domain-general mechanism that underlies both perception and perceptual learning.

More speci�cally, predictive processing posits that perception and cognition involve an internal, multi-

layered generative model of sensations. This model can be represented as a Bayesian network: a directed

acyclic graph that may be interpreted to re�ect causal dependencies between random variables (Pearl 2000).

Sensations are considered to be the result of a stochastic generative process (the environment) that is

predicted by the outcomes generated by leaf nodes of an (internal) generative model. The better the

generative model resembles the generative process underlying sensations, which involves the underlying

environmental causes of sensations, the more accurately sensations can be predicted. Prediction error,

which is continuously generated by the discrepancy between observed and predicted outcomes, revises the

generative model to better predict future sensations. These changes, which are driven by prediction error,

are hypothesized to underlie both perception and perceptual learning.

Note, however, that this process, and its implied outcome (convergence to a generative model of the

environment, limited in accuracy only by physiology), is argued to be signi�cantly altered when the role of

action—the ability of an organism to in�uence the �ow of sensory stimulation and to shape its environment

—is considered (see Clark 2016). This role can be integrated into predictive processing to create what Clark

(2013) calls action-oriented predictive processing. In any case, sensitivity to the statistical structure of the

environment plays a signi�cant role in all predictive processing accounts (action-oriented or not). The

probabilistic generative models discussed in this chapter are passive models that do not account for the

e�ects that action may have on their input. Such e�ects remain an important topic for future research,

together with the question of how they interact with the e�ects of passive exposure simulated by

probabilistic generative models.

Prediction-error minimization in predictive processing is equivalent to probabilistic inference in a

probabilistic generative model. In such a model, random variables upon which outcomes are conditioned are

called latent variables. Latent variables cannot directly be observed, but their probability distribution may be

inferred through probabilistic inference. The marginal distribution of observed variables corresponds to the

generative model’s predictions of stochastic outcomes. This distribution assigns a probability to every

possible outcome of the generative process. The probability of a given observation is known as the model

evidence for that observation.

Prediction error is operationalized by the negative logarithm of the model evidence, such that minimizing

prediction error corresponds to maximizing model evidence. This quantity corresponds to a measure of

information de�ned in information theory (Shannon 1948). A system that minimizes prediction error thus

also minimizes information transmission. The intuition behind this is that only parts of the sensory signal

that have not already been predicted by the generative model need to be considered.

The approaches discussed below estimate their parameters directly from samples of empirical data,

annotated with underlying structure (meter), using a maximum likelihood approach. These samples are

called the training data of the model. The maximum likelihood approach ensures that the estimated

parameters cause the model to assign the maximum possible probability to the training data. This training
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Probabilistic Generative Modeling of Rhythm Perception

process has been used to simulate the e�ects of prior exposure to music on rhythm perception. A later

section describes in more detail how probabilistic generative models can be used to simulate enculturation.

It is worth noting that the maximum likelihood approach is di�erent from a so-called fully Bayesian

approach, in which a model describes its own parameters as random variables. This allows models to infer

their own parameters from data using probabilistic inference and eliminates the need for annotated (also

known as labeled) training data, allowing models to “bootstrap” themselves o� mere observations. The

distinction between a training phase in which the model is parameterized and a testing phase in which the

model is evaluated thereby also disappears. Furthermore, the fully Bayesian approach accounts in a

principled way for uncertainty that the model has about its own parameters. Such uncertainty plays an

important role in predictive processing (see Clark 2016) but is beyond the scope of this chapter.

Temperley (2007) makes a strong case for probabilistic approaches to music perception based on the

hypothesis that knowledge of musical style is probabilistic in nature and inferred by listeners from

regularities in the music they have been exposed to. The basic framework outlined by Temperley applies to

all models described in this chapter and also corresponds to the predictive processing framework described

above. In this framework, observed variables represent the musical surface and latent variables represent its

underlying structure. For rhythm models, the musical surface corresponds to a pattern of event times, and its

structure corresponds to some conceptualization of meter. In predictive processing terms, the musical

surface is the outcome of a generative process involving latent variables that represent perceptual concepts

like meter.

A generative model of rhythm perception may represent rhythms and meter by multiple random variables,

but to obtain a compact representation, these variables can be merged into two variables, namely  (for

rhythm) and  (for meter). According to the product rule of probability, the joint distribution of these

variables,  , can be written in one of the following ways:

R

M

p (R, M)

(5)

p (R, M) = p (M|R)p (R) = p (R|M)p (M).

Since the goal is to describe the generative process underlying rhythms, generative models of rhythm

perception aim to estimate the factors —the a priori probability of a meter—and —the

probability of a rhythm given a meter. When these factors appear in Bayes’ theorem, as shown below, they

are known as the prior distribution and the likelihood function. It follows from Equation 5 that the probability

of a meter given a rhythm,  , can be expressed in terms of the generative model as follows:

p (M) p (R|M)

p (M|R)

(6)

posterior

p(M|R) =

likelihood

p(R|M)

prior

p(M)

p(R)

model evidence

.
 



This equation is known as Bayes’ theorem and forms the basis of probabilistic inference in generative models.

Since it enables inferring the distribution of latent variables from an observed outcome, inference is

sometimes called the inversion of a generative model (MacKay 2003).
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Rhythmic Outcomes: Grids, Intervals, and Phases

Equation 6 reveals some similarities between probabilistic generative models and preference-rule models

(described earlier). Since model evidence is independent of latent variables, the posterior probability of a

meter is in�uenced only by the two factors in the numerator of the fraction on the right-hand side of the

equation. Meters that are probable a posteriori strike a balance between a priori probability and the

probability of the rhythm given the meter. Meters that are a priori improbable require strong bottom-up

evidence to be a posteriori probable, compared to meters that are a priori probable. A similar dynamic

interaction occurs in preference-rule models, which postulate rules that apply only to a given metrical

analysis (e.g., the regularity rule), comparable to a prior distribution, and rules that measure the �t between

an analysis and a rhythm (e.g., the event and length rules), comparable to a likelihood function.

Model evidence, recall, is the probability that a generative model assigns to an outcome. In (Equation 6), it

is given by the denominator of the fraction, which may also be written as

(7)

p (R) = ∑
M

p (R|M)p (M).

Di�erences between generative rhythm perception models, which are all compatible with this general

framework, reside in how the prior distribution and likelihood function are implemented. The sections

below describe di�erent possibilities that have been explored in the literature. Where applicable, we

describe how these possibilities are applied in di�erent generative models of rhythm proposed by

Temperley (2007, 2009) and Van der Weij, Pearce, and Honing (2017).

How a generative model represents a rhythm corresponds to how the stochastic outcomes of the model

should be interpreted. All of the models we discuss below represent rhythms as temporally ordered

sequences of outcomes. These sequences depend only on note-onset times: the times at which note events

begin (i.e., when they are played, struck, plucked, or sung). Temporal intervals are always represented as

integer multiples of some atomic temporal unit, which may either be an absolute duration (e.g., 50

milliseconds) or a symbolic score-duration (e.g., a sixteenth note). However, the models di�er in whether

they represent rhythms by grids of temporal bins, sequences of temporal intervals, or more abstractly in

terms of the metrical functions of notes. Below, we introduce a distinction between four types of models:

grid, interval, phase, and metrical salience models.

In grid models, stochastic outcomes represent temporally adjacent grid cells, each of which represents an

atomic temporal interval. Outcomes in such models are binary variables representing whether an onset

occurs within (or at) the current grid cell or whether it remains silent. Grid models, in other words, predict

what happens at the current moment.

Interval models, by contrast, predict when an onset occurs relative to the last onset. In interval models,

outcomes represent the time interval between two note-onsets: the inter-onset interval. When a model is

temporally discrete, this interval is often one out of a prespeci�ed set of possibilities that may occur with

non-zero probability. This set of possibilities is sometimes called an alphabet (Conklin and Witten 1995).

Phase and metrical salience models predict a more abstract property of the next event, namely its metrical

function. By the phase of an onset, we mean its position in a metrical cycle denoted by bars notated in a

score. By metrical salience, we mean the highest metrical level in which a beat associated with the current

onset occurs. Phase and metrical salience representations are variant to meter: how a given note-onset

event is represented depends on its metrical interpretation. Given a meter and the position of bar lines,

predictions of metrical salience or phase do not correspond to a unique point in time but constrain the
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The Prior Probability of Meters

Likelihood Functions: Generating Rhythms from Meters

possible points in time at which an event may occur that are in agreement with the prediction. Like interval

models, phase and metrical salience models predict when an onset occurs but do so more abstractly.

A �nal important aspect of representation, which is of relevance to generative rhythm models, is that the

granularity of a representation a�ects prediction error. Predictions that have a low temporal granularity are

more likely to be correct since they are consistent with a large number of events. When the granularity of a

representation depends on the value of a latent variable, as is the case for phase and salience models, this

introduces a (possibly unintended) bias into the model. Since in phase and salience models, the temporal

granularity of a prediction depends on the period of the metrical cycle, such models are susceptible to biases

favoring meters with shorter metrical cycles.

The prior distribution of meters,  , describes the probability of meters independently, that is, without

considering observations (which represent bottom-up sensory input). Van der Weij, Pearce, and Honing

(2017) employ a categorical distribution that re�ects the relative frequency of meters derived from notated

time signatures in empirical training data. This approach makes no assumptions about the internal

structure of meter, assuming that this structure may be culture-speci�c. On the other hand, it has no way of

estimating the probability of meters that do not occur in its training data.

p (M)

Models proposed by Temperley (2007, 2009) employ prior distributions based on a hierarchical view of

meter consistent with the ideas of Lerdahl and Jackendo� (1983). In these prior distributions, a meter is

generated by a set of stochastic outcomes represented by di�erent random variables, such as the duration of

a tactus interval, whether tactus beats are grouped by two or three, and whether tactus beats are subdivided

into two or three sub-tactus beats. Compared to the approach of Van der Weij, Pearce, and Honing, this

prior requires fewer parameters and can, due to its compositional nature, estimate the probability of meters

not occurring in training data. On the other hand, it makes assumptions about the structure of meter that

may be speci�c to the Western musical idiom.

Priors may also be based on abstract theoretical measures. Studying the production and categorical

perception of interval ratios, Sadakata, Desain, and Honing (2006) assign prior probabilities to interval

ratios that are proportional to a theoretical quanti�cation of the ratio complexity. Such priors are consistent

with the hypothesis that, due to cognitive constraints, some meters may be generated more readily than

others.

To illustrate how the design of the likelihood function a�ects which cues for meter a generative model is

sensitive to, we discuss six models described by Temperley (2010) in a model comparison study

investigating the probabilistic principles underlying what the study calls “common practice rhythm.”

Unlike the multilayered generative models of Temperley (2007, 2009) and Van der Weij, Pearce, and Honing

(2017), these models assume that the meter is known and �xed.  The six models can be distinguished by two

aspects of their design: the representation of rhythms and metrical structure, and the probabilistic

independence assumptions they make. These aspects are summarized in Table 1 for the six models that

Temperley (2010) presents, and the paragraphs below discuss them in more detail.

8
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Table 1:  An overview of six likelihood functions discussed by Temperley (2010). The middle column indicates whether each
model uses a grid, interval, or phase representation. The right-most column indicates what outcomes of each model are
conditioned on. In the right-most column, “N/A” indicates that outcomes are modeled independently.

Model Representation Metrical context

Uniform Position Model Grid N/A

Zeroth-Order Duration Model Interval N/A

Metrical Position Model Grid Salience

Fine-grained Position Model Grid Phase

Hierarchical Position Model Grid Salience, Metrical anchoring

First-Order Metrical Duration Model Phase Previous phase

Regarding representation, Temperley distinguishes between “position models” and “duration models.” As

Table 1 shows, four di�erent position models, and two duration models are discussed. The four position

models correspond to what we call grid models. Grid cells, in this case, correspond to eighth-notes. Of the

two duration models discussed, one corresponds to what we call an interval model, while the other is a

phase model.9

The number of probabilistic independence assumptions made by a model must fall somewhere in between

two extremes. At one extreme, each random variable depends on all other random variables, which

corresponds to a fully connected Bayesian network. At another extreme, the outcome of each variable is

assumed to be independent of all other outcomes, which corresponds to an unconnected Bayesian network.

The Uniform Position Model, which models the independent probability of an onset at a grid cell, and the

Zeroth-Order Duration Model, which models the independent probability of inter-onset intervals, posit

only a single variable at each time step. In the search for a model that balances prediction performance with

complexity, these models may be seen as baselines against which the e�ect of progressively removing

independence assumptions from the models may be compared.

Some generative models can be evaluated incrementally over a sequence of time steps. This is possible only

when variables are conditioned on no other variables than those occurring in the same or the preceding time

steps. Models in which variables in each time step are conditioned on variables in the  immediately

preceding time steps are called  th-order Markov models. For example, in zeroth-order Markov models,

outcomes are independent of preceding outcomes, while in �rst-order Markov models, outcomes depend on

variables in the preceding time step. Except for the First-Order Metrical Duration Model and the

Hierarchical Position Model, all models compared by Temperley are zeroth-order. The Hierarchical Position

Model is not a Markov model: it conditions outcomes at a given metrical level on outcomes at higher

metrical levels. Rhythms are generated hierarchically, rather than in temporal order, by this model.

n

n

Within a time step, the presence or absence of independence assumptions may incorporate sensitivity to

metrical structure into a model. The Uniform Position model and Zeroth-Order Duration Model are not

sensitive to metrical structure; that is, the probability of their outcomes is independent of meter. The

Metrical Position Model, Fine-Grained Position Model, and Hierarchical Position Model, however, condition

outcomes on the metrical status of a grid cell. Of these, the Fine-Grained Position Model di�ers from the

other two in the representation of metrical status: outcomes are conditioned on the phase of a grid cell,

while in other two models they depend on the metrical salience of a grid cell. In the Hierarchical Position

Model outcomes depend on the metrical salience of the current grid cell and on whether the surrounding
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metrically stronger beats contain onsets. In Table 1, this situation is referred to as metrical anchoring

(Temperley 2009).

Another means of introducing sensitivity to meter into a model is by choosing a representation of outcomes

that is itself sensitive to meter. This strategy is employed in the First-Order Duration Model, which is a

phase model: it predicts the phase of an outcome. Since this is a �rst-order Markov model, the probability of

a phase is additionally conditioned on the previous outcome.

The Metrical Position Model is a grid model that most faithfully embodies the theory that the frequent

occurrence of onsets on metrically strong beats is a strong cue for meter (Palmer and Krumhansl 1990). The

model conditions the probability of an onset at a grid cell on the metrical salience of that grid cell. The

metrical salience representation has a lower temporal granularity than the phase representation: for

example, the second and fourth beat of a 4/4 bar have di�erent phases but are indistinguishable by metrical

salience. If the assumption that metrical salience, rather than phase, most strongly predicts onset likelihood

is true, then models based on metrical salience would more compactly capture statistical patterns in

common-practice rhythms than models based on phase, and the Metrical Position Model should perform as

well as the Fine-Grained Position model, despite having fewer parameters.

A phase representation, on the other hand, assumes periodicity of meter, but otherwise makes few

theoretical commitments to its organization. For example, the phase representation of a rhythm does not

depend on whether the underlying meter is 3/4 or 6/8. A phase model may be able to distinguish between

these meters, but di�erences between them must be encoded in a probability distribution of phases that is

conditioned on meter. These di�erences may be learned during model training, where the parameters of the

model are estimated from empirical training data. In any case, this aspect is irrelevant in Temperley’s

model comparison study where all considered rhythms have a 4/4 meter.

Temperley evaluates the performance of these six models in terms of the per-rhythm cross-entropy (the

negative logarithm of model evidence).  The de�nition of cross-entropy is identical to that of prediction

error. Results can therefore be interpreted as representing how well the models predict rhythms in the style

of the chosen samples. The objective is to investigate which general principles underlie the composition of

what Temperley calls “common-practice rhythm.” Accordingly, the models are trained and evaluated on

empirical samples of European folksongs and �rst-violin parts of string quartets by Mozart and Haydn.

10

The results show that, in general, the four models sensitive to metrical structure achieve better prediction

performance than those not sensitive to such structure. Overall, the First-Order Metrical Duration Model

achieves the best performance, and the Fine-Grained Position Model outperforms the Metrical Position

model. Both of these models are based on a phase representation, suggesting that, even in common-

practice rhythm, phase may provide greater predictive power for the timing of notes in the empirical

samples of Western music than metrical salience. However, the model comparison does not include a �rst-

order salience model, which would allow for a more elaborate comparison of phase and salience

representations.

While the best performance is achieved by the First-Order Metrical Duration Model, the Hierarchical

Position Model achieves comparable performance using signi�cantly fewer parameters. Taking this into

account, Temperley concludes that the Hierarchical Position Model most accurately captures statistical

properties of common-practice rhythms. Findings of Holzapfel (2015), and London, Polak, and Jacoby

(2017), however, suggest that the relatively strong performance of this model might not generalize well to

non-Western musical idioms, in which metrical salience sometimes is less predictive of onset probability.

Some of the likelihood functions described above are used in multilayered generative rhythm models. In

particular, Temperley (2007, 2009) proposes grid models, in which the grid cells (or pips) represent not

symbolic score-units but real absolute durations. The model described by Temperley (2007) uses the
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Modeling Sequential Structure in Rhythms

Metrical Position Model as its likelihood function. The Hierarchical Position Model is used as the likelihood

function in the model described by Temperley (2009). However, this model is not a Markov model and

violates temporal incrementality. Accordingly, the model is presented primarily as a music analysis model,

rather than a music perception model. Both models contain several variables that accommodate a certain

degree of freedom in tempo and timing, but these aspects are beyond the scope of this chapter. Another

multilayered generative model of rhythms described recently by Van der Weij, Pearce, and Honing (2017)

uses a di�erent representation and a di�erent likelihood function. The next section describes this model in

more detail.

The models described so far are based on zeroth- or �rst-order Markov models, or on hierarchical models

(Temperley 2009, 2007, 2010). Van der Weij, Pearce, and Honing (2017) instead propose a probabilistic

generative model using a variable-order Markov model. In this model, events (outcomes) are conditioned on

all preceding events in a sequence that represents a rhythm. This is achieved using a modeling technique

called prediction by partial match (PPM), proposed originally as a data compression method (Cleary and

Witten 1984).

Instead of a grid or phase representation, Van der Weij, Pearce, and Honing (2017) propose a representation

of outcomes that is sensitive to meter but maps one-to-one onto inter-onset intervals. The representation

combines the phase of an onset with the number of metrical cycles elapsed since the last onset: it encodes

the temporal interval between the current event and the bar-level downbeat preceding the last event. The

representation is referred to here as the downbeat distance. This representation ensures that the temporal

granularity of predictions is independent of meter.

Compared to zeroth-order models, a variable-order Markov model of events represented by downbeat

distances widens the range of cues for meter that Van der Weij, Pearce, and Honing’s model is sensitive to.

The probability of an event given a meter depends not only on its metrical context, but also on the downbeat

distances of previous events. This changes the role of meter from a periodic template of onset probabilities

(Palmer and Krumhansl 1990; Temperley 2007) into a periodic temporal reference with respect to which

patterns of events are interpreted and remembered. It allows a model to learn rhythmic patterns that occur

predictably in particular metrical contexts. For example, it may be the case that, in a hypothetical musical

sample, syncopations occur predictably in certain contexts, even though in the same style, notes generally

begin on metrically strong beats. Such predictable deviations from the norm would be undetectable in

event-frequency distributions (Palmer and Krumhansl 1990; Holzapfel 2015; London et al. 2017), which are

sensitive only to zeroth-order statistical properties of rhythms.

Simulations performed by Van der Weij, Pearce, and Honing suggest that variable-order Markov modeling

improves prediction performance of rhythms derived from German folksongs. Applying di�erent variants of

their model, in which the maximum order of the variable-order Markov model (the order bound) varies

between zero and four, they �nd that the prediction of rhythms derived from German folksongs improves

when the order bound is increased. The performance gain is most pronounced between zeroth-order and

�rst-order modeling, but small improvements occur beyond �rst-order models.

The increased complexity of the relation between rhythm and meter supported by Van der Weij, Pearce, and

Honing’s model may improve the model’s applicability to music from di�erent cultures. In music from, for

example, regions in western Africa (Locke 1982) and the African diaspora (Iyer 1998), it is common for

onsets to occur consistently on beats that, according to a Western theoretical understanding of meter

(Longuet-Higgins 1978; Lerdahl and Jackendo� 1983), are metrically weak instead of on metrically strong

beats. Findings presented by London, Polak, and Jacoby (2017) illustrate this quantitatively for Malian
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Simulating Enculturation with Probabilistic Generative Models

djembe music, and Holzapfel (2015) shows that rhythms in Turkish makam music also deviate from norms

based on patterns of metrical salience. It nevertheless remains an open question whether these observations

warrant the level of �exibility in the relation between rhythm and meter a�orded by Van der Weij, Pearce,

and Honing’s model. Comparing the performance of di�erent probabilistic generative rhythm models on

culturally diverse samples of rhythms may provide more insight into this matter.

The applicability of Van der Weij, Pearce, and Honing’s model to rhythms from diverse musical cultures is

somewhat hampered by its reliance on Western music notation. Music notation plays little or no role in

many musical traditions around the world, and transcribing music from these traditions in Western music

notation may not be appropriate. For example, Western music notation’s emphasis on temporal intervals

related by small-integer ratios cannot naturally express so-called swung beat subdivisions, as found, for

example, in jazz music (Honing and De Haas 2008) and Malian djembe music (Polak et al. 2016; Polak et al.

2018).

It appears, in any case, that the model partially ful�lls a set of requirements that Iyer (1998) proposes for

rhythm perception models; namely that

[…] any model of rhythm perception and cognition must include stages at which incoming rhythms

are compared to known rhythms, matched against known meters, and situated among broader

expectations about musical events. It also must involve some degree of what may be called active

perception, by which is meant the assessment of various alternative readings of the musical signal,

and the switching among them, all carried out in time and continually revised and updated. (p. 55;

emphasis in original)

Probabilistic generative models suggest a principled method for simulating the e�ects of prior exposure on

perception. This method can be understood in terms of the exhaustive set of outcomes (event-timing

patterns) that a probabilistic generative rhythm perception model can generate. For each item in this set,

there is an unknown probability of encountering it as a musical rhythm. For some items, this probability is

low because they are unlikely rhythms; for others, it is high because they, for example, correspond to

stereotypical rhythms. There is, in other words, an unknown probability distribution of musical rhythms. To

minimize prediction error, a generative rhythm perception model aims to approximate this distribution as

closely as possible.

The approximation is performed by estimating the model’s parameters from a (relatively) small sample

drawn from the target distribution. How well the parameterized model approximates the unknown target

distribution (its generalization performance) is usually evaluated by testing the model on another small

sample from this distribution. The generalization performance depends on whether the model’s design

enables it to capture the relevant statistical properties from the training sample. Evaluating which aspects

of a model’s design improve the model’s generalization performance may provide valuable insights into the

statistical constraints that underlie a corpus of rhythms.

However, the target distribution of relevance to enculturated (situated) individuals depends on the cultural

environment of those individuals. A generative model aiming to simulate the perception of such individuals

should derive its parameters from a sample that represents music that an enculturated individual is likely to

have been exposed to. Music corpora, such as the Essen folksong collection (Scha�rath and Huron 1995),

may be used for this purpose. Parameterizations that result from training a generative model on such a

sample can be seen as a simulation of an enculturated listener (Van der Weij, Pearce, and Honing 2017). The

success of the enculturated model in predicting perceptual idiosyncrasies resulting from such biased

sampling may provide evidence as to whether learning mechanisms of listeners resemble those posited by
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predictive processing. This approach is entirely compatible with the cultural distance hypothesis of

Demorest and Morrison (2016) and Morrison, Demorest, and Pearce (2019), according to which the degree

of overlap in statistical structure between the music of two cultures predicts the ability of listeners from

those cultures to process music from the other culture.

Conclusion

A great variety of rhythm perception models exists in the music cognition literature. Some of these models

propose incremental changes to other models, but others propose radically di�erent principles. This

chapter reviews a selection of previously proposed rhythm perception models and associates them with

three broad perspectives—cognitivism, embodied cognition, and predictive processing—that entail

di�erent views on the nature of perception and cognition.

The cognitivist perspective describes cognition as information processing involving the rule-based

manipulation of symbolic representations. Rule-based models of rhythm perception, such as those

proposed by Longuet-Higgins and Steedman (1971), Longuet-Higgins (1976), and Longuet-Higgins and Lee

(1982), can be associated with this perspective. Embodied cognition instead emphasizes the role of

continuous dynamic interaction between brain, body, and environment. Coupled oscillation models

(McAuley 1994; Large and Kolen 1994; Large and Snyder 2009), although they do not always emphasize an

explicit role of embodiment, are consistent with this view. Finally, predictive processing views perception

and perceptual learning as the result of a single underlying mechanism, namely prediction error

minimization based on Bayesian inference. Probabilistic generative models, such as those proposed by

Temperley (2007, 2009), are consistent with this perspective.

Additionally, this chapter reviewed literature that studies the role of enculturation in shaping rhythm

perception. Although the extent to which rhythm perception is constrained by enculturation and by

universal principles remains a topic of debate, it seems uncontroversial that experience, training, and

practice play a role. Despite this consensus, few models of rhythm perception account for the possible

e�ects of enculturation. Instead, some models aim to represent universal aspects of perception (such as

Povel and Essens 1985; Large 2010b), while others aim to model the perceptual processes of listeners

enculturated in a musical idiom (such as Longuet-Higgins 1979).

Probabilistic generative models, which are consistent with the principles of predictive processing, can

simulate the e�ect of previous exposure to rhythms by deriving their parameters from empirical samples of

music. Neural resonance models have recently been extended to use plastic connections and Hebbian

learning enabling them to adapt based on previous exposure to rhythms (Large 2010a; Large et al. 2015). In

general, rhythm perception models have primarily been evaluated on datasets of Western tonal music.

Therefore, it seems fruitful for future research to evaluate and compare probabilistic models on culturally

diverse samples of rhythms.
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Notes

1 Music Cognition Group, Amsterdam Brain and Cognition, Institute for Logic, Language, and Computation, University of
Amsterdam, Amsterdam, Netherlands

2 Music Cognition Lab, School of Electrical Engineering and Computer Science, Queen Mary University of London, London,
United Kingdom

3 Huron (2008, p. 457) illustrates this point anecdotally, describing an episode in which he, joining an expedition of
biologists, encountered subsistence hunters in the western Amazon who, thanks to their transistor radios, were familiar
with Western popular music.

4 A deadpan (or mechanical) performance is one that exactly reproduces the note duration ratios dictated by a notated
musical score. For musicians performing music from a score, the goal is rarely to produce such (mechanical-sounding)
performances. Instead, expressive tempo changes and deviations from deadpan timing are the norm (Clarke 1989; Repp
1995).

5 This procedure is used in a computer program that can transcribe a melody played on an organ console connected to a
high-speed paper tape punch (a MIDI keyboard would nowadays su�ice) into musical notation. The program has to be
supplied with an initial beat interval, similar to a drummerʼs count o� before a performance. It then tries to track and, if
necessary, subdivide this beat throughout a performance. No detailed description of the program is provided, but its
source code (written in the POP2 programming language), was made available. The program, as well as a translation into
the LISP programming language, is described by Desain and Honing (1992, p. 294).

6 Coupled oscillation models do arguably incorporate some domain-specific constraints: Adaptive and neural oscillators
need to be tuned to frequencies that are relevant to musical rhythms. Period coupling and temporal receptive fields in
adaptive oscillator models are explicitly introduced to account for music perception and do not occur in physical coupled
oscillation systems such as clocks suspended from the same beam or metronomes on the same moving platform.

7 Mode-locking is a generalization of phase-locking that describes states in which one oscillator aligns its phase with
another oscillator exactly every  cycles (where  is an integer).n n

8 By a multilayered generative model, we mean a generative model that conditions observations on underlying latent
variables.

9 We use the term “phase” for what Temperley calls “metrical position.”

10 It should be noted that there are subtle issues, not mentioned by Temperley, involved in comparing these results between
di�erent (grid, interval, or phase) representations. For example, a grid representation of a rhythm is  , which is a
sequence of five binary outcomes. This rhythm is one of  possible rhythms. In an interval representation, each
outcome is one of  possible intervals. For a model that considers  intervals per outcome with non-zero probability,
the same rhythm, represented as  , is one of  possible outcomes. In a phase representation, assuming atomic
temporal units of quarter notes and a meter with a period of four quarter notes, the same rhythm is represented as  ,
which is one of  possibilities. Predicting one out of sixty-four possibilities is more di�icult than predicting one out
of thirty-two possibilities. Grid models are thus likely to have an advantage over interval and phase models.
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