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Pitch and timing information work hand in hand to create a coherent piece of music, but what happens
when this information goes against the norm? Relationships between musical expectancy and emotional
responses were investigated in a study conducted with 40 participants: 20 musicians and 20 nonmusi-
cians. Participants took part in one of two behavioral paradigms measuring continuous expectancy or
emotional responses (arousal and valence) while listening to folk melodies that exhibited either high or
low pitch predictability and high- or low- onset predictability. The causal influence of pitch predictability
was investigated in an additional condition in which pitch was artificially manipulated and a comparison
was conducted between original and manipulated forms; the dynamic correlative influence of pitch and
timing information and its perception on emotional change during listening was evaluated using
cross-sectional time series analysis. The results indicate that pitch and onset predictability are consistent
predictors of perceived expectancy and emotional response, with onset carrying more weight than pitch.
In addition, musicians and nonmusicians do not differ in their responses possibly due to shared cultural
background and knowledge. The results demonstrate in a controlled lab-based setting a precise, quan-
titative relationship between the predictability of musical structure, expectation, and emotional response.
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Music is capable of inducing powerful physiological and psy-
chological emotional states (Bittman et al., 2013; Castillo-Pérez,
Gómez-Pérez, Velasco, Pérez-Campos, & Mayoral, 2010; Habibi
& Damasio, 2014). For example, the practice of music therapy
stemmed from the observation that music can have a positive
emotional effect (Khalfa, Bella, Roy, Peretz, & Lupien, 2003;
Pelletier, 2004). However, many studies of emotion induction by
music have simply investigated which emotions are induced rather
than the psychological mechanisms that account for why these
emotions occur (Juslin & Västfjäll, 2008). The present research
aims to address this omission by examining a theorized psycho-
logical mechanism of musical emotion induction in isolation.
Although factors such as personality, age, and gender have an

influence (Rentfrow & Gosling, 2003), we focus here on the
properties of music that are involved in emotion induction.

Although there is general consensus that music can elicit emo-
tional responses (see Juslin & Sloboda, 2011 for an extensive
review), why and how it does so is less clear. Juslin and colleagues
(Juslin, Liljeström, Västfjäll, & Lundqvist, 2011) described eight
potential psychological mechanisms that might explain how emo-
tions are induced through music: (a) brain stem reflexes, (b)
evaluative conditioning, (c) emotional contagion, (d) visual imag-
ery, (e) episodic memory, (f) musical expectancy, (g) rhythmic
entrainment, and (h) cognitive appraisal. Hearing a sudden loud or
dissonant event causes a change in arousal (brain stem reflex),
whereas a piece repetitively paired with a positive, or negative,
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situation will create a positive, or negative, emotional reaction
(evaluative conditioning). Emotional contagion is the induction of
emotion through the mimicry of behavioral or vocal expression of
emotion and is reflected in musical structure; for example, shorter
durations and ascending pitch contours tend to reflect happiness,
whereas longer durations and descending pitch contours commu-
nicate sadness. Visual imagery refers to the mental imagery
evoked by the music, which can have positive or negative affect.
The pairing between a sound and a past event can trigger the
emotion related to that event when the sound is subsequently heard
(episodic memory). Rhythmic entrainment refers to the induction
of emotion through the proprioceptive feedback of internal body
entrainment (i.e., heart rate) to the music and, finally, cognitive
appraisal refers to the evaluation of music in the context of goals
or plans of the listener. The present study focuses on musical
expectancy while controlling for all other potential mechanisms
proposed in the abovementioned text.

Meyer (1956) argued that emotion is generated through musical
listening because listeners actively generate predictions reflecting
what they expect to hear next (Huron, 2006). Unexpected events are
surprising and are associated with an increase in tension, whereas
expected events are associated with the resolution of tension (Gingras
et al., 2016). According to this account, surprising events generally
evoke high arousal and low valence (Egermann, Pearce, Wiggins, &
McAdams, 2013; Koelsch, Fritz, & Schlaug, 2008; Russell, 2003;
Steinbeis, Koelsch, & Sloboda, 2006). Although the arousal response
to increased tension is fairly consistent, listeners familiar with a piece
of music can come to appreciate an event that has low expectancy
through an appraisal mechanism, resulting in a high valence response
(Huron, 2006). This apparent contradiction highlights the importance
of isolating the psychological mechanisms behind musical emotional
induction.

There are also different influences on musical expectation (Huron,
2006). Schematic influences reflect general stylistic patterns acquired
through extensive musical listening to many pieces of music, whereas
veridical influences reflect specific knowledge of a familiar piece of
music. Dynamic influences reflect dynamic learning of structure
within an unfamiliar piece of music (e.g., recognizing a repeated
motif). Listening to new, unfamiliar music in a familiar style engages
schematic and dynamic mechanisms, the former reflecting long-term
learning over years of musical exposure and the latter, short-term
learning within an individual piece of music. Both these long- and
short-term mechanisms can be simulated as a process of statistical
learning and probabilistic generation of expectations (Pearce, 2005).
Furthermore, these may be different for musicians and nonmusicians
due to extensive exposure and training in a particular style (Juslin &
Västfjäll, 2008).

We now consider the properties of musical events for which
expectations are generated. Prominent among such properties are
the pitch and timing of notes, and we consider each in turn. Music
theorists have described musical styles as structurally organized,
reflecting well-formalized rules that constitute a kind of grammat-
ical syntax (Lerdahl & Jackendoff, 1983). In the tradition of
Western tonal music, compositions usually follow these rules by
adhering to a tonal structure, and enculturated listeners are able to
identify when a piece of music infringes tonal rules based on their
exposure in everyday music listening (Carlsen, 1981; Krumhansl,
Louhivuori, Toiviainen, Järvinen, & Eerola, 1999; Trainor &
Trehub, 1992). Two kinds of models have been developed to

explain listeners’ pitch expectations: first, models that include
static rules and, second, models that focus on learning. An influ-
ential example of a rule-based model is the implication-realization
model, developed by Eugene Narmour (1991), which includes
rules defining the expectedness of the final note in a sequence of
three notes, in which the first pair of notes forms the implicative
interval and the second pair of notes, the realized interval. The size
and direction of the implicative interval set up expectations of
varying strengths for the realized interval. Although the original
implication-realization model contained five bottom-up rules of
melodic implication, Schellenberg (1996) reduced the five
bottom-up rules of the implication-realization model to two: pitch
proximity and pitch reversal. For example, according to the rules
of pitch reversal, a small interval implies another small interval in
the same direction, whereas a large interval implies a subsequent
small interval in the opposite direction. Such patterns reflect actual
patterns in existing Western music (Huron, 2006), suggesting the
possibility that listeners might learn these patterns through expe-
rience.

Statistical learning is a powerful tool for explaining the acqui-
sition of pitch expectations in music, in which common sequential
patterns are learned through incidental exposure (Huron, 2006;
Pearce, 2005; Saffran, Johnson, Aslin, & Newport, 1999), making
them more predictable to the exposed listener. For example, a
perfect cadence is found at the end of the vast majority of Western
classical music, in which movement from dominant to tonic is the
strongest form of closure possible in this style. Through repeated
exposure to this pattern, a dominant penultimate chord strongly
implies a tonic chord for an enculturated listener (Huron, 2006).
Information Dynamics of Music (IDyOM; Pearce, 2005) is a
computational model of auditory expectation that harnesses the
power of statistical learning. It learns the frequencies of variable-
order musical patterns from a large corpus of music (via the
long-term model) and from the current piece of music being
processed (via the short-term model or short-term memory) in an
unsupervised manner and generates probabilistic predictions about
the properties of the next note in a melody, given the preceding
melodic context. IDyOM is a multiple-viewpoint model capable of
learning patterns from pitch- and time-derived note properties
(source viewpoints) to predict relevant note properties (target
viewpoints). These viewpoints can be use-defined or selected
through optimization. The information content (negative log prob-
ability; IC) of an event, given the model, reflects the unexpected-
ness of the event in context. Low IC corresponds to high expect-
edness, whereas high IC corresponds to low expectedness.

Temporal regularities are also learned through exposure (Ci-
relli, Spinelli, Nozaradan, & Trainor, 2016; Hannon, Soley, &
Ullal, 2012; Hannon & Trehub, 2005a, 2005b). Western music
is dominated by beat patterns in divisions of two, and to a lesser
extent, divisions of three, and compositional devices much as
syncopation and hemiola (three beats in the time of two) are
used to manipulate the listener’s temporal expectations. The
dynamic attending theory (Jones & Boltz, 1989) posits that
entrainment to a beat results in attentional focus being directed
at time intervals in which a beat is expected to occur, such that
longer entrainment times result in stronger predictions and more
focused attention. This was supported using a pitch discrimi-
nation task in which participants performed better on pitch
discrimination when target pitches fell on expected time points
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as a result of entrainment to a series of isochronous distractor
tones (Jones, Moynihan, MacKenzie, & Puente, 2002; though
see Bauer, Jaeger, Thorne, Bendixen, & Debener, 2015 for
conflicting evidence). We propose that temporal rules can also
be explained by statistical learning as implemented in IDyOM
(Pearce, 2005). In the same way as pitch, and various other
musical surface structures, onset and interonset interval (IOI)
can be predicted by IDyOM, as it learns from a given corpus
and a given piece. This is equivalent to estimating a distribution
over possible future onset times, given the preceding sequences
of events. Because pitch and temporal structures generate dis-
tinct expectancies (Prince, Thompson, & Schmuckler, 2009),
we explore the influence of each as a potential emotional
inducer using both correlational and causal methods (while
allowing for the possibility of interactions between pitch and
timing).

Musical expectancy as a mechanism for the induction of
emotion in listeners has been studied in an ecological setting:
Egermann et al. (2013) asked 50 participants to attend a live
concert during which six flute pieces were played. These pieces
spanned various musical styles and levels of pitch expectancy.
Three kinds of measurement were made: subjective responses
(i.e., the arousal levels or the ratings of musical expectancy that
changed continuously throughout the piece), expressive re-
sponses (using video and facial electromyography), and periph-
eral arousal measured by skin conductance, heart rate, respira-
tion, and blood volume pulse. IDyOM (Pearce, 2005) was used
to analyze pitch patterns of the music and predict where listen-
ers would experience low expectancy. Results suggested that
expectancy had a modest influence on emotional responses, in
which high IC segments led to higher arousal and lower valence
ratings, as well as increases in skin conductance and decreases
in heart rate, as compared with low IC segments, whereas no
event-related changes were found in respiration rate or facial
electromyography measures; however, this study was con-
ducted in an ecologically valid, thus noncontrolled environment
where participants could have focused on something other than
the music. For example, visual aspects of performance are
highly important to emotional engagement in live music set-
tings (Thompson, Graham, & Russo, 2005; Vines, Krumhansl,
Wanderley, & Levitin, 2006). Furthermore, other potential
emotion-inducing mechanisms, as proposed by Juslin and Väst-
fjäll (2008), were not explicitly controlled for, and effects of
temporal expectancy on emotional responses were not consid-
ered.

The current study is designed to investigate pitch and tem-
poral musical expectancy in a restricted environment that con-
trolled for many other potential emotional mechanisms (Juslin
& Västfjäll, 2008). Brain stem reflexes are controlled for by
maintaining equal tempo, intensity, and timbre across all mu-
sical excerpts. Evaluative conditioning and episodic memory
are controlled for by presenting unfamiliar musical excerpts, so
that expectation ratings and emotional reactions are not con-
founded by previous experience with the music. Potential ef-
fects of emotional contagion are analyzed in the analysis by
including pitch and IOI as predictors of subjective ratings and
pitch and IOI predictability (i.e., higher mean pitch and shorter
IOI could result in higher arousal and valence ratings regardless
of expectancy). Irrelevant visual imagery cannot be categori-

cally avoided but the rating tasks are expected to require enough
cognitive load to render it unlikely. Furthermore, to the extent
that visual imagery is variable between individuals, averaging
across participants should remove its influence. The absence of
a strong, driving beat and the relatively short duration of the
musical excerpts makes deep, emotion-inducing rhythmic en-
trainment highly unlikely. Finally, all participants are listening
to these musical excerpts in the context of an experiment, with
any other goal or motive being highly unlikely, thus minimizing
the relevance of the cognitive appraisal mechanism.

This research aims to address three questions. First, does the
predictability of pitch and timing (as simulated by IDyOM)
have an effect on listeners’ expectations and emotional state,
and can
we causally influence this effect with explicit manipulation of
the stimuli? We hypothesize that the degree of musical expec-
tancy for pitch (based on pitch interval) and temporal (based on
IOI) structures, as predicted objectively by the information
content provided by IDyOM, will have an effect on emotion as
measured by the arousal-valence model (Russell, 2003). Ac-
cording to Russell (2003), unexpected events will invoke neg-
ative valence and cause an increase in arousal, and expected
events will invoke positive valence and decreased arousal. We
do not expect appraisal to affect this initial reaction, as we are
collecting ratings in real time. We also hypothesize that when
both pitch and timing are either expected or unexpected, the
emotional response will be more extreme than in conditions of
mixed expectedness. Furthermore, direct manipulation of pitch
expectancy while keeping temporal expectancy and all other
musical features constant is expected to produce the predicted
changes in ratings (i.e., transforming unexpected pitches to
expected pitches will decrease unexpectedness and arousal, and
increase valence ratings).

Second, how does pitch and timing predictability combine to
influence expectation and emotion? Though the combination of
pitch and timing in music perception has been a research
interest for decades (Boltz, 1999; Duane, 2013; Jones, Boltz, &
Kidd, 1982; Palmer & Krumhansl, 1987a; Prince et al., 2009),
no clear conclusions can be drawn, as findings regarding this
question have low agreement and seem highly dependent on the
choice of stimuli, participants, and paradigm. For example,
although Prince et al. (2009) suggest that pitch is more salient,
results from Duane’s (2013) corpus analysis suggest that timing
is the most reliable predictor of streaming. Although the present
study uses monophonic melodies, it could be argued that if
salience is linked to complexity (Prince et al., 2009), for mel-
odies in which pitch or timing are highly predictable (low
complexity), the predictable feature will be less salient than its
unpredictable counterpart because it requires less “processing
power” and therefore less attention. For melodies in which pitch
and timing are relatively equally predictable or unpredictable,
their relative importance currently remains unknown.

Finally, is there a difference in the effect of pitch and timing
predictability on expectation and emotional responses between
musicians and nonmusicians? The effect of musical training will
be evaluated by comparing the responses of musicians and non-
musicians, with the expectation that musicians will have higher
expectation ratings and more extreme emotional responses to pitch
and timing violations due to training (Strait, Kraus, Skoe, &
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Ashley, 2009), in which Western musical patterns are more famil-
iar, resulting in violations of these patterns eliciting stronger re-
sponses.

Method

Participants

Forty participants (22 female and 18 male; age range 14–54
years) were recruited from universities, secondary school, and
colleges for this experiment: 20 were musicians (Mean 3.6 years of
musical training; range 1–12 years) and 20 were nonmusicians (0
years of musical training). Ethical approval was obtained from the
Queen Mary Research Ethics Committee, QMREC1078.

Stimuli

The stimuli consisted of 32 pieces of music in Musical Instrument
Digital Interface (MIDI) format rendered to audio using a piano
timbre: 16 original melodies and 16 artificially manipulated melodies.
Original melodies were divided into the following four categories of
predictability: predictable pitch and predictable onset (PP), predict-
able pitch and unpredictable onset (PU), unpredictable pitch and
predictable onset (UP) and unpredictable pitch and unpredictable
onset (UU). The artificial melodies were created by changing the pitch
predictability of each melody, so that PP became aUP, UU became
aPU, PU became aUU, and UP became aPP, where a denotes artifi-
cial. All melodies were presented at the same intensity, which was
held constant for the duration of all melodies.

Original melodies. The 16 original melodies were selected
from a group of nine data sets, totaling 1,834 melodies (Table 1;

Figure 1), all from Western musical cultures to avoid potential cultural
influences on expectancy ratings (Hannon & Trehub, 2005b; Palmer
& Krumhansl, 1990). All nine data sets were analyzed by IDyOM for
target viewpoints pitch and onset with source viewpoints pitch inter-
val and scale degree (linked), and IOI, respectively. Both short-term
and long-term models were engaged; the long-term l model was
trained on three data sets of Western music, described in Table 2.
There was no resampling within the test data sets.

The 1,834 melodies were divided into four categories based on
high or low pitch or onset IC. Melodies were considered predict-
able if they had a lower IC than the mean IC of all samples and
unpredictable if the IC was greater than the mean IC of all samples.
Four melodies from each category were selected as the most or
least predictable by finding maximum and minimum IC values as
appropriate for the category; these are the original 16 melodies.
Melodies in the PP, PU, UP, and UU categories had mean pitch IC
values ranging from 1.37 to 1.85, 2.22 to 2.43, 2.83 to 5.24, and
2.61 to 2.78, respectively; mean onset IC values ranging from .80
to .92, 2.49 to 4.34, 1.13 to 1.32 and 4.20 to 4.39, respectively;
mean MIDI pitch values (i.e., 69 � A � 440 Hz) ranging from 66.85
to 70.17, 66.05 to 70.23, 68.67 to 72.76, and 64.40 to 71.63, respec-
tively; and mean IOI values ranging from 12.71 to 21.28, 21.41 to

Table 1
Details of the Data Sets Used in Stimulus Selection

Data set Description
Number of
melodies

Mean events/
composition

2 Chorale soprano melodies
harmonized by J.S. Bach

100 46.93

3 Alsatian folk songs from
the Essen Folk Song
Collection

91 49.40

4 Yugoslavian folk songs
from the Essen Folk
Song Collection

119 22.61

5 Swiss folk songs from the
Essen Folk Song
Collection

93 49.31

6 Austrian folk songs from
the Essen Folk Song
Collection

104 51.01

10 German folk songs from
the Essen Folk Song
Collection: ballad

687 40.24

15 German folk songs from
the Essen Folk Song
Collection: kinder

213 39.40

18 British folk song fragments
used in the experiments
of Schellenberg (1996)

8 18.25

23 Irish folk songs encoded
by Daiman Sagrillo

62 78.50

Figure 1. Excerpts from one melody from each of the four different types
of experimental stimuli. Patterns or notes of interest are marked with a
bracket or an arrow, respectively. Melody PP is predictable in both pitch
and time; an exact repetition in both dimensions can be seen, marked by a
square bracket. Melody PU is predictable in pitch but unpredictable in
time; long notes in general and the rhythmic switch in the last measure
specifically contribute to low predictability. Melody UP is unpredictable in
pitch but predictable in time, with large leaps (marked by arrow) and
regular note durations. Melody UU is unpredictable in both pitch and time;
a leap is surprising after such repetitive unison, and the bracketed rhythmic
excerpt is a hemiola (here 3 notes in the time of 2).

Table 2
Details of the Training Set Used to Train IDyOM

Data set Description
Number of
melodies

Mean events/
composition

0 Songs and ballads from
Nova Scotia, Canada

152 56.26

1 Chorale melodies
harmonized by J.S.
Bach

185 49.88

7 German folk songs 566 58.46
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69.81, 13.84 to 21.69, and 21.53 to 64.00, respectively, where a
quarter note equals 24, an eighth note, 12, a half note, 48, and so forth
Notice that categories with unpredictable onset have higher average
IOI values; this potential influence is discussed in the text below
(Table A1 in Appendix A).

Artificial melodies. The 16 artificial melodies were created
as follows. For each original melody, the notes with the highest
(for PP and PU) or lowest (for UP and UU) IC were selected for
replacement. The notes were replaced with another note from
the same melody that shares the same preceding note as the
original note in that melody. If several instances of such a note
pair existed, the associated IC values were averaged. If several
such replacement notes existed, the one with the lowest (for UP
and UU) or highest (for PP and PU) IC was selected to replace
the original note. Where no such replacement existed, the key of
the melody was estimated using the Krumhansl–Schmuckler
key-finding algorithm (Krumhansl, 2001) using key profiles
updated by Temperley (1999), and the replacement was selected
as the scale degree with the highest (for UP and UU) or lowest
(for PP and PU) tonal stability. All notes labeled as having
extremely high or low IC were replaced by a pitch with a less
extreme IC. An example of a melody from each category can be
seen in Figure 1.

Melodies in the aPP, aPU, aUP, and aUU categories had mean
pitch IC values ranging from 3.49 to 5.50, 4.20 to 4.56, 4.13 to
6.59, and 2.79 to 3.80, respectively, and mean MIDI pitch values
ranging from 64.88 to 69.80, 67.05 to 73.18, 64.05 to 67.76, and
66.78 to 72.89, respectively. Mean onset IC and mean raw IOI
values were unchanged from the corresponding original stimulus-
predictability category (e.g., aPP has the same mean IOI IC and
IOI values as UP). Figure 2 illustrates the mean information
content of all 32 melodies.

Procedure

Participants were semirandomly allocated to one of four
(between-subjects) conditions: They were either a musician or
a nonmusician and, within these groups, randomly assigned to
rate either expectancy or emotion (arousal and valence). The
experiment was run on a software constructed in-house, and on
a Samsung Galaxy Ace S5830 (3.5 in. in diameter; running
Android 2.3.6). Participants listened through standard Apple
headphones and were tested individually in a closed room. The
information sheet was presented and informed consent gath-
ered; detailed step-by-step instructions were then presented to
the participants. Regardless of condition, there was a mandatory
practice session: Participants heard two melodies and answered
the questions appropriate to the condition they were assigned to
(either expectancy rating or arousal and valence rating). Partic-
ipants could also adjust the volume to a comfortable setting
during the practice session. Once the practice session was
completed, the experimental app was loaded. Participants en-
tered a unique identity (ID) number provided by the experi-
menter and responded to a short musical background question-
naire. Participants then heard the 32 musical excerpts (mean
duration was 18.34 s) presented in a random order without
pause or repeat and performed the appropriate ratings by
continuously moving a finger on the screen. Those in the
expectancy rating condition reported expectancy on a 7-point

Figure 2. Mean (a) pitch information content and (b) onset IC of each melody
plotted by stimulus predictability and modification, in which original melodies are
symbolized by empty symbols and artificial melodies by full symbols.
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integer Likert scale, where 1 was very expected and 7 was very
unexpected. Those in the arousal/valence condition rated in-
duced arousal (vertical) and valence (horizontal) on a two-
dimensional arousal/valence illustration (Russell, 2003). Re-
sponses, in integers, were collected at a 5 Hz sample rate (200
ms; Khalfa, Isabelle, Jean-Pierre, & Manon, 2002). The rating
systems used were Expectancy: 1–7 (expected–unexpected);
Arousal: 0–230 (calm–stimulating); Valence: 0–230 (unpleasant–
pleasant).

Data Collection

Due to the large number of variables included in this analysis, we
describe them each here for clarity. First, we describe the dependent
variables: expectancy, arousal, and valence ratings. Ratings, on scales
described previously, were collected at a rate of 5 Hz, or 200 ms,
making it the variable with the smallest temporal resolution. Thus, all
other variables were interpolated to match this resolution.

We then begin describing the independent variables with those
that we are not explicitly manipulating: time, pitch, IOI, and
musicianship. Time is measured in steps of 200 ms, the sampling
rate of the data acquisition software. For each point in time, for
each melody, and each participant, a data point, a value for pitch,
IOI, musical training, stimulus predictability, stimulus modifica-
tion, pitch IC and onset IC is assigned, along with Melody ID and
Participant ID. Because pitch (interpreted here in MIDI numbers)
does not change every 200 ms and IOI (in ms) is longer than 200
ms in these folk songs (or in Western music in general), their
values were interpolated to match the participant ratings’ sampling
rate of 5 Hz, so that each point in time has a pitch and IOI value,
and values were simply duplicated. Finally, the musical training
variable had a value of 0 or 1, depending on whether the partici-
pant had no musical training or any musical training, respectively.

Next, we describe manipulated variables: stimulus predictabil-
ity, stimulus modification, pitch IC, and onset IC. For each data
point, the variable stimulus predictability was given a value of 1 if
it belonged to the category PP, 2 if it belonged to the category PU,
3 for UP, and 4 for UU, regardless of whether these are original or
artificial melodies. Similarly, the variable stimulus modification
was given a value of 0 if the melody was original or 1 if the
melody was artificial. Finally, pitch IC and onset IC, as calculated
by IDyOM, were interpolated in the same way as pitch and IOI to
match the participant ratings’ 5 Hz sampling rate. These are the
only variables whose values are not integers.

Though the duplication of data points due to interpolation is
taken into account by modeling discontinuous time in the case of
melody-level analysis and autoregression in the case of cross-
sectional time series analysis (CSTSA), a data set without inter-
polation was also created to corroborate any findings using inter-
polated data, in which ratings were averaged according to the rate
of change of each melody’s events. In other words, each melody
event was assigned one rating value, with 1 associated MIDI pitch,
IOI, pitch IC, and onset IC.

Statistical Analysis

For each type of rating (expectancy, arousal, and valence) two
kinds of analysis are performed: first, a melody-level analysis, in
which the time series for each melody are averaged across partic-

ipants separately for musicians and nonmusicians, leading to ap-
proximately 9,600 data points, and temporal position is a discon-
tinuous factor and, second, a cross-sectional time-series analysis of
the continuous ratings given by each participant throughout each
melody, leading to approximately 96,000 data points. In the
melody-level analysis, for each melody, a mean expectancy rating
was calculated at every time point across the musician and non-
musician groups (10 responses per group). Linear multiple regres-
sion modeling was used to evaluate the effect of musical training
(musician or nonmusician), stimulus modification (original or ar-
tificial), and stimulus predictability (predictable/unpredictable
pitch/onset) by in turn comparing a model containing each single
predictor with a model containing only an intercept using a log
likelihood test. Two additional predictors, pitch predictability and
onset predictability, were derived from stimulus predictability to
examine the interaction between these two subcomponents: Mel-
odies were coded as having either predictable or unpredictable
pitch or onset. Although musical training, stimulus modification,
pitch predictability, and onset predictability were simple binary
factors, stimulus predictability contained four levels labeled PP,
PU, UP, and UU. Apart from that, between pitch predictability and
onset predictability, interactions were not considered due to the
difficulty of interpretation in such a complex model. Following
these log likelihood comparisons, two global linear multiple re-
gression models, containing all the above predictors of interest
(one containing stimulus predictability and the other containing
pitch predictability and onset predictability) plus time, pitch, and
IOI to parse out any potential effects of time and to analyze
potential effects of musical contagion, were evaluated to confirm
results.

For the analysis of continuous ratings throughout each melody,
we used CSTSA, similar to Dean, Bailes, and Dunsmuir (2014a),
to evaluate the predictive impacts of pitch IC, onset IC, stimulus
predictability (predictable/unpredictable), stimulus modification
(none/artificial), musical training, and individual differences mod-
eled by random effects on participants’ ratings of expectedness,
arousal, and valence. CSTSA takes account of the autoregressive
characteristic of music and the continuous responses of the partic-
ipants. Pitch IC and onset IC predictors were both scaled to values
between 0 and 1, to allow for direct comparison of model coeffi-
cients in analysis. A predictor of combined pitch and onset IC was
also tested, replacing the individual pitch IC and onset IC predic-
tors. In practice, CSTSA is a mixed-effects multiple linear regres-
sion model, here fitted with maximum design-driven random ef-
fects (Barr, Levy, Scheepers, & Tily, 2013) and fixed effects to
account for autocorrelation (lags of endogenous variables, i.e.,
ratings, denoted by P), and exogenous influence (i.e., information
content and its lags, denoted by L). Here, each lag window
represents 200 ms, so that a predictor named L1ratings denotes the
participants’ ratings shifted 200 ms later, a predictor named
L2pitchIC denotes Pitch IC shifted by 400 ms, and so on. Only
optimal models are presented below, selected based on Bayesian
Information Criteria (BIC), confidence intervals on fixed-effect
predictors, log likelihood ratio tests between pairs of models,
correlation tests between models and the data, and the proportion
of data squares fit. All analyses were performed using RStudio
1.0.136, running R 3.1.2.
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Results

Melody-level Analysis

In this section, we describe analyses of the mean ratings melody
by melody; the experiment manipulated the pitch expectancy of
the original melodies, to provide a causal test of its influence. Time
is treated as a discontinuous variable. Figure 3 shows mean ratings
for each melody averaged over time, and important comparisons
are highlighted in Figure 4.

Expectancy ratings. There were significant effects of musical
training, in which musicians rated melody unexpectedness higher
(musicians M � 4.40; nonmusicians M � 4.16; F(1, 8343) �
73.12, p � .0001); stimulus modification, in which modified
melodies, regardless of direction of manipulation (predictable to
unpredictable or vice versa), were rated as more unexpected (orig-
inal melodies M � 3.92; modified melodies M � 4.65; F(1,
8342) � 569.75, p � .0001); and stimulus predictability, in which
more predictable melodies were rated with lower unexpectedness
than unpredictable melodies (PP melodies M � 3.48; PU melodies
M � 4.71; UP melodies M � 3.92; UU melodies M � 4.66; F(3,
8340) � 251.58, p � .0001) on mean expectancy ratings. Pitch
predictability and onset predictability were both significant
predictors, in which mean ratings for melodies with predictable
pitch, unpredictable pitch, predictable onset, and unpredictable
onset were 4.09, 4.29, 3.70, and 4.68, respectively (F(1,
8342) � 83.05, p � .0001 and F(1, 8342) � 644.31, p �
.0001), and the interaction between the two predictors was also
significant; there is a more pronounced effect of onset predict-
ability on ratings, t(8,340) � �7.36, p � .0001. We also
investigated the effect of stimulus predictability on ratings for
original and modified melodies separately; the means for PP, PU,
UP, and UU melodies were 1.88, 4.47, 3.58, and 5.19, respec-
tively, F(3, 4223) � 1,866.2, p � .0001, and for aPP, aPU, aUP,
and aUU melodies were 4.27, 4.16, 5.29, and 4.96, respectively,
F(3, 4112) � 264.36, p � .0001. The two global models confirmed
nearly all the aforementioned results, producing two additional
findings: Pitch, t(8,336) � �3.76, p � .0001, and IOI,
t(8,336) � �3.72, p � .0001, were significant predictors in both
global models, and pitch predictability became insignificant in its
model, t(2) � 0.24, p � .80. In summary, all predictors of interest
were significant, including the interaction between pitch predict-
ability and onset predictability. These results are largely replicated
using noninterpolated data, in which only pitch is no longer a
significant predictor, t(2,218) � 1.05, p � .29.

Arousal ratings. There were significant effects of musical
training in which musicians rate melodies as more arousing overall
as compared with nonmusicians (musicians M � 118.16; nonmu-
sicians M � 112.90; F(1, 8017) � 25.30, p � .0001), and stimulus
predictability in which more predictable melodies were rated as
more arousing (PP melodies M � 151.73; PU melodies M �
109.45; UP melodies M � 128.86; UU melodies M � 95.95; F(3,
8015) � 667.31, p � .0001). There was no effect of stimulus
modification in either direction of manipulation (original melodies
M � 115.83; modified melodies M � 115.27; F(1, 8017) � .62,
p � .42). Pitch predictability and onset predictability were both
significant predictors in which mean ratings for melodies with
predictable pitch, unpredictable pitch, predictable onset, and un-
predictable onset were 125.29, 112.40, 135.29, and 102.7, respec-

tively, F(1, 8017) � 208.38, p � .0001 and F(1, 8017) � 1,804.3,
p � .0001, and the interaction between the two predictors was not
significant here, though similarly to expectancy ratings, onset
predictability still has a larger effect on mean ratings than pitch
predictability, t(8,015) � 1.08, p � .28. Stimulus predictability
was also a significant predictor when original and artificial melo-
dies’ ratings were investigated separately, with ratings for PP, PU,
UP, and UU melodies averaging 138.62, 111.14, 121.07, and
100.79, respectively, F(3, 3956) � 210.16, p � .0001, and aPP,
aPU, aUP, and aUU melodies averaging 137.10, 91.56 144.96, and
107.83, respectively, F(3, 4054) � 556.76, p � .0001. The two
global models confirm all the above results and add pitch,
t(8,011) � �17.72, p � .0001 and IOI, t(8,011) � 18.58, p �
.0001 as significant predictors. In summary, stimulus modification
is the only predictor of interest that did not have a significant effect
on arousal ratings. These results are largely replicated using non-
interpolated data, in which only pitch is no longer a significant
predictor, t(2,186) � �0.99, p � .32.

Valence ratings. There were significant effects of musical
training in which musicians overall rated melodies as having lower
valence (musicians M � 81.26; nonmusicians M � 84.08; F[1,
8017] � 5.38, p � .02); stimulus modification, regardless of
direction of manipulation, in which original melodies had more
positive valence than artificial melodies (original melodies M �
91.20; artificial melodies M � 74.33; F[1, 8017] � 206.84, p �
.0001); and stimulus predictability in which more predictable
melodies are rated more positively than unpredictable melodies
(PP melodies M � 109.87; PU melodies M � 74.00; UP melodies
M � 87.00; UU melodies M � 70.02; F(3, 8015) � 224.81, p �
.0001). Pitch predictability and onset predictability were both
significant predictors in which mean ratings for melodies with
predictable pitch, unpredictable pitch, predictable onset, and un-
predictable onset were 91.93, 78.51, 98.43, and 72.01, respec-
tively, F(1, 8017) � 122.51, p � .0001 and F(1, 8017) � 559.04,
p � .0001, and the interaction between the two predictors was
significant, in which onset predictability again has a larger effect
on mean ratings than pitch predictability, t(8,015) � 8.40, p �
.0001. Stimulus predictability is also a significant predictor when
investigating original and artificial melodies separately, in which
PP, PU, UP, and UU melodies have mean arousal ratings of
171.90, 77.96, 94.59, and 44.46, respectively, F(3, 3956), 1,582.6,
p � .0001, and aPP, aPU, aUP, and aUU melodies have mean
ratings of 78.98, 93.21, 45.66, and 70.19, respectively, F(3,
4054) � 276.84, p � .0001. The two global models include IOI,
t(8,011) � 22.07, p � .0001, but not pitch, t(8,011) � �1.48, p �
.13, as significant predictors (in both models) and remove pitch
predictability, t(8,011) � 0.90, p � .36, from the set of significant
predictors found above. In summary, all predictors of interest are
significant, including the interaction between pitch predictability
and onset predictability. These results are largely replicated using
noninterpolated data, in which only pitch and musical training are
no longer significant predictors, t(2,186) � �0.70, p � .48, and
t(2,186) � 0.69, p � .48, respectively.

This melody-level analysis has demonstrated that musical train-
ing and stimulus predictability predict expectancy, arousal, and
valence ratings, with only one exception, in which musical training
does not predict valence ratings when these are averaged for each
event. Furthermore, there is a significant interaction between pitch
predictability and onset predictability for expectancy and valence
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Figure 3. Mean expectancy (a and b), arousal (c and d), and valence (e and f) ratings for each melody for
musicians (a, c, e) and nonmusicians (b, d, f). Hollow shapes illustrate original melodies, whereas filled shapes
illustrate artificial melodies.
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ratings, and a similar pattern for arousal ratings, in which onset
predictability has a larger effect on ratings than pitch predictabil-
ity. Stimulus modification is a significant predictor for expectancy
and valence ratings only. In the next section, the results of a
CSTSA will be presented.

Cross-sectional Time Series Analysis

Here we present the analyses of the continuous time-series data
resulting from participants’ ongoing responses throughout listen-
ing to the melodies.

Expectancy, arousal, and valence ratings were modeled sepa-
rately using mixed-effects autoregressive models with random

intercepts on Participant ID and Melody ID, as well as random
slopes on the fixed effect predictor with the largest coefficient
before slopes were added. Fixed-effect predictors were time, mu-
sical training, stimulus predictability, stimulus modification, au-
toregressive lags of up to 15 (in which each lag represents 200 ms,
for a total of 3 s), and exogenous lags of pitch and onset IC of up
to 15. A combined pitch and onset information predictor was also
tested to evaluate whether a combined measure superseded the
separate pitch and onset IC predictors. Maximum lags for consid-
eration were selected based on a previously reported rate of change
of emotional responses (Juslin & Västfjäll, 2008) and precedent in
this type of analysis (Dean et al., 2014a). Pitch and IOI were

Figure 4. Box plots illustrating important mean comparisons between musicians and nonmusicians (a, e, i),
original and modified melodies (b, f, j), stimulus predictability categories for original (c, g, k), and modified (d,
h, l) melodies for expectation (a–d), arousal (e–h), and valence (i–l) ratings.
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subsequently added as fixed-effect predictors to investigate the
potential effects of musical structure on ratings (which might be in
part through an emotional contagion mechanism). See Figures 5
and 6 for an illustration of the variance fitted by random effects
and the fit of the models for a selection of melodies and partici-
pants.

Expectancy ratings. The best CSTSA model for expectancy
ratings is summarized in Table B1 in Appendix B. In this model,

although autoregression and random effects were duly considered,
an effect of musicianship was still clearly observed in addition to
those of pitch IC and onset IC and the optimal selection of their
lags. Thus, the model included random intercepts and random
slopes for L1pitchIC on Melody ID and Participant ID, as well as
fixed effects of musicianship, L � 0–1, 7–8 of pitch IC; L � 0–2,
10, 12 of onset IC; and p � 1–2, 4–6, 15 of autoregression. All
predictors were significant, as Wald 95% confidence intervals did

Figure 5. Intercept (left) and slope (right) values of random effects on Participant (a, c, e) and Melody identity
(ID; b, d, f) for expectancy (a, b), arousal (c, d), and valence (e, f) models. These show how each individual
participant and melody was modeled and illustrate the variance among participants and melodies. See the online
article for the color version of this figure.
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Figure 6. Expectancy (a–d), arousal (e–h), and valence (i–l) ratings for single randomly selected participants
(six musicians [a, b, e, f, i, j; Participants 14, 35, 34, 18, 27, and 7] and six nonmusicians [c, d, g, h, k, l;
Participants 1, 10, 8, 33, 5, and 37]) are plotted for Melodies 1 (a, c, e, g, i, k) and 13 (b, d, f, h, j, l), examples
of PP and UU categories, respectively. Ratings predicted by the model (teal) for those melodies for each of those
participants only (single extracts) are plotted alongside their actual ratings (pink). Residuals were too small to
illustrate on the same plot. These plots illustrate the high explanatory power of our model due to its random
effects structure fitted specifically to this data set. See the online article for the color version of this figure.
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not include zero. The addition of stimulus predictability as a
fixed effect did not improve the model, �2(3) � 1.80, p � .61,
whereas musicianship and stimulus modification did, �2(2) �
13.36, p � .001 and �2(1) � 3.91, p � .04, respectively. The
further addition of pitch and IOI significantly improved the
model, �2(2) � 409.33, p � .0001, and removed stimulus
modification as a significant predictor. Combined pitch and
onset information content with lags of pitch and onset from the
best model outlined in the abovementioned text was signifi-
cantly worse, �2(6) � 972.6, p � .0001.

A correlation test between the data and the model is highly
significant, with correlation .93, t(82,486) � 783.09, p � .0001. A
proportion of data squares fit test is also high, with the model
explaining 98% of the data. Although this particular model did not
converge, a model without random slopes removed did converge
where all fixed effects were significant, model fit was equally
good, correlation test: .93, t(82,486) � 780.53, p � .0001; pro-
portion of data squares fit: 98%, and the inclusion of slopes
improved the model significantly; therefore random slopes were
reinserted into the best model as per the experimental design (Barr
et al., 2013). The final model thus includes design-driven random
effects, musicianship, stimulus modification, pitch, IOI, optimal
autoregressive lags of expectancy ratings, and optimal lags of pitch
IC and onset IC. These results are replicated using noninterpolated
data, with only the selection of lags differing.

Arousal ratings. The best CSTSA model for arousal ratings is
summarized in Table B2 in Appendix B. This model revealed
stimulus predictability as a significant predictor of arousal ratings
in addition to pitch IC and onset IC, and a selection of their lags
when autoregression and random effects were considered. The
model included random intercepts and random slopes for
L1onsetIC on Melody ID and Participant ID, as well as fixed
effects L � 0–1, 6–8, 10–13, 15 of pitch IC; L � 0–4, 7, 10,
12–15 of onset IC; and p � 1, 3, 5–6, 15 of autoregression. All
predictors were significant, as Wald 95% confidence intervals did
not include zero. The addition of musicianship and stimulus mod-
ification as fixed effects did not improve the model, �2(2) � 0.60,
p � .74, and �2(2) � 1.72, p � .42, respectively, whereas stimulus
predictability did, �2(2) � 14.91, p � .0005. The further addition
of pitch and IOI significantly improved the model, �2(2) � 178.89,
p � .0001, in which both are significant predictors of arousal
ratings. Combined pitch and onset information content with lags of
pitch and onset from the best model outlined in the abovemen-
tioned text was significantly worse, �2(13) � 4,482.2, p � .0001.

A correlation test between the data and the model is highly
significant, with correlation .96, t(80,183) � 978.48, p � .0001. A
proportion of data squares fit test is also high, with our model
explaining 98% of the data. Although this particular model did not
converge, a model without random slopes removed did converge
where all fixed effects were significant, model fit was equally
good, correlation test: .95, t(80,183) � 959.73, p � .0001; pro-
portion of data squares fit: 98%, and the inclusion of slopes
improved the model significantly, �2(5) � 335.3, p � .0001;
therefore random slopes were reinserted into the best model as per
the experimental design (Barr et al., 2013). The final model thus
includes design-driven random effects, stimulus predictability,
pitch, IOI, optimal autoregressive lags of expectancy ratings, and
optimal lags of pitch IC and onset IC. These results are replicated

using noninterpolated data, with only the selection of lags differ-
ing.

Valence ratings. The best CSTSA model for valence ratings
is summarized in Table B3 in Appendix B. This model revealed
significant effects of only pitch IC and onset IC, and a selection of
their lags when autoregression and random effects were consid-
ered. The model included random intercepts and random slopes for
L1onsetIC on Melody ID and Participant ID, as well as fixed
effects L � 0–1, 5, 8–9, 11–13, 15 of pitch IC; L � 0–1, 3–4, 10,
13 of onset IC; and p � 0, 3–7, 9, 15 of autoregression. All
predictors were significant, as Wald 95% confidence intervals did
not include zero. The addition of musicianship, stimulus predict-
ability, and modification as fixed effects did not improve the
model, �2(1) � 0.29, p � .58, �2(3) � 4.77, p � .18, and �2(1) �
3.46, p � .06, respectively. The further addition of pitch and IOI
significantly improved the model, �2(1) � 600.99, p � .0001, in
which both are significant predictors of arousal ratings. Combined
pitch and onset information content with lags of pitch and onset
from the best model outlined in the abovementioned text was
significantly worse, �2(10) � 194.72, p � .0001.

A correlation test between the data and the model is highly
significant, with correlation .94, t(80,183) � 827.83, p � .0001. A
proportion of data squares fit test is also high, with our model
explaining 98% of the data. Although this particular model did not
converge, a model without random slopes removed did converge
where all fixed effects were significant, model fit was equally
good, correlation test: .94, t(80,183) � 959.73, p � .0001; pro-
portion of data squares fit: 95%, and the inclusion of slopes
improved the model significantly, �2(4) � 805.25, p � .0001;
therefore random slopes were reinserted into the best model as per
the experimental design (Barr et al., 2013). The final model thus
includes design-driven random effects, pitch, IOI, optimal autore-
gressive lags of expectancy ratings, and optimal lags of pitch IC
and onset IC. These results are replicated using noninterpolated
data, with only the selection of lags differing.

Discussion

The results provide answers to all three of our research ques-
tions. First, we find evidence that predictability of both pitch and
temporal musical structure have an effect on listeners’ expectan-
cies and emotional reactions and that these can be manipulated.
Second, we find that contrary to a prediction based on complexity,
temporal expectancy influences perception more strongly than
pitch expectancy. Finally, we find that individual differences gen-
erally supersede effects of musical training (Dean et al., 2014a)
and intermelody differences were more substantial than differ-
ences between melody predictability groups (PP, UP, PU, and UU)
or manipulation type, in which differences between predictability
groups could nevertheless be detected in the discontinuous,
melody-level analysis.

Using IDyOM (Pearce, 2005) to calculate average pitch and
onset information content, we classified folk songs into four cat-
egories based on overall expectedness, in which average pitch
expectancy and average onset expectancy could be high or low.
We also manipulated pitch expectancy to transform expected
pitches into unexpected ones and vice versa. The four melody
categories resulted in different subjective ratings of expectancy,
arousal, and valence; high pitch and onset information content
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(UU) resulted in high unexpectedness ratings, higher arousal, and
lower valence; low pitch and onset information content (PP) re-
sulted in low unexpectedness ratings, lower arousal, and higher
valence; and mixed high and low pitch and onset information
content (PU and UP) lay somewhere in between, in which only the
predictable pitch and onset (PP) and unpredictable pitch and pre-
dictable onset (UP) categories were not different from each other
in arousal ratings. This supports previous evidence that statistical
learning and information content may influence listener expectan-
cies (Pearce, Ruiz, Kapasi, Wiggins, & Bhattacharya, 2010; Pearce
& Wiggins, 2006) and arousal and valence ratings of music
(Egermann et al., 2013). Additionally, we find a significant inter-
action between pitch predictability and onset predictability for
expectancy and valence ratings, with a similar nonsignificant pat-
tern for arousal ratings, in which onset predictability has a more
pronounced effect on ratings than pitch predictability. CSTSA
supports these results with excellent models, explaining between
93% and 96% of expectancy, arousal, and valence ratings, all
including pitch and onset IC, and lags of these of up to 3 s as
predictors. We additionally find that explicit causal manipulation
of pitch expectancy—the modification of selected pitches from
high to low or from low to high expectancy—results in a change
in ratings in the expected direction. For example, melodies trans-
formed from PP into the UP category (filled triangle in Figure 3)
are rated with higher unexpectedness ratings and lower valence
than their original PP counterparts (hollow square in Figure 3), yet
these are also different from the original UP category (hollow
triangle in Figure 3) melodies. This effect is more pronounced for
expectedness and valence ratings than for arousal ratings, which
can be explained by the intentionally inexpressive nature of the
stimuli. Therefore, the manipulation of pitch expectancy adds
causal evidence to previous research by demonstrating a direct link
between expectancy manipulation and expectancy, arousal, and
valence ratings.

CSTSA also allows us to assess the relative contribution of pitch
and onset IC to expectancy, arousal, and valence ratings in more
detail. We find that onset IC coefficients are almost always ap-
proximately 1.1 to 4.3 times larger than pitch IC coefficients for
exactly (i.e., L1pitchIC and L1onsetIC) or loosely (i.e., L5pitchIC
and L6onsetIC) matching lags. Furthermore, the sum of onset IC
lag coefficients is far greater than the sum of pitch IC lag coeffi-
cients for arousal and valence rating models, whereas the sum of
pitch IC lag coefficients is greater than onset IC lag coefficients for
the expectancy ratings model (though absolute values of individual
onset IC coefficients are greater than the pitch IC coefficients).
The discrepancy between these results and predictions based on
complexity will be discussed further in the section on relative
salience. We choose to consider the sum of lag coefficients rather
than the effect of each coefficient individually because we found
that the choice of the exact combination of lags had minimal effect
on the quality of the final model during optimization. This suggests
that neither does each lag coefficient carry much interpretable
information on its own nor is this particular combination of lags,
with a mix of positive and negative coefficient values, generaliz-
able. Incidentally, every model includes pitch IC and onset IC lags
of 0 and 1, with little overlap beyond this, suggesting that cogni-
tive processing time for pitch and onset expectancy diverges after
this. This variation in time scales could also explain why a com-

bined pitch and onset IC predictor did not replace the separate
pitch IC and onset IC predictors.

Though the analysis of mean ratings yielded a main effect of
musical training, with the exception of valence ratings when using
averaged rating values, the amount of variance explained by mu-
sical background was superseded by the amount of variance ex-
plained by random effects on Participant ID for arousal and va-
lence ratings, indicating that though groups can be formed,
individual strategies are more important to explain these ratings.
Though a large body of literature supports the existence of certain
differences between musicians and nonmusicians (Brattico,
Näätänen, & Tervaniemi, 2001; Carey et al., 2015; Fujioka,
Trainor, Ross, Kakigi, & Pantev, 2004; Granot & Donchin, 2002),
similar research by Dean et al. (2014a; Dean, Bailes, & Dunsmuir,
2014b) has also found that though there were differences between
groups, individual differences explain more variance than musical
background when rating the arousal and valence of electroacoustic
and piano music. However, musical background did hold an im-
portant predictive power for expectancy ratings, as musicians gave
slightly higher ratings overall, showing greater unexpectedness.
Though one might at first expect musicians to have lower expec-
tancy ratings overall due to expertise with musical patterns, the
alternative is possible when considering work by Hansen and
Pearce (2014), who present evidence that musicians make more
specific predictions (i.e., predictions that are lower in entropy or
uncertainty) than nonmusicians when listening to music. It is
possible that due to these more specific predictions, any violations
were perceived as more unexpected, as opposed to the less specific
predictions of a nonmusician, which would result in less surprise
when violated. That being said, it is worth noting that the overall
difference in ratings between musicians and nonmusicians is small,
with musicians’ ratings being only 0.2 points higher.

Similarly, we found that the differences between individual
melodies, as modeled by random intercepts and slopes on Melody
ID, outweigh categories of stimulus predictability and stimulus
modification in all but two cases: expectancy ratings, in which
stimulus modification was a significant predictor, and arousal
ratings, in which stimulus predictability was a significant predic-
tor, such that PP � UP � PU � UU in terms of arousal ratings.
The predictive power of stimulus modification in the context of
expectancy ratings can be explained by the overall higher pitch IC
in artificial melodies, as shown in Figure 3. This is likely due to the
fact that the modifications were made by an algorithm and are
therefore not as smooth as human-composed changes might have
been. As the original melodies already had relatively low IC, it
would be difficult to keep mean IC as low or lower with the change
of even one note, as this change could also have an effect on the
IC of all subsequent notes in a given melody.

As for the importance of stimulus predictability in predicting
arousal ratings, which was in the opposite direction to what was
expected based on previous empirical (Egermann et al., 2013;
Steinbeis et al., 2006) and theoretical (Huron, 2006; Meyer, 1956)
research, this could be explained by the potentially confounding
effect of duration on ratings. Our analysis revealed that note
duration did indeed have a significant effect on ratings, in which
melodies with longer durations, corresponding to low onset expec-
tancy, were rated as more unexpected, less arousing, and less
pleasant. The pattern of mean arousal ratings by stimulus predict-
ability, with PP and UP (high onset expectancy) rated as more
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arousing than PU and UU (low onset expectancy), matches this
interpretation, which is further supported by previous research
establishing a positive correlation between tempo and arousal
(Carpentier & Potter, 2007; Husain, Thompson, & Schellenberg,
2002). The significant effect of pitch on ratings is more surprising;
a pattern of higher average pitch for PP and UP categories corre-
sponds to lower unexpectedness ratings, higher arousal ratings,
and higher valence ratings for these categories as compared with
PU and UU categories. However, coefficients for pitch and IOI are
smaller than almost all other predictors in expectancy, arousal, and
valence models, suggesting that their overall influence is minimal
compared with pitch and onset IC on subjective expectancy and
emotion responses.

Also, similar to Dean et al. (2014a), the use of CSTSA allows us
to evaluate evidence for the presence of a common perceptual
mechanism across all pieces of music heard. To do this, predictors
encoding melodies by stimulus predictability and modification
were added to the basic models, in which a null effect of these
additional predictors would indicate that the type of melody does
not matter and the listeners’ ratings depend only on pitch and onset
IC in all melodies. In the case of valence ratings, neither stimulus
predictability nor stimulus modification were found to provide any
additional predictive power to the model, whereas stimulus mod-
ification was a helpful predictor for expectancy ratings and stim-
ulus predictability for arousal ratings. However, explanations were
proposed for these results, and our data provide some support for
a common perceptual mechanism across all melodies.

Relative Salience

Having considered the relative importance of pitch and onset IC
in the context of our models of participant expectancy, arousal, and
valence ratings, here we consider how this relates to relative
perceptual salience. The question of relative perceptual salience
between musical parameters such as pitch, timing, structure, and
harmony in music cognition is important but challenging and lacks
a unified explanation (Dibben, 1999; Esber & Haselgrove, 2011;
Prince et al., 2009; Uhlig, Fairhurst, & Keller, 2013). Generally,
pitch or melody is considered the most salient aspect of a piece of
music. Prince et al. (2009), for example, argued that there are
many more possible pitches than there are rhythmic durations or
chords; therefore, pitch takes more attentional resources to process
and is more salient. On the other hand, in a corpus analysis of 18th-
and 19th-century string quartets, Duane (2013) found that onset
and offset synchrony were the most important predictors of
streaming perception of these string quartets, with pitch explaining
half the variance that onset and offset synchrony did and harmonic
overlap explaining an almost insignificant amount. It is also im-
portant to consider the musical genre when discussing salience, as
certain genres are more rhythmically driven (i.e., rap, electronic
dance music, and African drum music), whereas others are more
melodically driven (i.e., opera). Folk music is more ambivalent
and may vary song by song. Other genres may well produce
different results; something that would be worth exploring in the
future. Our stimuli best fit Prince et al.’s (2009) description of
musical salience, as these melodies contain more different pitches
than different rhythmic values. This would imply that the pitch
dimension is more complex and therefore more salient. However,
our results indicate that onset IC is more salient than pitch IC,

though here we evaluate the perception of emotion alongside the
subjective experience of expectancy as opposed to auditory
streaming (Duane, 2013; Prince et al., 2009). Interestingly, work in
cue salience in the context of associative learning explores the
effect of predictability and uncertainty on salience (Esber & Hasel-
grove, 2011), with one model predicting increased salience for
cues with high predictability (Mackintosh, 1975) and another
model predicting increased salience for cues with high uncertainty
(Pearce & Hall, 1980). Though contradictory, these models have
each accumulated significant evidence and have more recently led
to the development of both hybrid (Pearce & Mackintosh, 2010)
and new unified models of cue salience (Esber & Haselgrove,
2011). We considered the possibility that high and low uncertainty
and pitch and onset lag coefficients interacted, so that melodies
with high-pitch predictability (expectancy) and low-onset predict-
ability (PU) led to larger pitch IC coefficients than onset IC
coefficients, and vice versa. This effect was not found in the data
(see Appendix C), so we conclude that in this particular paradigm,
onset is the more salient cue overall.

A Mechanism for Emotional Induction

Returning to the identified lack of research into specific mech-
anisms for emotional induction by music (Juslin & Västfjäll, 2008;
Meyer, 1956), the present research makes a single but significant
step toward isolating individual mechanisms. The study explicitly
controlled for four of the eight proposed mechanisms, considered
two unlikely, and manipulated one while considering another as a
covariate. Brain stem reflexes, evaluative conditioning, episodic
memory, and visual imagery are controlled for by presenting novel
stimuli with equal tempo, intensity, and timbre alongside a rating
task. Rhythmic entrainment and cognitive appraisal are highly
unlikely due to the lack of driving rhythm and experimental
setting. Emotional contagion, information conveyed by musical
structure itself, was addressed by including pitch and duration
values into our CSTSA models of expectancy, arousal, and valence
ratings. Though these were significant predictors, they carried less
weight than the lags of IC predictors. We examined musical
expectancy by selecting stimuli with either high or low pitch and
onset expectancy and additionally explicitly manipulated pitch
expectancy, finding evidence for a consistent effect of pitch and
onset expectancy on ratings of arousal and valence by musicians
and nonmusicians. We additionally find that onset is more salient
than pitch and that musicians give higher unexpected ratings than
nonmusicians, but group differences are overridden by individual
differences on emotion ratings. Potential future work includes the
use of stimuli at less extreme ends of the expectancy spectrum to
validate these findings and produce more generalizable models,
manipulating onset IC in addition to pitch IC, allowing the eval-
uation of dependencies between the two (Palmer & Krumhansl,
1987b), exploring interactions of predictability and entropy on
salience cues in emotion ratings, and investigating other potential
emotional induction mechanisms in a similarly controlled way,
working toward an integrated model of musical emotion induction
and perception.
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Appendix A

Summary of Originial Melodies

(Appendices continue)

Table A1
Summary of 16 Original Melodies Used in This Experiment

File name
Data set of

origin
Number of

events
Average pitch
(60 � midC)

Average note duration
(24 � quarter)

Mean pitch
IC

Mean onset
IC

Stimulus
predictability

Kindr138 15 33 67.69 74.18 1.3624 0.8962 PP
A162 18 21 70.23 27.42 1.4328 0.8955 PP
Kindr151 15 51 66.05 22.82 1.5971 0.8114 PP
Kindr162 15 19 68.36 26.52 1.5574 0.9254 PP
Deut3480 10 19 72.89 36.94 2.4272 4.4488 PU
Jugos052 4 54 66.22 6.77 2.2543 3.7433 PU
I0511 23 53 66.83 11.67 2.0089 2.4660 PU
Deut3284 10 67 69.71 6.52 2.0913 2.5380 PU
I0533 23 39 67.76 11.79 5.6137 1.1401 UP
A120 18 35 64.05 17.31 5.2750 1.3358 UP
Oestr045 6 30 68.90 36.40 4.7200 1.1290 UP
Oestr046 6 35 64.40 32.22 4.6734 1.1983 UP
Deut3244 10 39 67.64 21.84 3.0216 4.7589 UU
Deut3206 10 52 68.67 22.15 2.9122 4.5098 UU
Deut3437 10 29 71.62 19.86 3.0114 4.3796 UU
Deut3524 10 38 72.76 15.15 2.8472 4.3009 UU

Note. IC � information content; PP � predictable pitch and predictable onset; PU � predictable pitch and unpredictable onset; UP � unpredictable pitch
and predictable onset; UU � unpredictable pitch and unpredictable onset.
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Appendix B

Results of CSTSA Analysis

(Appendices continue)

Table B1
Cross-Sectional Time Series Analysis Modelling of Expectancy Ratings for All Melodies;
Coefficients for Fixed Width 95% CIs and Variance of Random Effects

Model component Predictor Coefficient 95% CI

Fixed effects Intercept 0.307 [0.251, 0.364]
Time 0.001 [0.001, 0.001]
Musicianship 0.030 [0.014, 0.047]
Pitch �0.002 [�0.002, �0.001]
IOI 0.003 [0.003, 0.003]
L1ratings 0.960 [0.953, 0.967]
L2ratings �0.065 [�0.073, �0.058]
L4ratings �0.061 [�0.069, �0.053]
L5ratings 0.015 [0.006, 0.025]
L6ratings 0.035 [0.023, 0.037]
L15ratings 0.015 [0.012, 0.018]
PitchIC �0.263 [�0.309, �0.217]
L1pitchIC 0.486 [0.306, 0.666]
L7pitchIC 0.123 [0.079, 0.167]
L8pitchIC �0.059 [�0.103, �0.016]
OnsetIC �0.731 [�0.794, �0.667]
L1onsetIC 0.845 [0.769, 0.920]
L2onsetIC �0.181 [�0.240, �0.123]
L10onsetIC �0.084 [�0.129, �0.039]
L12onsetIC 0.138 [0.092, 0.183]

Predictor Variance —

Random effects on individuals Intercept 0.000 —
L1pitchIC 0.000 —

Random effects on melody ID Intercept 0.019 —
L1pitchIC 0.245 —

Residual variance 0.421 —

Note. CI � confidence interval; IC � information content; ID � identity; IOI � interonset interval.
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(Appendices continue)

Table B2
Cross-Sectional Time Series Analysis Modelling of Arousal Ratings for All Melodies;
Coefficients for Fixed Width 95% CIs and Variance of Random Effects

Model component Predictor Coefficient 95% CI

Fixed effects (Intercept) 1.98 [�0.07, 4.03]
Time 0.06 [0.06, 0.07]
PU �3.42 [�5.77, �1.06]
UP �0.50 [�2.86, 1.85]
UU �4.53 [�6.88, �2.17]

Pitch �0.04 [�0.05, �0.03]
IOI �0.03 [�0.03, �0.02]

L1ratings 0.95 [0.94, 0.95]
L3ratings 0.01 [0.00, 0.01]
L5ratings �0.05 [�0.06, �0.05]
L6ratings 0.03 [0.02, 0.03]
L15ratings 0.01 [0.01, 0.01]

PitchIC �16.6 [�17.7, �15.4]
L1pitchIC 16.6 [15.5, 17.8]
L6pitchIC 2.46 [1.31, 3.62]
L7pitchIC 2.05 [0.70, 3.39]
L8pitchIC �2.14 [�3.37, �0.92]
L10pitchIC 1.86 [0.63, 3.08]
L11pitchIC �4.43 [�5.77, �3.10]
L12pitchIC 4.91 [3.57, 6.25]
L13pitchIC �1.95 [�3.18, �0.72]
L15pitchIC 2.18 [1.23, 3.13]

OnsetIC �11.4 [�12.9, �9.83]
L1onsetIC 72.4 [48.2, 96.6]
L3onsetIC 6.96 [5.26, 8.66]
L4onsetIC �8.38 [�9.98, �6.77]
L7onsetIC 1.55 [0.34, 2.76]
L10onsetIC �6.81 [�8.12, �5.49]
L12onsetIC 5.43 [3.73, 7.13]
L13onsetIC 4.47 [2.55, 6.39]
L14onsetIC �2.93 [�4.83, �1.04]
L15onsetIC 3.09 [1.59, 4.58]

Predictor Variance —

Random effects on individuals Intercept 0.47 —
L1onsetIC 2.94 —

Random effects on melody ID Intercept 13.5 —
L1onsetIC 4,815.2 —

Residual variance 276.7 —

Note. CI � confidence interval; IC � information content; PU � predictable pitch and unpredictable onset;
UP � unpredictable pitch and predictable onset; UU � unpredictable pitch and unpredictable onset; ID �
identity.
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(Appendices continue)

Table B3
Cross-Sectional Time Series Analysis Modelling of Valence Ratings for All melodies;
Coefficients for Fixed Width 95% CIs and Variance of Random Effects

Model component Predictor Coefficient 95% CI

Fixed effects (Intercept) 5.38 [3.56, 7.20]
Time 0.03 [0.03, 0.04]
Pitch �0.09 [�0.10, �0.08]
IOI 0.16 [0.15, 0.18]
L1ratings 0.92 [0.92, 0.93]
L3ratings �0.02 [�0.03, �0.01]
L4ratings �0.03 [�0.04, �0.02]
L5ratings �0.01 [�0.02, �0.00]
L6ratings 0.01 [0.00, 0.02]
L7ratings 0.01 [0.00, 0.02]
L9ratings 0.00 [0.00, 0.01]
L15ratings 0.00 [0.00, 0.01]
PitchIC �9.19 [�10.6, �7.72]
L1pitchIC 11.2 [9.74, 12.6]
L5pitchIC 2.62 [1.45, 3.79]
L8pitchIC �3.26 [�4.72, �1.79]
L9pitchIC 3.29 [1.74, 4.83]
L11pitchIC �1.68 [�3.22, �0.15]
L12pitchIC 2.91 [1.47, 4.83]
L15pitchIC 1.28 [0.20, 2.36]
OnsetIC �20.0 [�22.2, �17.9]
L1onsetIC 48.5 [29.7, 67.3]
L3onsetIC 4.05 [1.92, 6.18]
L4onsetIC �4.02 [�5.90, �2.13]
L10onsetIC �5.35 [�6.65, �4.05]
L13onsetIC 3.59 [2.32, 4.86]

Predictor Variance —

Random effects on individuals (Intercept) 0.11 —
L1onsetIC 0.12 —

Random effects on melody ID (Intercept) 22.2 —
L1onsetIC 2,878.7 —

Residual variance 439.9 —

Note. CI � confidence interval; IC � information content; ID � identity; IOI � interonset interval.
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Appendix C

Results of Submodel CSTSA Analysis

Perceptual salience is explained in a variety of ways in the
current literature, and there is currently no consensus on the correct
way to describe or measure it. Dibben (1999) describes salience in
relation to pitch register, parallelism, and stability, Collins, Laney,
Willis, and Garthwaite (2011) and Huron (2001) in terms of
repetition, Prince et al. (2009) in terms of complexity, defined by
number of different possible values (i.e., different pitches or dif-
ferent rhythmic durations), and Lerdahl (1989), as a set of condi-
tions combining pitch register, timing, timbre, attack, note density,
motivic content, and grouping. Outside of music, salience is de-
fined by predictability and uncertainty (Esber & Haselgrove,
2011); there are two possibilities: predictable content becomes
more (i.e., a cue becomes salient if it predicts a reward) or less
(i.e., new information is more interesting) salient. Whereas we
interpret larger CSTSA model coefficients to reflect more salient
predictors, here we test the hypothesis that melodies with high
pitch predictability (expectancy) and low-onset predictability (PU)
have larger pitch coefficients than onset coefficients, and vice
versa. To do so, four submodels of each of the three CSTSA

models optimized in the main experiment were created, one for
each category (PP, PU, UP, and UU) to compare coefficients
between models. Details of these models can be found in Tables
C1–C3. A linear multiple regression model with stimulus predict-
ability, lag type (pitch, onset), and rating type (expectancy,
arousal, and valence) predicting the coefficients of these CSTSA
models revealed no significant effects, F(3, 168) � .50, p � .67,
F(1, 170) � 2.23, p � .13, F(2, 169) � .51, p � .59, respectively.
There were also no interactions between category and lag type,
F(7, 164) � .79, p � .59. Although there was no statistically
significant effect, we observe that the sum of lags of onset IC were
consistently larger than the sum of lags of pitch IC for all catego-
ries of stimulus predictability for arousal and valence models,
whereas the sum of lags of pitch IC were slightly larger than the
sum of lags of onset IC in the expectancy model. In conclusion,
our hypothesis was not supported, as salience does not seem to be
related to expectancy. However, this study was not designed to
investigate this question, which would be interesting to explore in
a future study.

(Appendices continue)

Table C1
Coefficients of Submodels for Expectancy Ratings

Model
component Coefficient PP PU UP UU

Fixed effects Intercept 0.393 0.399 0.235 0.204
Time 0.002 0.001 0.003 0.001
Musicianship 0.035 0.031 0.024 0.031
Pitch �0.001 0.002 �0.002 �0.002
IOI 0.001 0.003 0.004 0.005
L1ratings 0.777 1.00 1.01 1.03
L2ratings 0.042 �0.100 �0.141 �0.110
L4ratings �0.045 �0.075 �0.075 �0.035
L5ratings �0.010 �0.031 0.031 0.021
L6ratings 0.052 �0.007 0.039 0.008
L15ratings 0.027 0.013 0.019 0.009
PitchIC �0.192 �0.197 �0.142 �0.549
L1pitchIC 0.197 0.461 0.604 0.842
L7pitchIC 0.242 0.210 �0.021 0.008
L8pitchIC �0.005 �0.169 0.030 �0.087
OnsetIC �0.756 �1.26 �0.316 �0.769
L1onsetIC 1.15 1.50 0.687 0.277
L2onsetIC �0.258 �0.469 �0.231 0.078
L10onsetIC �0.530 �0.169 �0.038 �0.153
L12onsetIC 0.188 0.034 0.058 0.235

Random effects Participant—Intercept 0.002 0.000 0.002 0.000
Participant—l1pitchIC 0.014 0.003 0.000 0.000
Melody
ID—Intercept

0.105 0.005 0.010 0.006

Melody
ID—l1pitchIC

0.078 0.174 0.337 0.178

Residual variance 0.455 0.397 0.536 0.319

Note. IC � information content; PP � predictable pitch and predictable onset; PU � predictable pitch and unpredictable onset; UP � unpredictable pitch
and predictable onset; UU � unpredictable pitch and unpredictable onset; ID � identity; IOI � interonset interval.
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(Appendices continue)

Table C2
Coefficients of Submodels for Arousal Ratings

Model
component Coefficients PP PU UP UU

Fixed effects Intercept �5.66 0.77 �4.68 �3.45
Time 0.25 0.04 0.24 0.05
Pitch �0.02 �0.02 �0.10 �0.00
IOI �0.03 0.00 �0.12 �0.00
L1ratings 0.87 0.96 0.89 0.95
L3ratings 0.02 0.01 0.01 �0.00
L5ratings �0.05 �0.08 �0.03 �0.02
L6ratings 0.03 0.04 0.04 0.01
L15ratings 0.05 0.01 0.02 0.01
PitchIC �18.3 �12.7 �11.6 �20.5
L1pitchIC 19.8 8.85 14.5 24.1
L6pitchIC 9.35 1.42 �1.65 0.32
L7pitchIC �2.64 3.32 8.12 2.05
L8pitchIC �0.20 �3.68 �3.71 �4.12
L10pitchIC 6.03 0.66 2.15 0.08
L11pitchIC �10.0 �6.78 2.50 �1.29
L12pitchIC 6.54 8.64 �2.35 1.75
L13pitchIC 0.08 �7.88 3.12 �0.45
L15pitchIC 3.69 0.04 2.14 5.71
OnsetIC �24.7 �21.1 3.90 �7.01
L1onsetIC 78.4 91.4 123.5 17.4
L3onsetIC 10.2 1.84 10.5 4.73
L4onsetIC �15.0 �7.82 �7.92 �2.71
L7onsetIC �3.79 7.51 0.01 �1.55
L10onsetIC �24.2 �1.00 �6.14 �1.82
L12onsetIC 13.5 �3.32 5.03 6.53
L13onsetIC 6.51 11.9 1.76 0.47
L14onsetIC �3.12 �6.33 �4.64 �0.81
L15onsetIC 1.30 1.28 5.12 2.40

Random effects Participant—Intercept 0.44 1.17 0.12 0.72
Participant—l1onsetIC 0.51 0.08 0.24 1.10
Melody
ID—Intercept

35.3 8.23 56.4 3.90

Melody
ID—l1onsetIC

2,443.5 3,846.0 11,190.0 447.2

Residual variance 368.1 225.3 323.7 186.2

Note. CI � confidence interval; IC � information content; PP � predictable pitch and predictable onset; PU � predictable pitch and unpredictable onset;
UP � unpredictable pitch and predictable onset; UU � unpredictable pitch and unpredictable onset; ID � identity; IOI � interonset interval.
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Table C3
Coefficients of Submodels for Valence Ratings

Model
component Coefficients PP PU UP UU

Fixed effects Intercept �2.42 9.68 1.35 �1.88
Time 0.16 0.00 0.17 0.05
Pitch �0.06 �0.11 �0.13 �0.00
IOI 0.17 0.14 0.23 0.14
L1ratings 0.90 0.94 0.88 0.92
L3ratings �0.00 �0.01 �0.05 �0.00
L4ratings �0.02 �0.01 �0.05 �0.02
L5ratings �0.02 �0.04 0.02 �0.01
L6ratings 0.02 0.02 0.00 0.01
L7ratings 0.00 0.00 0.03 0.00
L9ratings 0.01 0.00 0.02 0.00
L15ratings 0.01 0.00 0.02 0.01
PitchIC �8.42 �6.56 �7.56 �14.7
L1pitchIC 12.9 8.24 6.30 19.05
L5pitchIC 2.98 �0.13 3.96 3.18
L8pitchIC �1.07 �3.18 �3.32 �8.26
L9pitchIC 3.10 5.09 1.15 5.82
L11pitchIC �0.54 �7.44 2.52 �0.53
L12pitchIC 4.25 1.02 2.46 2.62
L15pitchIC 1.71 �0.696 2.30 2.92
OnsetIC �22.7 �24.0 �4.81 �21.2
L1onsetIC 49.1 80.7 81.4 6.13
L3onsetIC 17.6 3.28 0.22 3.28
L4onsetIC �13.1 �0.27 �1.83 �2.87
L10onsetIC �14.3 �4.66 �6.26 0.21
L13onsetIC 7.75 6.75 �0.15 �0.94

Random effects Participant—Intercept 0.03 0.72 0.10 0.20
Participant—l1onsetIC 0.14 0.00 1.37 1.06
Melody
ID—Intercept

46.5 9.41 49.8 4.26

Melody
ID—l1onsetIC

2,972.0 4,176.0 5,024.3 36.0

Residual variance 519.6 375.9 712.1 251.5

Note. IC � information content; PP � predictable pitch and predictable onset; PU � predictable pitch and unpredictable onset; UP � unpredictable pitch
and predictable onset; UU � unpredictable pitch and unpredictable onset; ID � identity; IOI � interonset interval.
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