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Abstract

When listening to music, pitch deviations are more salient and elicit stronger prediction

error responses when the melodic context is predictable and when the listener is a

musician. Yet, the neuronal dynamics and changes in connectivity underlying such

effects remain unclear. Here, we employed dynamic causal modeling (DCM) to investi-

gate whether the magnetic mismatch negativity response (MMNm)—and its modulation

by context predictability and musical expertise—are associated with enhanced neural

gain of auditory areas, as a plausible mechanism for encoding precision-weighted

prediction errors. Using Bayesian model comparison, we asked whether models with

intrinsic connections within primary auditory cortex (A1) and superior temporal gyrus

(STG)—typically related to gain control—or extrinsic connections between A1 and

STG—typically related to propagation of prediction and error signals—better explained

magnetoencephalography responses. We found that, compared to regular sounds, out-

of-tune pitch deviations were associated with lower intrinsic (inhibitory) connectivity in

A1 and STG, and lower backward (inhibitory) connectivity from STG to A1, consistent

with disinhibition and enhanced neural gain in these auditory areas. More predictable

melodies were associated with disinhibition in right A1, while musicianship was associ-

ated with disinhibition in left A1 and reduced connectivity from STG to left A1. These

results indicate that musicianship and melodic predictability, as well as pitch deviations

themselves, enhance neural gain in auditory cortex during deviance detection. Our find-

ings are consistent with predictive processing theories suggesting that precise and infor-

mative error signals are selected by the brain for subsequent hierarchical processing.
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1 | INTRODUCTION

Surprising sounds in auditory sequences are perceived as more salient

and generate stronger neural responses than expected sounds

(Heilbron & Chait, 2018). The salience of surprising sounds and the

responses they elicit depend on at least two factors: the musical

expertise of the listener and the predictability of the auditory context.

In music, for example, pitch deviants elicit a mismatch response—the
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mismatch negativity (MMN)—taken to reflect the update of the brain's

internal predictive model by prediction error (Vuust, Brattico, Sep-

pänen, Näätänen, & Tervaniemi, 2012). Crucially, deviants are more

easily detected and the amplitude of the MMN becomes larger, when

melodies are predictable and when the listener is a musician (Quiroga-

Martinez et al., 2019b). Yet, despite the growing empirical evidence

(Garrido, Sahani, & Dolan, 2013; Hsu, Bars, Hämäläinen, &

Waszak, 2015; Kliuchko et al., 2019; Southwell & Chait, 2018;

Tervaniemi, Huotilainen, & Brattico, 2014), little is known about the

fluctuations in effective connectivity and neuronal dynamics that

mediate these phenomena.

The effect of context predictability on sound salience has been

proposed to reflect the neural weighting of unexpected events by the

precision afforded to sensory inputs (Quiroga-Martinez et al., 2019a;

Ross & Hansen, 2016; Vuust, Dietz, Witek, & Kringelbach, 2018).

Such a precision-weighting mechanism would allow the brain to select

informative sensory signals for further processing (Feldman & Friston,

2010; Friston et al., 2020; Hohwy, 2012). Research on attention has

linked this selection to a modulation of postsynaptic gain in which the

activity of neurons representing attended features and objects is

enhanced (Garrido, Rowe, Halász, & Mattingley, 2018; Rabinowitz,

Goris, Cohen, & Simoncelli, 2015; Reynolds & Desimone, 1999). Such

gain modulation likely arises from a change in the strength of intrinsic

(i.e., within-region) connections controlling the excitability of brain

areas (Auksztulewicz et al., 2017, 2018; Auksztulewicz & Friston,

2015), usually ascribed to NMDA receptor function and synchronous

interactions between fast-spiking inhibitory interneurons and pyrami-

dal cells. However, it remains unclear whether the same gain mecha-

nisms operate when the salience of a sound is driven, not

endogenously by selective attention, but rather exogenously by the

predictability of successive stimuli.

The effect of musicianship on sound salience has also been

suggested to rely on precision-driven mechanisms. Vuust et al. (2018)

proposed that musicians possess a more precise predictive model of

musical auditory signals than nonmusicians, a view that has behav-

ioral support (Hansen & Pearce, 2014; Hansen, Vuust, & Pearce,

2016). If musicians have a fine-grained representation of musical

tuning—which facilitates deviance detection and leads to enhanced

MMN responses—the same precision-driven gain mechanisms above

may also operate when sound salience is enhanced by musical

expertise.

Here, we characterized the neuronal dynamics and effective con-

nectivity underlying the salience of surprising musical sounds and its

modulation by predictability and musical expertise. We employed

dynamic causal modeling (DCM) of magnetoencephalography (MEG)

data from a previous study investigating magnetic MMN responses

(MMNm) in melodic sequences (Quiroga-Martinez et al., 2019b). In

that experiment, musicians and nonmusicians listened to highly pre-

dictable stimuli—a repeated four-note pattern—and less predictable

stimuli—complex, less-repetitive melodies. We found that pitch devi-

ants were more easily detected and generated larger MMNm

responses in highly predictable compared to less predictable melodies,

and in musicians compared to nonmusicians.

We based the DCM analyses on an auditory network comprising

bilateral primary auditory cortex (A1), bilateral superior temporal gyrus

(STG), and the right frontal operculum (rFOP). We asked whether the

MMNm, and its modulation by predictability and musical expertise,

relied on changes in intrinsic connectivity within A1 and STG, as a

plausible synaptic mechanism implementing precision-weighting of

prediction error. We compared this to the alternative explanation that

predictability and expertise modulate propagation of prediction and

error signals through forward and backward extrinsic (i.e., between-

regions) connectivity, which is typically associated with short-term

plasticity, sensory learning and model updating. Thus, we contrasted

models in which intrinsic, forward, and/or backward connections were

allowed to explain auditory evoked responses and their modulation as

measured with MEG.

2 | METHODS

Reproducible code and data are available at https://doi.org/10.

17605/osf.io/bdr73.

2.1 | Participants

Twenty musicians and 20 nonmusicians were included in the study.

These participants are part of a larger group of 24 nonmusicians and

26 musicians whose data have been analyzed and reported elsewhere

(Quiroga-Martinez, et al., 2019a, 2019b; Quiroga-Martinez, et al.,

2020). The four nonmusicians and six musicians excluded were those

for whom high-quality MRI images were not available, due to artifacts

or abstaining from the MRI session. Musical expertise and musical

competence (Table 1) were assessed with the Goldsmiths Musical

Sophistication Index (GMSI) (Müllensiefen, Gingras, Musil, &

Stewart, 2014) and the Musical Ear Test (MET) (Wallentin, Højlund,

Friis-Olivarius, Vuust, & Vuust, 2010). Musicians had significantly

higher GMSI (t[31.1] = 14.82, p <.001) and were significantly better

at differentiating melodies/rhythms than nonmusicians, as indicated

by the total scores on the MET (t[35.2] = 5.38, p <.001). See Quiroga-

Martinez, et al. (2020) and Quiroga-Martinez, et al. (2019b) for a more

detailed report of musicianship measures. All participants gave

informed consent and were paid 300 Danish kroner (approximately

TABLE 1 Participants' demographic and musical expertise
information

Musicians Nonmusicians

Sample size 20 20

Female 8 10

Age 24.2 (±3.09) 26.9 (±3.48)

GMSI 36.80 (±6.77) 10.65 (±4.05)

MET 84.05 (±6.98) 70.00 (±9.36)

Note: Mean and standard deviation are reported.
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40 euro) as compensation. The study was approved by the Regional

Ethics Committee (De Videnskabsetiske Komitéer for Region Mid-

tjylland in Denmark) and conducted in accordance with the Helsinki

Declaration.

2.2 | Stimuli

In the experiment, we included conditions with high-predictability

(HP) and low-predictability (LP) stimuli. HP stimuli comprised simple

melodies consisting of a four-note repeated pitch pattern that has

often been used in musical MMNm paradigms and is known as the

Alberti bass (Vuust et al., 2011, 2012; Vuust, Liikala, Näätänen,

Brattico, & Brattico, 2016). LP stimuli consisted of a set of major and

minor versions of six novel melodies, which had a much less repetitive

internal structure and spanned a broader local pitch range than HP

stimuli (Figure 1; see supplementary file 1 in Quiroga-Martinez

et al., 2019a for the full stimulus set). Note that here both the pitch

alphabet (i.e., the number of possible pitch continuations) and the

repetitiveness of the sounds contribute to the (un)predictability of

the context, as pitches become harder to anticipate, not only when

transition probabilities are less specific, but also when the number of

possible continuations is larger. However, the impact of pitch alpha-

bet was minimized by transposing HP melodies to different octaves.

Furthermore, in the behavioral experiment reported in Quiroga-

Martinez et al. (2019a), it was demonstrated that repetitiveness alone

affects deviance detection in melodic contexts with equal pitch

alphabets.

The predictability of these stimuli was measured in terms of Shan-

non entropy with IDyOM, a computational model of auditory expecta-

tions (Pearce, 2005). Briefly, IDyOM estimates the surprise value

(referred to as “information content”) of different continuations in a

melody based on the probability of melodic patterns that appeared

previously in the melody or in a long-term training corpus. Entropy,

which is the expected value of surprise, is maximal when all continua-

tions are equally plausible and is minimal when a single continuation is

highly likely. The corresponding analyses revealed higher entropy

values for the LP than the HP condition (see Quiroga-Martinez

et al., 2019a for details).

Individual melodies were 32 notes long, lasted 8 s, and were

pseudo-randomly transposed between 0 and 5 semitones upward.

The presentation order of the melodies was pseudorandom within

each condition. After transposition, the pitch-range of the LP condi-

tion spanned 31 semitones from B3 (F0 ≈ 247 Hz) to F6

(F0 ≈ 1,397 Hz). HP melodies were transposed to two different

octaves to cover approximately the same pitch range as LP melodies.

For stimulus delivery, a pool of 31 standard piano tones was cre-

ated with the “Warm-grand” sample in Cubase (Steinberg Media

Technology, version 8). Each tone was 250 ms long, was peak-

amplitude normalized and had 3-ms-long fade-in and fade-out to pre-

vent clicking. No gaps between tones were introduced. Four types of

deviants were pseudo-randomly introduced in the melodies, including

pitch, timbre, intensity, and pitch-glide. Pitch deviants were created

with Audition (Adobe Systems Incorporated, version 8) by raising the

pitch of standard tones by 50 cents. Note that predictability in these

stimuli was manipulated only in the pitch dimension by changing

pitch-alphabet size and pitch repetitiveness, which resulted in pitch

deviants exhibiting the strongest predictability effect in sensor-level

analyses; see Quiroga-Martinez, et al. (2019a, 2019b) for further

details. Consequently, here we focused exclusively on pitch MMNm

responses for the DCM analysis.

Each condition was presented in a separate group of three con-

secutive blocks, each around 7 min long (i.e., HP-HP-HP/LP-LP-LP or

LP-LP-LP/HP-HP-HP). Within each block, melodies were played one

after the other without pauses. At the beginning of each block, a mel-

ody with no deviants was added to ensure a certain level of auditory

regularity at the outset. One deviant per feature was introduced in

each of the 144 melodies per block, amounting to a total of 144 devi-

ants per feature in each condition. The position of each deviant was

defined by segmenting the melody into groups of four notes (half a

bar in Figure 1), selecting some of these groups, and choosing ran-

domly any of the four places within a group with equal probability.

The order of appearance of the different types of deviants was pseu-

dorandom, so that no deviant followed another deviant of the same

feature. The selection of four-note groups was counterbalanced

among melodies—under the constraints of a combined condition

(i.e., melody and bass accompaniment) that was included to assess

the predictive processing of simultaneous musical streams (see

F IGURE 1 Example of the melodies used in the high predictability (HP) and low predictability (LP) conditions. Deviants are indicated with
colors. Only pitch deviants were analyzed in this article
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Quiroga-Martinez et al., 2019a, for further details). The analysis of the

combined condition is beyond the scope of this article and will be

reported elsewhere. LP and HP conditions were counterbalanced

across participants and always followed the combined condition.

2.3 | Experimental procedure

Participants received oral and written information, completed musical

expertise questionnaires and put on MEG-compatible clothes. We

then digitized their head shapes for co-registration with anatomical

images and head-position tracking. During the recording, participants

were sitting upright in the MEG scanner looking at a screen. Before

presenting the musical stimuli, their individual hearing threshold was

measured through a staircase procedure using a pure tone with a fre-

quency of 1 kHz. The sound level was set at 60 dB above threshold.

We instructed them to watch a silent movie of their choice, ignore the

sounds and move as little as possible. Participants were informed

there would be musical sequences playing in the background inter-

rupted by short pauses so that they could take a break and adjust

their posture. Sounds were presented through isolated MEG-

compatible ear tubes (Etymotic ER•30). The recording lasted approxi-

mately 90 min, and the whole experimental session took between 2.5

and 3 hr, including consent, musical expertise tests, preparation,

instructions, breaks, and debriefing.

2.4 | MEG recording and preprocessing

Brain magnetic fields were recorded with an Elekta Neuromag MEG

TRIUX system with 306 channels (204 planar gradiometers and

102 magnetometers) and a sampling rate of 1,000 Hz. Continuous head

position information (cHPI) was obtained with four coils attached to the

forehead and the mastoids. Offline, the temporal extension of the signal

source separation (tSSS) technique (Taulu & Simola, 2006) was used to

isolate signals coming from inside the skull employing Elekta's MaxFilter

software (Version 2.2.15). This procedure included movement compen-

sation for all participants except two nonmusicians, for whom continu-

ous head position information was not reliable due to suboptimal

placement of the coils. These participants, however, evinced reliable

auditory event-related fields (ERFs), as verified by visual inspection of

the amplitude and polarity of the P50(m) component. Electrocardiogra-

phy, electrooculography, and independent component analysis were

used to correct for eye-blink and heartbeat artifacts, employing a semi-

automatic routine (FastICA algorithm and functions “find_bads_eog”
and “find_bads_ecg” in MNE-Python; Gramfort et al., 2013). Visual

inspection of the rejected components served as a quality check.

Using the Fieldtrip toolbox (version r9093) (Oostenveld, Fries,

Maris, & Schoffelen, 2011) in MATLAB (R2016a, The MathWorks

Inc.), epochs comprising a time window of 400 ms after sound onset

were extracted and baseline-corrected with a prestimulus baseline of

100 ms. Epochs were then low-pass-filtered with a cut-off frequency

of 35 Hz and down-sampled to a resolution of 256 Hz. For each

participant, ERFs were computed by averaging the responses for the

deviants and averaging a matched selection of an equal number of

standards. The evoked responses were then converted to SPM format

for the source localization and DCM analyses. Sensor-level statistical

analyses of these data have been reported in Quiroga-Martinez,

et al. (2019a, 2019b) and Quiroga-Martinez, et al. (2020). Given that

we used the same preprocessed data reported in our previous

studies—where planar gradiometers were combined by taking the root

mean square of channel pairs—in this article, we restricted our ana-

lyses to magnetometer data, as in Quiroga-Martinez, et al. (2020).

2.5 | Source localization and network structure

To identify the auditory networks underlying the processing of pitch

MMNm responses, we localized the neural generators of the standard

and deviant evoked responses. For this, we used Multiple Sparse Priors

(Friston et al., 2008) implemented in SPM12 (version 7478). T1- and

T2-weighted magnetic resonance anatomical images (MRI) were

obtained—in a separate session for each participant—with a

magnetization-prepared two rapid gradient echo (MP2RAGE) sequence

(Marques et al., 2010) in a Siemens Magnetom Skyra 3T scanner. The

two images were then combined, segmented, projected into MNI coor-

dinates, and automatically co-registered with the MEG sensor array

using digitized head shapes and preauricular and nasion landmarks. We

verified the quality of the co-registrations by visual inspection. Lead

fields were computed using a single-shell boundary element model with

20,484 dipoles (fine grid). For each participant, we extracted a volume

reflecting the mean inverse solution from 0 to 300 ms after sound

onset. The resulting images were then submitted to a group-level

repeated-measures ANOVA with deviance (standard vs. deviant) and

predictability (HP vs. LP) as factors. No distinction between musicians

and nonmusicians was made in these analyses. The resulting statistical

parametric maps were corrected for multiple comparisons with random

field theory and revealed a clear effect of deviance on source strength.

There were two clusters (Figure 2), one in each hemisphere,

encompassing five peaks: left (lA1, x = �50, y = �16, z = �4) and right

Heschl's gyrus (rA1; x = 46, y = �16, z = 0), left (lSTG; x = �58,

y = �6, z = 6) and right (rSTG; x = 56, y = 2, z = �1) anterior STG, and

rFOP (x = 50, y = 4, z = 12). The coordinates of these peaks were used

as spatial priors for the five nodes or sources of our DCM network.

Note that this network is very similar to classical DCM studies of

MMN responses (Dietz, Friston, Mattingley, Roepstorff, &

Garrido, 2014; Garrido et al., 2008; Garrido, Kilner, Kiebel,

et al., 2009; Schmidt et al., 2013) with two important differences.

First, we include anterior STG (instead of posterior STG or planum

temporale), which has been related to the processing of pitch

sequences (Gander et al., 2019; Patterson, Uppenkamp, Johnsrude, &

Griffiths, 2002). Second, we include the FOP, which is posterior to the

inferior frontal gyrus node used previously. To determine whether

the source estimates in the FOP node were an artifact of source leak-

age, we evaluated the evidence for models with and without this node

using Bayesian model comparison.
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2.6 | Dynamic causal modeling

The aim of DCM (Friston, Harrison, & Penny, 2003; Moran, Pinotsis, &

Friston, 2013) is to assess the evidence for different hypotheses

about how observed neuronal activity is generated. These

hypotheses are specified through a generative model in which the

activity of neuronal populations evolves dynamically according to the

structure and (state or condition dependent) connectivity of the net-

work. To estimate the model parameters characterizing directed

(effective) synaptic efficacy the predicted neuronal responses are pro-

jected (through a lead field) to sensor space for comparison with the

recorded data, in an iterative process that employs Bayesian inference

(David et al., 2006). This furnishes a posterior distribution over all

model parameters (i.e., effective connectivity and condition-specific

changes) and the marginal likelihood of the data in the form of a varia-

tional free energy bound on model evidence.

The generative model used here is based on the canonical micro-

circuit (Bastos et al., 2012), which includes four populations of neu-

rons: Spiny stellate cells, inhibitory interneurons, and superficial and

deep pyramidal cells (Figure 3). Within a brain region or node (denoted

by i), intrinsic communication between these populations results in

overall inhibition. Between region, extrinsic excitatory forward con-

nections project from superficial pyramidal cells in lower areas to

spiny cells and deep pyramidal cells in higher areas, whereas extrinsic

inhibitory backward connections project from deep pyramidal cells in

higher areas, to superficial pyramidal cells and inhibitory interneurons

in lower areas. Note that some excitatory connections result in inhibi-

tion of their targets, mediated by intermediate inhibitory synapses not

modeled explicitly.

The dynamics of the network are given by the set of coupled dif-

ferential equations shown in Figure 3. Here, the vector x represents

the input current (even subscripts) and voltage (odd subscripts) of the

corresponding populations of neurons. The matrices A and G respec-

tively define the extrinsic and intrinsic connection strengths between

neuronal populations. The time constants τ define the rate of change

of the neuronal dynamics, whereas σ is a sigmoid activation function

transforming voltages into firing rates. It is assumed that spiny cells

receive input from lower regions denoted by u. The ∘ operator

denotes element-wise product.

2.6.1 | Model structure and comparisons

We defined a network comprising five sources: rA1, lA1, rSTG, lSTG,

and rFOP. Forward connections were set from A1 to STG and from

STG to FOP, whereas backward connections were set from FOP to

STG and from STG to A1. The A1 nodes received simulated auditory

thalamic input modeled with a temporal Gaussian bump function,

peaking at 60 ms after sound onset. We used point dipoles to model

each source. The prior location of each dipole was obtained from the

source localization estimates above and the dipole orientation and

location were optimized during model fitting. We assumed inter-

hemispheric dipole symmetry, as warranted by the bilateral auditory

generators.

In a first level (within subject) DCM analysis, we modeled the

average evoked response from 0 to 300 ms after sound onset, sepa-

rately for each of the two predictability conditions. We defined the

standard sound as the baseline (reflected in the default connectivity

matrix A) and allowed certain connections to change during

processing of the deviant sound (as defined in a connectivity matrix

B). Note that B-parameters effectively encode the difference

between standards and deviants and, therefore, the modulation of

effective connectivity that underwrites the MMN response. By

switching on and off different B parameters, we were able to

F IGURE 2 Structure of the network. (a) Results of the source reconstruction (top) and prior location of the sources (bottom). (b) Scheme of
the network. The connections modulated in each of the four model families are indicated with colors. The combination of these families yielded a
total of 24 = 16 models, including a null model in which no connections were modulated. A1, primary auditory cortex; FOP, frontal operculum;
STG, superior temporal gyrus
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generate and test different hypotheses about how MMN responses

are generated.

Thus, our model space included modulations of forward and back-

ward connections between A1 and STG, modulations of intrinsic con-

nections in A1 and STG, and different combinations of these. We also

included models in which connections within, to, and from the FOP

were switched on and off—to assess whether its contribution to

source estimates was due to leakage from temporal areas, or whether

it participated in the network dynamics. By switching on and off each

of these families, we ended up with 24 = 16 models: 15 grouped in

the families intrinsic, forward, backward and FOP (Figure 2b), and a

null model in which no connections were modulated. Note that the

families are not mutually exclusive such that a given model could

belong to more than one family. For each participant and condition,

we fitted the full model, which encompassed the modulation of all the

B-parameters.

2.6.2 | Group-level analyses

First-level B-parameter estimates were submitted to a second level

(between subject or group) analysis using Parametric Empirical Bayes

(PEB), a technique in which the group-level variance is used as a

hyperprior to constrain the random effects on first-level parameters

(Zeidman et al., 2019). The second level model was a general linear

model (GLM) that enabled us to assess the evidence that (a specific

set of) B-parameters were modulated by stimulus deviance, melodic

predictability, musicianship, or the predictability-by-musicianship

interaction. The parameters of the second level model constitute an

interaction between each factor of the GLM and each B-parameter of

a DCM: for example, the effect of melodic predictability on the

change in intrinsic connectivity within left A1.

All factors in the GLM (i.e., design matrix) were mean-centered.

To test our hypotheses, we assessed the evidence that the above fac-

tors had an effect on the B-parameters, by comparing the evidence

for all models in which the factor is switched on, with that of all

models in which it is switched off (including the null model). Note that

an effect of stimulus deviance is simply a nonzero B-parameter, that is

modeled with the constant term in the GLM. The above analysis was

repeated for a series of planned comparisons for each family of first

level DCMs, that is, prespecified hypotheses about the connections

mediating the mismatch responses.

In a complementary analysis, we used Bayesian model averaging

to estimate the effects parameterized by the second level model, that

is, the posterior density over model parameters weighted by the pos-

terior probability of the models considered. Finally, in an exploratory

analysis, we used Bayesian model reduction (Friston et al., 2016),

which performs a “greedy” search over all possible models—including

those outside our hypothesis space—by beginning with a full model

that includes all the above effects, then pruning away redundant

parameters (that are not necessary to account for the data and just

add to model complexity). The (log) probability that a B-parameter is

modulated by a factor is given as the difference in log evidence

between second level models with and without the effect in question.

3 | RESULTS

3.1 | Effective connectivity underlying the MMN

Compared to standard sounds, deviant sounds reduced the inhibitory

intrinsic connections in A1 and STG and inhibitory backward connec-

tions from STG to A1. This is reflected in the high posterior probabili-

ties (>.90) of “backward” and “intrinsic” families (Figure 4a, first

F IGURE 3 State equations (left) and generative model (right) based on the canonical microcircuit (Bastos et al., 2012). The activity of four
populations of neurons (indicated by the x vectors and marked with different colors) evolves according to a set of coupled differential equations
defined by the excitatory (red arrows) and inhibitory (blue arrows) connections in the network and a set of intrinsic (matrix G) and extrinsic (matrix
A) synaptic weights. Extrinsic synaptic weights pertain to connections between brain regions or nodes, here denoted by i. See main text for
further details. Figure taken with permission from Parr, Mirza, Cagnan, and Friston (2019)
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F IGURE 4 Results of group-level DCM analyses. (a) Posterior probability of the modulation of B-parameters in each family. Note that families
are not mutually exclusive and therefore the sum of their probabilities may exceed 1. (b) Parameter estimates after Bayesian model reduction
(top) and averaging (bottom), corresponding to the modulation of connection strengths by sound deviance (MMN), melodic predictability, musical
expertise, and the predictability-by-expertise interaction. In model averaging, parameter values are weighted by the posterior probability of the
models in the hypotheses space. In contrast, in exploratory model reduction, the evidence for parametric effects is obtained from an exhaustive
search across all possible model configurations, in which effects with little evidence are pruned away (i.e., set to 0). Error bars represent 95%
credible intervals. (c) Posterior probability of the modulation of each parameter after Bayesian model reduction
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column). In contrast, the “forward” family has a much lower posterior

probability (.32). The family-wise analysis also showed a low

posterior probability for the “opercular” family, suggesting that modu-

lations of frontal opercular activity are unlikely to explain the MMN

responses observed in this experiment.

The results of Bayesian model averaging, and Bayesian model

reduction were largely consistent with the results of the planned

Bayesian family comparisons. 95% credible intervals excluded zero in

the case of intrinsic connections (rA1, lA1, and rSTG) for both model

averaging and reduction, and in the case of backward connections

(rSTG to rA1 and lSTG to lA1) for model reduction only (Figure 4b,

first column). Furthermore, intrinsic, and backward parameters had

high posterior probabilities (>.99) after Bayesian model reduction

(Figure 4c, first column). The modulation of these connections by

stimulus deviance implies a disinhibition and a corresponding increase

in the excitability or gain, of A1 and rSTG contributions to the MMN.

To assess the accuracy of the DCM results, we compared the

observed sensor-level data with those predicted by the model. Fig-

ures 5 and 6 show that the predicted data match the observed data

well, reproducing the topography of magnetic fields and the larger

responses for predictable compared to less predictable melodies and

for musicians compared to nonmusicians, especially in the left

hemisphere.

3.2 | Effect of melodic predictability

We found reduced intrinsic connectivity in rA1 for HP compared to

LP melodies, as shown by the relatively high probability of the “intrin-
sic” family (.71) (Figure 4a, second column). In contrast, the posterior

probabilities of forward (.16), backward (.25), and opercular (.31) fami-

lies were much lower. The rA1 parameter had a high probability (>.99,

Figure 4c, second column) and its corresponding 95% credible interval

excluded 0 (Figure 4b, second column) after Bayesian model

reduction. Furthermore, the exploratory model reduction also indi-

cated the strengthening of the connection from rFOP to rSTG, as

shown by the high probability of this effect (>.99, Figure 4c, second

column). However, this was not reflected in the probability of the

opercular family (Figure 4a, second column), so suggesting that this

modulation was highly specific to the backward opercular connection

within the right hemisphere and did not reflect a general contribution

of the FOP.

3.3 | Effect of musical expertise

We observed a decrease in the strength of intrinsic and backward

inhibitory connections—that is, disinhibition—in musicians compared

to nonmusicians, as shown in the high probability of “intrinsic” (.87)

and “backward” (.88) families (Figure 4a, third column). Posterior

probabilities for forward (.31) and opercular (.65) families were low

and moderate. 95% credible intervals excluded 0 in the case of the

intrinsic lA1 connection for both model reduction and averaging, and

in the case of the backward lSTG to lA1 connection for model reduc-

tion only (Figure 4b, third column). Moreover, the probabilities of

these two parameters were high after model reduction (>.99,

Figure 4c, third column).

3.4 | Interaction between predictability and
expertise

We did not observe strong evidence for a predictability-by-expertise

interaction, as reflected in the low posterior probabilities of intrinsic

(.15), forward (.37), and backward (.20) families (Figure 4a, fourth col-

umn). However, the probability of the opercular family was moderate

(.67) and exploratory model reduction suggested a strengthening in

the connection from rSTG to rFOP for musicians in the predictable

F IGURE 5 Topography of
grand average MMNm responses
(difference between deviants and
standards) from 170 to 210 ms
after sound onset, as observed in
the experiment and predicted by
DCM. HP, high predictability, LP,
low predictability
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condition. For this parameter, the credible interval excluded

0 (Figure 4b, fourth column, bottom panel) and the posterior probabil-

ity was high (>.99, Figure 4c, fourth column).

4 | DISCUSSION

In this study, we found that the MMN responses elicited by surprising

sounds in music listening—and the effects of predictability and exper-

tise on these responses—rest on disinhibition of auditory areas, as

indicated by reduced intrinsic connectivity within A1 and STG and

backward connectivity from STG to A1. This supports the notion that

neural gain, as a plausible mechanism for mediating precision-

weighted prediction error, underlies the salience of surprising sounds

and the strength of the neural responses they generate.

4.1 | Connectivity patterns underlying the MMN

The main contributors to the MMN were modulations of intrinsic con-

nectivity within bilateral A1 and rSTG, and bilateral backward

connectivity from STG to A1. Reduced intrinsic connectivity implies

an increase in the excitability of neural populations and has been

interpreted as a salience-related enhancement of neural gain in

response to deviant sounds (Auksztulewicz et al., 2017, 2018;

Auksztulewicz & Friston, 2015). In other words, mistuned sounds may

attract attentional resources and thus be prioritized at the earliest

stages of auditory cortical processing.

That we found a reduction in top-down inhibition from secondary

to primary auditory areas and a lack of modulation of forward connec-

tions contrasts with most previous studies in which both forward and

backward connections show oddball-related effects (Auksztulewicz &

Friston, 2015; Chennu et al., 2016; Garrido, Kilner, Kiebel, &

Friston, 2007; Garrido et al., 2008; Garrido, Kilner, Kiebel, et al., 2009;

Lumaca, Dietz, Hansen, Quiroga-Martinez, & Vuust, 2020; Schmidt

et al., 2013). From a predictive coding perspective (Friston, 2005; Gar-

rido, Kilner, Stephan, et al., 2009; Huang & Rao, 2011), forward and

backward communication between brain areas reflects the update of

predictive models by prediction error. Thus, the reason why backward

connections were weakened, and forward connections remained

unchanged might be that out-of-tune deviants (which violate a rather

low-level musical regularity) are handled locally in the auditory cortex

F IGURE 6 Event-related field of the MMNm (difference between deviants and standards) for each condition, group, and hemisphere, as
observed in the experiment and predicted by DCM. The time courses correspond to the average of representative left (1611, 1621, 0231, and
0241) and right (2411, 2421, 1331, and 1341) auditory channels. Shaded areas depict 95% confidence intervals. HP, high predictability, LP, low
predictability. Note that, while data were originally baseline corrected, for DCM they were mean centered as shown in the figure
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and elicit little model updating (i.e., learning) at higher stages where

melodic expectations are likely processed. This, in turn, might indicate

that out-of-tune sounds are heard as occasional, attention-grabbing

“wrong” notes, rather than structurally novel events demanding a

change in the current predictive model of the melody. In other words,

a tone in a melody could still be predicted and recognized, even when

it is saliently out-of-tune. A similar view has been proposed by

Koelsch, Vuust, and Friston (2018), who suggest that, in typical musi-

cal MMN designs, the higher-order predictive model is so strong that

deviant sounds elicit prediction error responses that do not get

resolved at higher processing levels. As the authors put it, deviant

sounds “fall on deaf ears” and “keep knocking on the door” (p. 6).
Another finding that differs from previous research is the lack of

involvement of frontal areas in the generation of the MMN, as indi-

cated by the low probability of the opercular family. This is consistent

with the lack of frontal generators previously reported for the same

dataset (Quiroga-Martinez et al., 2019b) and in a recent fMRI study

using simple musical stimuli (Lumaca et al., 2020). This suggests that

the opercular peak found in the present source-level statistical ana-

lyses may reflect source leakage. Thus, the acoustic deviations intro-

duced (i.e., out-of-tune sounds) may have been resolved at low-level

processing stages in the temporal lobe, without engaging frontal areas

typically involved in the sequential processing of sounds (Koelsch

et al., 2002, 2009). This may have been reinforced by the fact that

participants were instructed to ignore the sounds and watch a film

instead.

Interestingly, an EEG study using the same stimuli as here found

that MMN responses were similarly modulated by melodic predictabil-

ity in participants with congenital amusia (a condition that disrupts

pitch processing) and controls (Quiroga-Martinez et al., 2021). Since

amusia most likely arises from reduced connectivity between tempo-

ral and frontal areas (Albouy et al., 2013; Peretz, 2016), this further

indicates that the processes underlying the mistuning MMN and its

modulation by predictability and musicianship are restricted to local

auditory areas in the temporal lobe. Note, however, that exploratory

Bayesian model reduction indicated that connections between rFOP

and rSTG may have been modulated by predictability and the

predictability-by-expertise interaction. This could indicate that, as

sounds become more salient, higher-order brain areas are engaged.

However, further research is needed to properly assess this claim and

dissociate it from source leakage.

4.2 | Enhancement of neural gain in predictable
melodies

The strength of intrinsic (inhibitory) connections in rA1 was reduced

in predictable compared to less predictable melodies. Such connectiv-

ity changes may thus underlie the stronger MMN response observed

for the former. This is consistent with the hypothesis that the

stimulus-driven increase in predictive precision enhances the sensitiv-

ity to upcoming sensory signals, thus providing evidence for the role

of gain modulation in precision weighting of prediction error. This

effect was found only in the right hemisphere, which may reflect the

fact that musical pitch processing in the general population is predom-

inantly right-lateralized (Albouy, Benjamin, Morillon, & Zatorre, 2020;

Zatorre, Belin, & Penhune, 2002).

4.3 | Left-lateralized gain enhancement in
musicians

Compared to nonmusicians, musicians showed disinhibition in lA1 and

backward connections from lSTG to lA1. This indicates that the stron-

ger MMN response in this group might rest on the same gain

enhancement mechanism found for the effect of predictability. In

turn, this suggests that both phenomena could be framed as enhance-

ments in predictive precision. In previous work, we have proposed the

terms “stimulus-driven” and “expertise-driven” to refer to these two

types of uncertainty reduction (Quiroga-Martinez et al., 2019b). Thus,

here we show that, although they seem to affect prediction error

responses independently, stimulus-driven, and expertise-driven uncer-

tainty reduction might rely on similar underlying changes in effective

connectivity. Furthermore, these results agree with the enhanced

responses previously found in musicians for violations of pitch-related

regularities such as interval, contour, musical tuning, and pitch pat-

terns (Boh, Herholz, Lappe, & Pantev, 2011; Fujioka, Trainor, Ross,

Kakigi, & Pantev, 2004; Herholz, Lappe, & Pantev, 2009; Koelsch,

Schröger, & Tervaniemi, 1999; Tervaniemi et al., 2014; Vuust

et al., 2012).

Interestingly, the expertise-related gain enhancement was left

lateralized, which adds to a collection of left-hemisphere specific

effects linked to musical expertise (Ellis, Bruijn, Norton, Winner, &

Schlaug, 2013; Elmer, Hänggi, Meyer, & Jäncke, 2013; Limb, Kemeny,

Ortigoza, Rouhani, & Braun, 2006; Ono et al., 2011; Tervaniemi,

Sannemann, Noyranen, Salonen, & Pihko, 2011; Vuust et al., 2005).

Considering the hemispheric specialization for temporal versus spec-

tral information and for music versus language (Albouy et al., 2020;

Zatorre et al., 2002), this could mean that musicians' pitch processing

involves a finer temporal evaluation of the sounds and more explicit

lexical knowledge of musical structure.

4.4 | A plausible mechanism for precision-
weighted prediction error

Taken together, our results suggest that the modulation of gain in

auditory areas may underlie the weighting of prediction error

responses by uncertainty (Clark, 2013; Feldman & Friston, 2010;

Hohwy, 2012), where uncertainty corresponds to unpredictable

melodic contexts and a lack of musical expertise in the current experi-

mental design. Effects on intrinsic connectivity are not necessarily

explained by short or long-term synaptic plasticity, but rather by mod-

ulations of synaptic efficacy through acetylcholine or other classical

neuromodulatory neurotransmitters (Auksztulewicz & Friston, 2016;

Baldeweg et al., 2006). Changes in synaptic efficacy may also be
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mediated by fast synchronous interactions, involving spiking inhibitory

interneurons equipped with NMDA receptors (Schmidt et al., 2013).

Consistent with our results, the precision weighting of prediction

errors has been cast as reflecting unexpected uncertainty—that is, a

momentary change in the estimated predictability of the context

induced by unexpected events—which has been associated with mod-

ulations of pupil diameter and the neuromodulator norepinephrine

(Bianco, Ptasczynski, & Omigie, 2020; Dayan & Yu, 2006; Zhao

et al., 2019). Thus, a plausible hypothesis is that the enhanced excit-

ability of auditory cortex in response to deviant sounds has its origins

in neuromodulation—and concomitant changes in synchronous gain.

Note, however, that we also found evidence for a reduction of back-

ward (inhibitory) connectivity, suggesting that the observed effects

were, at least in part, mediated by changes in the sensitivity to top-

down afferents from cortical sources higher in the auditory hierarchy.

These changes, nonetheless, are quantitatively smaller than those in

intrinsic connections and further contribute to the disinhibition of A1,

thereby facilitating gain enhancement. Future research should aim to

disentangle the specific contribution of neuromodulation and changes

in synaptic efficacy to gain control in A1.

5 | CONCLUSION

In this study, we characterized the neuronal dynamics and changes in

synaptic efficacy underlying the salience of pitch deviants and its

modulation by melody predictability and musical expertise during

music listening. Using DCM, we found that musicianship and predict-

ability, as well as deviance itself, increased neural gain in primary audi-

tory cortex through a reduction in the strength of intrinsic (inhibitory)

connectivity in A1 and STG. The MMN effect was also associated

with reduced backward connectivity from STG to A1. Gain modula-

tion in primary auditory cortex was right-lateralized in the case of pre-

dictability and left-lateralized in the case of musical expertise. Our

findings are consistent with predictive processing theories suggesting

that precise and informative error signals are prioritized by the brain

for subsequent hierarchical processing. Furthermore, they suggest

that the ability to contextualize sensory processing in musicianship

and predictable sensory streams relies on similar neuronal gain

mechanisms.
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