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WHAT MAKES A PIECE OF MUSIC APPEAR COMPLEX

to a listener? This research extends previous work by
Eerola (2016), examining information content gener-
ated by a computational model of auditory expectation
(IDyOM) based on statistical learning and probabilistic
prediction as an empirical definition of perceived musi-
cal complexity. We systematically manipulated the mel-
ody, rhythm, and harmony of short polyphonic musical
excerpts using the model to ensure that these manipula-
tions systematically varied information content in the
intended direction. Complexity ratings collected from
28 participants were found to positively correlate most
strongly with melodic and harmonic information con-
tent, which corresponded to descriptive musical features
such as the proportion of out-of-key notes and tonal
ambiguity. When individual differences were consid-
ered, these explained more variance than the manipu-
lated predictors. Musical background was not
a significant predictor of complexity ratings. The results
support information content, as implemented by
IDyOM, as an information-theoretic measure of com-
plexity as well as extending IDyOM’s range of applica-
tions to perceived complexity.
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M USICAL COMPLEXITY HAS BEEN A

phenomonen of interest in the study of music
emotion (Balkwill & Thompson, 1999;

Huron, 2006), musical preference (Berlyne, 1974; Burke
& Gridley, 1990; North & Hargreaves, 1995), rhythm
perception (Chen, Penhune, & Zatorre, 2008; Large,
Fink, & Kelso, 2002; Shmulevich & Povel, 2000; Song,
Simpson, Harte, Pearce, & Sandler, 2013; Zatorre, Chen,
& Penhune, 2007), salience (Prince, Thompson, &
Schmuckler, 2009), melody identification (Madsen &
Widmer, 2007), and neural responses to music

(Birbaumer, Lutzenberger, Rau, Braun, & Mayer-Kress,
1996). It is important to distinguish between the com-
plexity of music, which can be assessed using a range of
acoustic and symbolic measures of musical structure,
and the complexity perceived by a listener, which is likely
to be related to some of those measures. A key challenge
in music perception is to understand which measures of
musical complexity influence perceived complexity.

Information-theoretic approaches provide an attrac-
tive way to address this challenge because they are
domain-general and have a well-defined interpretation
in terms of the storage and communication of informa-
tion. Eerola (2016) investigated perceived melodic
complexity by comparing feature-based models (called
expectancy-violation models by Eerola) to information-
theoretic models. Feature-based models were con-
structed using eight principles addressing melodic and
rhythmic aspects of a given melody, such as pitch prox-
imity, tonal ambiguity, note density, and rhythmic vari-
ation. Information-theoretic models computed statistical
properties of pitch class, pitch interval, and note dura-
tion, using first to third-order distributions. Both types
of models were tested on their ability to predict existing
complexity ratings for seven datasets, encompassing
a variety of musical styles. The best performing model
was an expectancy-violation model with four predictors,
namely tonal ambiguity, pitch proximity, entropy of
rhythmic distribution, and entropy of pitch-class distri-
bution. However, the use of entropy blurs the distinction
between expectancy-violation models and information-
theoretic models; therefore, the model was reduced to
three predictors: tonal ambiguity, pitch proximity, and
rhythmic variability. This model, named EV3, explained
68% of the variance in complexity ratings for seven
datasets, representing an optimal balance between pre-
dictive power and parsimony.

The present study will further investigate the link
between information-theoretic measures of predictabil-
ity and perceived musical complexity by extending Eer-
ola’s (2016) work in two ways: 1) adding causal evidence
by explicitly manipulating the melodic, rhythmic, and
harmonic information content of stimuli (Margulis,
2016); and 2) investigating the relative weight of
melodic, rhythmic, and harmonic information in per-
ceived complexity of polyphonic music. The use of
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polyphonic stimuli and the inclusion of harmonic com-
plexity go beyond the melodic and rhythmic measures
used in previous research (Eerola, 2016).

We use the IDyOM model (Pearce, 2005, 2018) to
assess the information-theoretic properties of musical
stimuli. IDyOM is a variable-order Markov model
(Begleiter, El-Yaniv, & Yona, 2004; Bunton, 1997) that
uses a multiple-viewpoint framework (Conklin & Wit-
ten, 1995), allowing it to combine models of different
representations of the musical surface. IDyOM uses sta-
tistical learning to acquire models of the structural reg-
ularities in music and then uses these models to
generate probabilistic predictions for forthcoming
musical events based on the preceding context. Given
a musical context, IDyOM estimates the probability of
different continuations of the context based on how
often they have appeared in similar contexts in its pre-
vious experience of music. IDyOM’s predictions com-
bine probabilities derived from a long-term model
trained on a large corpus, reflecting schematic learning
of structure through long-term exposure to a musical
style, and a short-term model, trained incrementally on
the current piece of music, reflecting learning of local
learning of motivic structure internal to a piece of
music. IDyOM can generate probabilistic predictions
for the pitch and timing of a musical note in a melodic
context and the next chord in a harmonic sequence.

IDyOM has been shown to accurately predict West-
ern listeners’ pitch expectations in behavioral, physio-
logical and EEG studies (e.g., Egermann, Pearce,
Wiggins, & McAdams, 2013; Hansen & Pearce, 2014;
Omigie, Pearce, & Stewart, 2012; Omigie, Pearce, Wil-
liamson, & Stewart, 2013; Pearce, 2005; Pearce, Ruiz,
Kapasi, Wiggins, & Bhattacharya, 2010). In many cir-
cumstances, IDyOM provides a more accurate model of
listeners’ pitch expectations than static rule-based mod-
els (e.g., Narmour, 1990; Schellenberg, 1997). It also
been shown to account for expectations for the timing
of melodic events (Sauvé, Sayed, Dean, & Pearce, 2018)
and harmonic movement (Harrison & Pearce, 2018;
Sears, Pearce, Caplin, & McAdams, 2018). Furthermore,
IDyOM can simulate other psychological processes in
music perception, including similarity perception
(Pearce & Müllensiefen, 2017), recognition memory
(Agres, Abdallah, & Pearce, 2017), phrase boundary
perception (Pearce, Müllensiefen, & Wiggins, 2010), and
aspects of emotional experience (Egermann et al., 2013;
Gingras et al., 2016; Sauvé et al., 2018). The present
research applies IDyOM to the question of musical
complexity for the first time.

We propose the overall hypothesis that perceived
complexity of polyphonic music is related to

predictability given a learned model of the syntactic
structure of a musical style. Therefore, we conceive of
perceived complexity not in terms of the absolute prop-
erties or features of a piece of music but rather in terms
of its congruity to the structural regularities of a musical
style with which the listener is familiar. More specifically
we hypothesize that information-theoretic measures of
melodic, rhythmic, and harmonic predictability, as
computed by IDyOM, accurately simulate perceived
complexity of polyphonic music. To test this hypothesis,
complexity ratings were collected for specially com-
posed 3-voice stimuli for which we systematically
manipulated the melody, rhythm, and harmony, using
IDyOM to ensure that these manipulations changed
information content for the respective musical param-
eter in the intended direction, while maintaining infor-
mation content as constant as possible for the other two
parameters. Participant ratings of complexity are
expected to vary with information content across ver-
sions of the stimuli, such that higher information con-
tent predicts higher complexity ratings. For comparison
with the information-theoretic measure of complexity
as stylistic predictability, we apply Eerola’s (2016)
feature-based EV3 model to the complexity ratings col-
lected for this new set of stimuli.

In comparison to the correlational approach taken by
Eerola (2016) using real-world musical examples, we
attempt a more causal intervention by deliberately
manipulating a stimulus in order to create systematic
variations of information theoretic predictability, inde-
pendently for rhythmic, melodic, and harmonic para-
meters. To the extent that the results corroborate the
hypothesized relationship between information-
theoretic predictability and perceived complexity, this
allows us to be more confident that no other confound-
ing factors can account for the observed effects. For the
same reason, we compare feature-based models to
increase our confidence that it is the predictability of
the stimulus rather than features of the stimulus per se
that influence perceived complexity.

The stimuli exhibit wide variations in predictability to
ensure sufficient variance in information content across
the three parameters (melody, rhythm, and harmony) to
allow a robust statistical analysis of the relationship
between information content and perceived complexity.
This manipulation necessarily reduced the ecological
validity of the stimuli in terms of stylistic congruence,
sophistication, and musical quality. However, we are
interested here in perception of complexity regardless
of whether the stimuli adhere to any music-theoretic
principles. Nonetheless, to accommodate the fact that
our participants were encultured in Western tonal
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music, the simulations used to inform the creation of
the stimuli employ IDyOM models trained on Western
tonal music. We predict that musical properties of the
stimuli that are unpredictable for these models (based
on learning the syntactic structure of Western tonal
music) will also be perceived by listeners as unpredict-
able, and therefore complex. To ensure sufficient vari-
ance and the absence of ceiling effects in the complexity
ratings, we encouraged participants to rate the complex-
ity of the stimuli relative to other stimuli in the exper-
iment, rather than on an absolute scale.

This approach provides a balance between experi-
mental control and ecological validity. In comparison
to studies using real-world stimuli (e.g., Eerola, 2016),
it has greater experimental control but lower ecological
validity, whereas in comparison to studies using artifi-
cial, stylistically unfamiliar stimuli (e.g., Loui, Wessel, &
Kam, 2010), it has greater ecological validity but lower
experimental control.

Method

PARTICIPANTS

Data were collected from 28 participants (12 female),
mean age 43.03 (SD ¼ 16.34) and mean Gold-MSI
music training subscale (Müllensiefen, Gingras, Musil,
& Stewart, 2014) score 36.60 (SD ¼ 9.31) out of a max-
imum possible score of 49, indicating a relatively high
level of music training overall. Participants were
recruited through musicology and psychology mailing
lists and social media. Ethical approval was obtained
from the Queen Mary Research Ethics Committee,
QMREC1536a.

Stimuli

The stimuli were composed by the first author, using
IDyOM to ensure that information content varied sys-
tematically in the desired direction between levels of

complexity for each of the three musical parameters
while keeping information content for the remaining
two parameters as constant as possible. A total of 24
basic stimuli were designed, eight for each of the three
musical parameters corresponding to eight levels of
information-theoretic predictability with increasing
information content, as measured by IDyOM (described
in further detail below). Each stimulus consists of two
bars written for three voices, and only the two outer
voices were manipulated according to information con-
tent. Each of the 24 basic stimuli were created in four
versions, with the outer voices combined with one of
four different middle voices for a total of 96 different
two-bar musical excerpts. As shown in Figure 1, two of
the four possible middle voices contain all in-key notes
and two contain out-of-key notes according to the
implied harmony of the target melody alone, but in-
key notes and out-of-key notes could become out-of-
key or in-key depending on the harmonic context in
which they are set. This relationship between the voices
will be accounted for as features of all stimulus voices
are incorporated into the analysis. A complete set of 24
stimuli for one target melody is shown in the Appendix.

Each stimulus was created as a MIDI file, then ren-
dered to an audio file, with a violin sound applied to the
upper voice, a clarinet sound applied to the middle voice,
and a bassoon sound applied to the lower voice. These
instruments were chosen so that each outer/inner voice
timbral pair would be roughly equally perceptually dis-
similar, using timbre dissimilarity ratings collected in
a previous study (Sauvé, Stewart, & Pearce, 2014).

COMPLEXITY MEASURES

IDyOM generates probability distributions for each
event in a piece of music that are conditioned upon the
preceding musical context and the prior musical expe-
rience of the model. The probability of each event can
be log-transformed to yield its information content (IC)
according to the model (MacKay, 2003), which reflects

FIGURE 1. Middle voice (A), with each of the following modifications: A instead of F in the third beat of bar 1 (B), C� instead of C in the second half of the

downbeat of bar 2 (C), and E� instead of F in the third beat of bar 1 (D).
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how unpredictable the model finds a note in a particular
context. Averaging information content for all the
events in a stimulus produces a measure of the overall
predictability of the musical sequence. We use this as
a measure of complexity under the hypothesis that
unpredictable sequences (those with high information
content) will be perceived as more complex than pre-
dictable sequences (those with low information
content).

Middle voice. IDyOM was configured to predict chro-
matic pitch using a representation that combines scale
degree with pitch interval, such that each event is repre-
sented as a pair of values: the scale degree (0–11) and
the melodic pitch interval in semitones (with sign dis-
tinguishing ascending and descending intervals).
IDyOM parameters were the same as used in previous
research (Hansen & Pearce, 2014; Omigie et al., 2012,
2013; Pearce, 2005, 2018; Pearce et al., 2010): Both the
short-term and long-term models were used, the latter
being trained on 903 folk songs and chorales (datasets 1,
2, and 9 from Table 4.1 in Pearce, 2005, comprising
50,867 notes). Rhythmic complexity was simulated by
configuring IDyOM to predict note onset using a repre-
sentation of interonset interval (the difference in onset
time between successive events) with other parameters
the same as above.

The mean melodic information content of middle
voices A, B, C, and D (Figure 1) was 5.61, 6.55, 8.66,
and 8.13 respectively and the mean rhythmic informa-
tion content was 3.70 for all versions.

Melodic complexity levels. The outer voices were
designed to vary in mean information content between
eight levels, such that level 1 had the lowest mean IC and
level 8 the highest. Mean melodic information content
for each complexity level ranged from 2.79 to 7.62 (SD¼
1.57). Figure 2 illustrates the mean information content
for all parameters for all 24 basic stimuli. Harmonic
complexity varied across levels (range ¼ 3.47–6.50, SD
¼ 1.05) while rhythmic complexity did not (IC ¼ 1.52).

Rhythmic complexity levels. IDyOM was configured to
predict note onset in the outer voices of each stimulus,
where note onset sequences in these voices were
manipulated to have higher (level 8) or lower (level
1) IC. As shown in Figure 2, average rhythmic infor-
mation content for each complexity level ranged from
1.49 to 3.04 (SD ¼ 0.53). Melodic information content
varied in a narrow range from 3.55 to 4.32 (SD ¼ 0.28)
while harmonic information content remained con-
stant at 3.47 across all levels of rhythmic complexity.
The variation in melodic information content is caused

by the variation in interval content in each rhythmic
complexity level as the pattern of repeated and non-
repeated notes changes with the increasingly complex
rhythm.

Harmonic complexity levels. Chord progressions were
four chords long, two beats per chord and harmonic
complexity was measured using IDyOM trained on
chord progressions from the Montreal Billboard Corpus
(Burgoyne, Wild, & Fujinaga, 2011), in which the alpha-
bet of possible chords includes major, minor, seventh,
and various extension chords in almost any inversion.
Each stimulus was encoded as a chord progression as
a series of four integers, one for each chord (e.g., the
progression I–IV–V–I was encoded as 1–2–3–1 and
corresponded to an IC of 3.47). While the training
material included chord inversions, due to the minimal
perceived difference between chord inversions in such
a short stimulus, the four-chord progressions in the
stimuli encoded only the root and the quality (major,
minor, augmented, diminished) of the chord, with the
possibility of a chordal seventh where applicable. Other
IDyOM parameters were as above. As shown in Figure 2,
average harmonic information content for each com-
plexity level ranged from 3.47 to 9.10 (SD ¼ 2.07).
Melodic information content varied in a relatively nar-
row range (range ¼ 2.35–4.04, SD ¼ 0.66) while rhyth-
mic information content remained constant at 1.52
across all levels of harmonic complexity. The close rela-
tionship between melody and harmony makes complete
independence impossible, though as illustrated in Fig-
ure 2, a degree of separation was achieved. This rela-
tionship will affect interpretation of the results, since
a significant effect of harmonic information content
implies a related influence of melodic information con-
tent and vice versa.

It is important to note that each musical parameter in
this study is manipulated separately to yield varying
ranges of average information content for each stimu-
lus, as described above. The varying range is primarily
a result of the size of each parameter’s alphabet, where
rhythm contains the smallest alphabet and harmony the
largest. Only a relatively small number of different inter-
onset intervals are possible for the rhythmic parameter
when compared to the number of chromatic pitches
available to the melodic parameter. Harmony has the
largest alphabet as the Montreal Billboard Corpus
includes four-note chords and their inversions, produc-
ing a much larger alphabet for the harmonic parameter
than the melodic parameter. These differences will be
accounted for in the analysis and incorporated into the
interpretation of the results.
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EV3

For the feature-based EV3 model (Eerola, 2016), the
MIDI toolbox (Toiviainen & Eerola, 2016) was used to
calculate tonal ambiguity, pitch proximity, and rhythmic
variability for each outer voice and averaged for each
stimulus. These measures were also computed for each
target melody.

PROCEDURE

Data were collected via the online survey tool Qualtrics.
Participants first read through the information sheet
and provided consent before reading the instructions
and answering two practice trials to familiarize them-
selves with the type of stimuli and form an idea of their
complexity. Participants were simply asked to rate the
complexity of each stimulus. They were encouraged to
use the full range of the complexity scale presented,
a Likert scale ranging from 1 (not complex) to 7 (very
complex), and judge complexity of a stimulus in relation
to the other stimuli rather than in relation to other
music. For each participant, two of the four target mel-
odies were randomly selected resulting in 48 stimuli for
each participant. The 48 stimuli were divided into three
blocks of 16 stimuli, one for each of the melodically,
harmonically and rhythmically manipulated stimuli.
Within blocks, the 16 stimuli were randomized for each
participant and the presentation order of the blocks was
also randomized across participants.

ANALYSIS

All analyses were performed using R (3.3.2). In addition
to compiling descriptive statistics, the degree of corre-
lation between mean participant ratings and melodic,
harmonic, and rhythmic IC was evaluated using Pear-
son’s correlation coefficient. Next, multiple linear
regression analyses were performed using the lme4
package (Bates, Maechler, Bolker, & Walker, 2015).
Models were constructed to predict complexity ratings
averaged across participants for each stimulus. Models
were evaluated using Pearson’s correlation between the
model’s predictions and the data. Variance explained by
each model was measured by calculating the coefficient
of determination R2. The overall F-statistic of the model
was also recorded and Cohen’s F2 effect size reported
using each model’s adjusted R2. Statistical significance
of each predictor was tested by a likelihood-ratio test
between a null model (intercept only) and a model con-
taining the single evaluated predictor. Statistical signif-
icance of each individual factor level for a given
predictor was evaluated using 95% confidence intervals,
where an interval not including zero indicates a signifi-
cant predictor.

The influence of music training on complexity ratings
was evaluated by adding a fixed effect for training,
reflected by Gold-MSI scores for each participant. In
contrast to the previous analysis, here the models are
applied to the complexity rating for each trial. To include

FIGURE 2. The mean information content (IC) of the outer voices plotted for each of the 24 stimuli by type of manipulation (melody, rhythm,

harmony). IC for melodic complexity levels is illustrated in panel A, where melodic IC (circles) increases with level. IC for rhythmic complexity

levels is illustrated in panel B, where rhythmic IC (triangles) increases with level. IC for harmonic levels is illustrated in panel C, where harmonic IC

(squares) increases with level. Note that rhythmic IC is constant in panels A and C while harmonic IC is constant in panel B. However, due to the close

relationship between melody and harmony, the manipulation of harmonic IC in panel C is only partially independent from melodic IC and the

manipulation of melodic IC in panel A is only partially independent from harmonic IC.
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in the model maximal random effects in accordance with
the experimental design (Barr, Levy, Scheepers, & Tily,
2013), random intercepts on participant and stimulus
number were added to all models including music train-
ing to create multiple linear mixed effects models. To
evaluate the significance of music training, mixed effects
models with and without the predictor were compared
using a log likelihood ratio test. The multiple linear
mixed-effects model was evaluated using Pearson corre-
lation between the model’s predictions and the data and
the coefficient of determination R2.

Results

Descriptive statistics can be found in Table 1. Multiple
linear regression analyses were carried out to address
the relationship between the complexity ratings and
three aspects of the stimuli: first, the categorical exper-
imental manipulations of stimulus complexity; second,
the quantitative information-theoretic measures of pre-
dictability corresponding to the experimental manipu-
lations; and third, descriptive features of the stimuli.
The influence of music training (as a fixed effect) is also
evaluated for each of these three analyses. An additional
analysis was conducted to evaluate the predictive power
of Eerola’s (2016) EV3 model.

EXPERIMENTAL MANIPULATIONS

First, does the manipulation of information-theoretic
predictability across 8 levels per musical parameter pre-
dict perceived complexity ratings? For this model, com-
plexity (1–8), musical parameter (melody, harmony, or
rhythm) and version (four types of middle voice) were
included as predictors of mean complexity ratings. Fig-
ure 3 shows the overall increase in mean complexity
ratings with complexity level for all musical parameters.
Complexity was treated as a continuous numeric factor
while for musical parameter, factor levels were com-
pared to rhythm, and for version, comparisons were
made to Version A. This model has R2 ¼ .43 and F(6,
89) ¼ 13.28, p < .0001, F2 ¼ 0.77 and r ¼ .68. Overall,
complexity was a significant predictor of mean complex-
ity ratings, F(1, 94) ¼ 67.46, p < .0001, F2 ¼ 0.69. while
musical parameter and version were not, F(2, 93)¼ 1.89,
p ¼ .15, F2 ¼ 0.01, and F(3, 92) ¼ 0.47, p ¼ .69, F2 ¼
0.01, respectively. More specifically, only harmony was
significantly different from rhythm, t(89) ¼ 2.49, p ¼
.01 for harmony and t(89) ¼ 1.78, p ¼ .07 for melody,
while no level of version was significantly different from
Version A (all p > .05). Modelling the interaction
between complexity and musical parameter yielded
a significant effect, R2 ¼ .45, F(3, 92) ¼ 27.91, p <
.0001, F2 ¼ 0.84 and r ¼ .69, but adding the interaction

TABLE 1. Descriptive Statistics (Means and Standard Deviations) for Participant Complexity Ratings for Each Parameter and Level

Level

1 2 3 4 5 6 7 8 Mean

Melody 2.96 (1.51) 3.32 (1.44) 3.73 (1.38) 4.10 (1.39) 3.78 (1.23) 4.58 (1.17) 4.32 (1.34) 4.48 (1.48) 3.90 (0.60)
Harmony 3.62 (1.32) 3.07 (1.34) 3.96 (1.30) 3.25 (1.27) 4.71 (1.13) 4.58 (1.10) 4.25 (1.39) 4.42 (1.34) 3.98 (0.65)
Rhythm 3.62 (1.57) 3.19 (1.40) 3.85 (1.32) 3.67 (1.37) 3.35 (1.36) 3.46 (1.40) 3.85 (1.44) 4.65 (1.30) 3.70 (0.48)
Mean 3.39 (0.38) 3.19 (0.35) 3.82 (0.43) 3.66 (0.40) 3.93 (0.60) 4.21 (0.61) 4.16 (0.40) 4.49 (0.23) 3.86 (0.59)

FIGURE 3. Mean complexity ratings are plotted by complexity level for each musical parameter: melodic complexity (A), rhythmic complexity (B) and

harmonic complexity (C). Dotted lines illustrate lines of best fit. Error bars illustrate standard error of the mean.
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to the previous model with main effects yielded little
improvement in fit to the data, F(2, 87) ¼ 2.52, p ¼
.08, F2 ¼ 0.83.

For the single trial analysis, the addition of music
training marginally improved a model without it,
�2(1) ¼ 3.58, p ¼ .05, and the resulting correlation to
the data was r ¼ .27, t(2686) ¼ 14.68, p < .0001, R2 ¼
.06. A summary of the fixed effects model predicting
mean ratings and the complexity and musical parameter
interaction model can be found in Table 2.

INFORMATION-THEORETIC MEASURES

Is perceived complexity accurately simulated by infor-
mation content? Table 3 presents the correlation matrix
of perceived complexity and information theoretic
complexity values. The model included the following
predictors: mean melodic information content, mean
rhythmic information content, and mean harmonic
information content, based on the mean IC of the outer
voices for these parameters (see Complexity Measures
for details). As the range of mean information content
for these predictors varies (mean melodic IC range ¼
2.35–7.62; mean rhythmic IC range ¼ 1.27–3.04; mean
harmonic IC range ¼ 3.47–9.10), each predictor was
transformed into z-scores (mean ¼ 0, SD ¼ 1) so that
the mean melodic IC range became �1.42–3.48, mean
rhythmic IC range became �0.52–3.49, and mean har-
monic IC range became �0.75–2.00. Mean melodic IC
of the middle voice was also included as a predictor but
rhythmic IC was not included because it does not vary.

Melodic, rhythmic, and harmonic IC were significant
predictors of mean complexity ratings, but only melodic
and harmonic IC were significant when compared to
a null model, F(1, 94) ¼ 11.41, p ¼ .001, F2 ¼ 0.09 and
F(1, 94)¼ 35.09, p < .0001, F2¼ 0.35, respectively, while
rhythmic or middle voice IC were not, F(1, 94) ¼ 0.34,
p ¼ .91, F2 ¼ 0.00 and F(1, 94) ¼ 0.15, p ¼ .69, F2 ¼
0.00, respectively. The resulting model accounted for
a large proportion of the variance in the complexity
ratings, R2 ¼ .54, F(4, 91) ¼ 30.68, p < .0001, F2 ¼
1.20 and r ¼ .75.

To further assess the independent contributions of
melodic and harmonic IC, models leaving out one of
these predictors at a time were fitted. A model with
melodic and rhythmic IC only yielded an R2 of .08
while a model with harmonic and rhythmic IC yielded
an R2 of .34.

For the single trial analysis, the addition of music
training marginally improved the model, �2(1) ¼
3.58, p ¼ .05, and the resulting correlation to the data
was r ¼ .26, t(2686) ¼ 14.35, p < .0001, R2 ¼ .06. A
summary of the fixed effects model predicting mean
ratings can be found in Table 4.

DESCRIPTIVE FEATURES

What musical properties correspond to the variations in
perceived complexity? In other words, how can the dif-
ferences in complexity perception be characterized in
musical terms? For this model, the following features
were calculated: the mean interval size (in semitones;
range 0.41–8.41) of the two outer voices of each stimuli;
the mean pitch (MIDI note numbers; range 72.14–78.14
for the upper voice and 43.85–51.00 for the lower voice)
of each of the two outer voices separately; the mean note
duration (in ms, where 1 beat ¼ 24 ms; range 16.00–
27.42) of the two outer voices; the proportion of out-of-
key notes in relation to the total number of pitches in the
two outer voices, key proportion (range 0–0.38); and

TABLE 2. Summary of the Fixed Effects Manipulation Model and
Fixed Effects Interaction Model

Manipulation model

Predictor Coefficient SE R2

(Intercept) 2.97 0.14 –
Complexity 0.16 0.01 .41
Melody 0.19 0.11 .02
Harmony 0.27 0.11
Version B -0.13 0.12 .00
Version C -0.02 0.12
Version D 0.07 0.12

Interaction model

Predictor Coefficient SE R2

(Intercept) 3.11 0.09 –
Complexity: Melody 0.18 0.23
Complexity: Rhythm 0.12 0.23 .45
Complexity: Harmony 0.18 0.23

Note: Total R2 ¼ .43 and .45 respectively (p < .0001). Each factor of parameter is in
relation to rhythm; and each factor of version is in relation to version A.

TABLE 3. Correlation Matrix Between Participant Complexity
Ratings and Information-theoretic Measures of Melodic, Harmonic
and Rhythmic Complexity.

Participant
Ratings

Melody
IC

Rhythm
IC

Harmony
IC

Participant
Ratings

–

Melody IC .43 ** –
Rhythm IC .06 �.27 * –
Harmony IC .44 ** .32 * .24 * –

Note: Ratings and measures are transformed into z-scores prior to correlation test.
*p < .05 **p < .001
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syncopation score, where a lower score equates to more
syncopation (Lerdahl & Jackendoff, 1983). All predictors
were scaled to have mean ¼ 0 and standard deviation ¼
1. Mean duration and key proportion were significant
predictors in this model, though only key proportion was
significant when tested against a null model, F(1, 94) ¼
50.63, p < .0001, F2 ¼ 0.52. Mean duration makes a sig-
nificant contribution only when the other predictors are
specified in the model, t(89) ¼ �3.21, p ¼ .001. The
model overall has a total R2 of .43 and F(6, 89) ¼
12.96, p < .0001, F2 ¼ 0.75 and r ¼ .68.

For the single trial analysis, the addition of music train-
ing marginally improved the model, �2(1) ¼ 3.59, p ¼
.05, and the resulting correlation to the data was r ¼ .27,
t(2686) ¼ 14.75, p < .0001 and R2 ¼ .06. A summary of
the fixed effects model can be found in Table 5.

Finally, a fixed effects model with the three feature-
based components from Eerola’s (2016) EV3 model was
tested. The model overall has an R2 of .22 and F(3, 92)¼
10.04, p < .0001, F2 ¼ 0.28 and r ¼ .49. Tonal ambiguity
and pitch proximity were significant predictors, F(1, 94)
¼ 21.94, p < .0001, F2 ¼ 0.22 and F(1, 94) ¼ 10.97, p ¼
.0013, F2¼ 0.10, while rhythmic variability was not, F(1,
94)¼ 0.70, p¼ .40, F2¼ 0.00. A summary of this model
can be found in Table 6.

Discussion

In order to test the hypothesis that information-
theoretic predictability can account for perceived musi-
cal complexity, complexity ratings were collected for
a series of stimuli manipulated in terms of melodic,
rhythmic, and harmonic information content as calcu-
lated by IDyOM. The results support the hypothesized
relationship: both the categorical experimental condi-
tions, which are based on information content, and raw
information content itself successfully predicted mean
ratings, explaining 43% and 54% of the variance in the
data respectively. When random effects are added to
account for individual and stimulus differences, the
fixed effects lose much of their predictive power, but

the resulting models do not explain more variance in
the data. This will be discussed in more detail below.
While the information content model demonstrates
a correlational relationship between information con-
tent and complexity, the explicit manipulation of infor-
mation content in the experimental design crucially also
provides causal evidence. The coefficients and the rela-
tive R2 of these models can be interpreted to draw some
conclusions.

First, the intercepts are both close to the centre of the
rating scale, indicating a slightly lower than mid-scale
baseline rating. For the model based on experimental
manipulations, the relationship between the complexity
predictor and mean ratings is positive, as well as the
relationship between both factor levels of the musical
parameter predictor and mean ratings, indicating that
ratings increase with complexity level and are higher
overall for both melodically and harmonically manipu-
lated groups of stimuli. The first effect is clearly visible
in Figure 3, while the latter effect suggests that listeners
consider unpredictable harmonic progressions to be
more complex than unpredictable melodies (e.g., large
leaps or out-of-key notes), and these more complex
than unpredictable rhythms. The differences in ratings
between parameters differ slightly in pattern rather than
in magnitude although the explanatory power of
parameter is negligible compared to complexity level
and the interaction between complexity and musical
parameter did not improve the fit of the model over
and above the main effects. As shown in Figure 3, at

TABLE 5. Summary of the Fixed Effects Musical Properties Model

Predictor Coefficient SE R2

(Intercept) 3.86 0.04 –
Key proportion 0.40 0.05 .34
Mean Duration -0.41 0.13 .07
Syncopation Score -0.23 0.12 .01
Mean Interval Size -0.04 0.06 .00
Mean Pitch – Upper voice -0.03 0.05 -.01
Mean Pitch – Lower voice 0.12 0.07 .02

Note: Total R2 ¼ .43

TABLE 6. Summary of the Fixed Effects EV3 Model

Predictor Coefficient SE R2

(Intercept) 8.50 1.45 -
Tonal ambiguity 1.19 0.28 .18
Pitch proximity 0.14 0.05 .04
Rhythmic variability -0.22 0.70 .00

Note: Total R2 ¼ .22

TABLE 4. Summary of the Fixed Effects Information Content Model

Predictor Coefficient SE R2

(Intercept) 3.86 0.04 –
Melody IC 0.27 0.04 .09
Rhythm IC 0.22 0.04 .00
Harmony IC 0.43 0.04 .45
Middle voice IC 0.02 0.04 .00

Note: Total R2 ¼ .54.
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complexity levels five and six, all parameters diverge
from the expected increasing pattern. Ratings in the
harmonic parameter are especially high while ratings
in the rhythmic parameter are especially low and ratings
in the melodic parameter are low for level five but high
for level six. This pattern mirrors the jump in harmonic
information content from level four to five and from
level five to six in melodic information content (see
Figure 3), which illustrates how the greater level of detail
provided by information content over complexity level
yields a more accurate model of perceived complexity.
Finally, version was not a significant predictor, support-
ing the assumption that the four versions of each stim-
ulus would be rated similarly.

The information content model provides converging
evidence for the interpretation of the above predictor
parameter, where harmonic IC carries the most explan-
atory power, followed by melodic IC and finally rhyth-
mic IC, with the same pattern of magnitude seen in their
coefficients. Compared to the complexity levels, the
more detailed measure of complexity provided by infor-
mation content accounted for a greater proportion of
variance in the complexity ratings. To summarize thus
far, the manipulation of rhythmic complexity had
a lower impact on perceived complexity ratings such
that rhythmic information content accounted for a neg-
ligible proportion of the variance in the ratings while
manipulations of harmonic and melodic complexity
had a significant impact on perceived complexity.

Several raw musical properties of the stimuli were also
examined for potential predictive power to characterize
the musical features corresponding to differences in
perceived complexity. Mean interval size for both outer
voices, mean pitch of each outer voice, mean note dura-
tion for both outer voices, the proportion of out-of-key
notes among both outer voices, and the degree of syn-
copation of both outer voices were calculated to repre-
sent melodic, rhythmic, and harmonic dimensions of
music. The results revealed an effect of note duration
and proportion of out-of-key notes on the perceived
complexity ratings. Both are in the expected direction,
where higher proportion of out-of-key notes leads to
higher complexity ratings, and longer note duration
(which characterized stimuli in the lower levels of com-
plexity) results in slightly lower complexity ratings. The
importance of the out-of-key versus in-key proportion
is consistent with the two previous models where exper-
imental manipulations and information content are
predictors: the unexpected harmonic progressions con-
tain more out-of-key pitches, which is also reflected in
melodic information content since these have low prob-
ability in context.

There was, perhaps surprisingly, no effect of music
training on ratings, where it might be expected that
increased exposure to music would yield better models
and therefore lower information content, and lower per-
ceived complexity. However, all participants were fairly
musically sophisticated, all scoring more than 50% on
the Gold-MSI music training sub-scale and perhaps
there was not enough variation to detect such an effect.
Additionally, when random effects for participants were
included in the mixed effects models, this explained the
majority of the variance accounted for by the model, 4%
in each case. Random effects on the stimuli accounted
for 2% of the variance in these models, the second larg-
est contributing predictor. Together, the random effects
explain all (though overall little) variance accounted for
by the mixed effects models. Thus, it can be concluded
that individual differences supersede any effects of
experimental manipulation, information content, musi-
cal features, or music training on ratings. However,
when results are averaged across participants and more
general patterns are considered, these same experimen-
tal manipulations, measures of information content,
and musical features explain up to half the variance in
the data in each case, up to as much as 54% in the case
of information content. It would be useful to replicate
these results using a larger sample of participants vary-
ing more widely in music training. As Margulis (2016)
raises in her commentary on Eerola’s (2016) work, it
would also be worth conducting a similar study with
participants from different cultural backgrounds, as this
is known to be an important influence on music
perception, including musical complexity (Eerola, Him-
berg, Toiviainen, & Louhivuori, 2006). The contribution
of random effects on stimuli also highlight the specific
nature of the stimuli used here; however, due to the
relatively small percentage of variance explained and
the strong predictive power of measures of information
content across participants, the relationship between
information content and perceived complexity is
expected to generalize to other, more ecological stimuli.
Testing the generalizability of the relationship between
information content and perceived complexity would be
very valuable future work.

We asked participants to rate their subjective experi-
ence of complexity without measuring other factors
such as stylistic familiarity or aesthetic appeal. Since
approximately half of the variance of the data are left
unexplained by our analytical models, it is possible that
these factors may have contributed to listeners’ com-
plexity ratings. However, a recent study replicating the
present finding that IDyOM’s information content
accounts well for perceived complexity (Clemente
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et al., 2019) lends confidence that the present results are
not artefactual. Clemente et al. used carefully controlled
and stylistically congruent melodic stimuli, though they
are in some ways more limited than those used here,
making the two studies complementary in conceptually
replicating the finding. Furthermore, a pair of studies
have recently addressed the relationship between
IDyOM’s information content and aesthetic apprecia-
tion of music (genuine melodies from a range of styles
in the case of (Gold, Pearce, Mas-Herrero, Dagher, &
Zatorre, 2019), and pop harmonies in the case of
(Cheung et al., 2019), both of which find evidence for
non-linear relationships between information-theoretic
complexity and pleasure (cf. Berlyne, 1974).

The task demands of independently manipulating
melodic, harmonic, and rhythmic structure according
to monotonically varying degrees of information content
meant that the stimuli lack ecological validity in certain
ways. While the hypothesis tested in the present research
does require that the stimuli possess specific musical
features or adhere to specific music-theoretic or stylistic
principles, we outline these potential limitations here.
First, in the melodic dimension, many of the leaps pres-
ent in the upper levels of complexity are not idiomatic in
Western tonal music. In the rhythmic dimension, the
stimuli are less stylistically unusual; however, the preva-
lence of repeated pitches and the increase in syncopation
as rhythmic complexity levels increase could be consid-
ered somewhat non-idiomatic. Furthermore, in the har-
monic dimension, the challenge of creating eight distinct
levels of complexity in four-chord progressions in only
two measures of music makes it very difficult, if not
impossible, to create ecologically valid stimulus varia-
tions. This means that the harmonic style of these stim-
uli does not perfectly match the Montreal Billboard
Corpus used for training the harmonic complexity
model in IDyOM, but the fact that the harmony model,
trained on the Billboard corpus, accounted for a signifi-
cant proportion of the variance in the complexity ratings
suggests that it provides an accurate simulation of the
perception of the stimuli even if it cannot predict the
stimuli themselves very accurately. It is also worth noting
that the harmony model does not explicitly account for
voice-leading, which may make additional contributions
to perceived complexity that are not capture by the
IDyOM simulation. Finally, as noted previously, it is
impossible to completely separate melodic and har-
monic aspects of music, leaving great scope for future
research to explore more accurate ways to model human
perception of these linked musical parameters.

It is important to replicate these findings in real-
world musical stimuli, which would provide additional

evidence of the link between information-theoretic
measures of melodic, harmonic, and rhythmic predict-
ability, and perceived complexity. This experimental
approach has the advantage of being more ecologically
valid than that followed in the present experiment
but the disadvantage of being more correlational and
less controlled. At the other extreme, it would be pos-
sible to achieve very high experimental control with
completely artificial, stylistically unfamiliar stimuli
at the expense of ecological validity (e.g., Loui et al.,
2010). It is also possible to design new stimuli that
balance the two, such as two-voice stimuli where har-
mony is implied or longer stimuli that can follow idi-
omatic musical patterns. The experimental approach
used here achieves a balance of ecological validity with
experimental control, but future research should cor-
roborate the relationship between information-
theoretic predictability and perceived complexity with
other experimental designs that have more extreme
complementary advantages and disadvantages in
terms of this balance.

Finally, tonal ambiguity, pitch proximity, and rhyth-
mic variability as defined in Eerola’s (2016) EV3 model
were tested on these new data. These predictors
explained 22% of the variability in the data. This is not
particularly surprising as these parameters might be
expected to capture similar variability as the key pro-
portion, pitch interval, and mean duration metrics of
the musical features model, which together explained
41% of the variance in the data. It is possible that the
nature of the stimuli led to these differences: the current
stimuli are short and relatively extreme in term of com-
plexity variation, while the EV3 model was originally
tested on a mixture of specially constructed experimen-
tal stimuli and folk music containing many more mel-
odies that vary more subtly in terms of complexity. The
EV3 model may therefore generalize to melodic music
better than the musical features model. While the cur-
rent data were better explained by experimental manip-
ulations and information content as computed by
IDyOM, model comparisons should continue to be
made to test the generalizability of perceptual models
of perceived complexity, including models based on
musical features. At the very least, a feature-based anal-
ysis is helpful in providing an interpretation of com-
plexity that can be understood in musical terms.

In summary, we find that the results demonstrate
a strong causal link between information content and
perceived complexity. Specifically, we find that harmon-
ically manipulated stimuli, melodic information content
and out-of-key notes—all closely related—have the larg-
est influence on complexity ratings. This is followed by
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melodic manipulations and harmonic information con-
tent and finally rhythmic manipulations and informa-
tion content, where other melodic and rhythmic
musical features have negligible influence. While differ-
ent types of measures of complexity have been proposed
(Eerola, 2016; Narmour, 1992; Vuust & Witek, 2014),
this is the first time that a causal relationship between
information content generated by IDyOM and per-
ceived complexity has been empirically tested. This
information-theoretic measure of predictability can
serve current and future research by providing a gen-
eral-purpose, quantitative indicator of perceived musi-
cal complexity that can be applied consistently to more
than one musical parameter.
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PEARCE, M., & MÜLLENSIEFEN, D. (2017). Compression-based
modelling of musical similarity perception. Journal of New
Music Research, 46, 135–155. https://doi.org/10.1080/
09298215.2017.1305419
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176 Sarah A. Sauvé & Marcus T. Pearce



SEARS, D. R., PEARCE, M. T., CAPLIN, W. E., & MCADAMS, S.
(2018). Simulating melodic and harmonic expectations for
tonal cadences using probabilistic models. Journal of New
Music Research, 47, 29–52. https://doi.org/10.1080/
09298215.2017.1367010

SHMULEVICH, I., & POVEL, D.-J. (2000). Complexity measures of
musical rhythms. In P. Desain & L. Windsor (Eds.), Rhythm
perception and production (pp. 239–244). Lisse, Netherlands:
Swets & Zeitlinger.

SONG, C., SIMPSON, A. J. R., HARTE, C. A., PEARCE, M. T., &
SANDLER, M. B. (2013). Syncopation and the score. PLoS
ONE, 8(9), e74692. https://doi.org/10.1371/
journal.pone.0074692

TOIVIAINEN, P., & EEROLA, T. (2016). MIDI Toolbox 1.1.
Available online at https://github.com/miditoolbox/1.1

VUUST, P., & WITEK, M. A. G. (2014). Rhythmic complexity and
predictive coding: A novel approach to modeling rhythm and
meter perception in music. Frontiers in Psychology, 5, 1111.
https://doi.org/10.3389/fpsyg.2014.01111

ZATORRE, R. J., CHEN, J. L., & PENHUNE, V. B. (2007). When the
brain plays music: Auditory–motor interactions in music
perception and production. Nature Reviews Neuroscience, 8,
547. https://doi.org/10.1038/nrn2152

Information-theoretic Modeling of Perceived Musical Complexity 177



Appendix

Scores of excerpts for complex target stimuli for Levels 1-8
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