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A B S T R A C T

Neural responses to auditory surprise are typically studied with highly unexpected, disruptive sounds. Conse-
quently, little is known about auditory prediction in everyday contexts that are characterized by fine-grained,
non-disruptive fluctuations of auditory surprise. To address this issue, we used IDyOM, a computational model
of auditory expectation, to obtain continuous surprise estimates for a set of newly composed melodies. Our main
goal was to assess whether the neural correlates of non-disruptive surprising sounds in a musical context are
affected by musical expertise. Using magnetoencephalography (MEG), auditory responses were recorded from
musicians and non-musicians while they listened to the melodies. Consistent with a previous study, the amplitude
of the N1m component increased with higher levels of computationally estimated surprise. This effect, however,
was not different between the two groups. Further analyses offered an explanation for this finding: Pitch interval
size itself, rather than probabilistic prediction, was responsible for the modulation of the N1m, thus pointing to
low-level sensory adaptation as the underlying mechanism. In turn, the formation of auditory regularities and
proper probabilistic prediction were reflected in later components: The mismatch negativity (MMNm) and the
P3am, respectively. Overall, our findings reveal a hierarchy of expectations in the auditory system and highlight
the need to properly account for sensory adaptation in research addressing statistical learning.
1. Introduction

Surprising sounds in auditory sequences generate neural prediction
error responses (den Ouden et al., 2012). These are thought to reflect the
degree to which internal predictive models are updated by novel infor-
mation (Friston, 2005; Friston et al., 2017a,b; Lieder et al., 2013).
However, most research on auditory surprise has employed very simple
and repetitive stimuli, occasionally disrupted by highly unexpected
deviant sounds (Heilbron and Chait, 2018). Consequently, little is known
about prediction in everyday auditory environments that are character-
ized by fine-grained, non-disruptive changes in auditory surprise.

One potential way to address this issue is to employ computational
modeling to produce continuous estimates of auditory surprise in real-
istic stimuli. This approach was adopted by Omigie et al. (2013), who
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used Information Dynamics of Music (IDyOM) (Pearce, 2005, 2018), a
variable-order Markov model of auditory expectation, to estimate
note-by-note surprise in a set of melodies. Using electroencephalography
(EEG), they found that the amplitude of the N1 component of the event
related potential (ERP) became larger as the estimated surprise of the
tones increased. This suggests that it is possible to record neural re-
sponses to subtle changes in auditory expectedness in more realistic
settings.

Importantly, IDyOM incorporates both a short-term (stm) component,
which derives dynamic expectations from the statistics of the current
stimulus, and a long-term (ltm) component that derives schematic ex-
pectations from a training corpus. The latter simulates the knowledge of
auditory signals that a listener acquires during her life-span and therefore
could be a good model of auditory enculturation (Morrison et al., 2018).
Interestingly, behavioral studies have shown that IDyOM’s surprise
k.

March 2020

rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

mailto:dquiroga@clin.au.dk
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neuroimage.2020.116816&domain=pdf
www.sciencedirect.com/science/journal/10538119
http://www.elsevier.com/locate/neuroimage
https://doi.org/10.1016/j.neuroimage.2020.116816
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.neuroimage.2020.116816


Abbreviations

AIC Akaike information criterion
BEM Boundary element method
BF Bayes Factor
ERF Event related field
F0 Fundamental frequency
GMSI Goldsmiths Musical Sophistication Index
IC Information content
IDyOM Information Dynamics of Music
MA Mean amplitude
MET Musical ear test
MNI Montreal Neurological Institute
SSA Stimulus specific adaptation
WAIC Widely applicable information criterion

Table 1
Participants’ demographic and musical expertise information. Mean and stan-
dard deviation are reported.

Musicians Non-musicians

Sample size 26 24
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estimates are more strongly associated with expectedness ratings in
musicians compared to non-musicians (Hansen and Pearce, 2014; Han-
sen et al., 2016). This has been interpreted as an expertise-related
enhancement in the accuracy of internal predictive models, thus
providing support to IDyOM as a model of auditory enculturation.
However, it remains unknown whether similar signatures of long-term
statistical learning can also be observed in the neural responses to
non-disruptive auditory surprise, as modeled with IDyOM.

In the present work, we used magnetoencephalography (MEG) to
address this question by recording magnetic correlates of neural activity
while musicians and non-musicians listened passively to melodic se-
quences. Following the results of Omigie et al. (2013), we expected larger
magnetic N1 (N1m)1 amplitudes with increasing levels of estimated
surprise. Crucially, the association between surprise and neural responses
was expected to be stronger in musically trained participants because
their more precise musical knowledge—we conjectured—would match
better the ideal observer model entailed by IDyOM. This would provide
evidence for a modulation of neural activity by auditory enculturation.

In order to gain a deeper understanding of the nature of the expec-
tations reflected in the N1m, we conducted two sets of exploratory an-
alyses. As will be seen, these analyses were crucial for the interpretation
of the results from the comparison between musicians and non-
musicians. First, we aimed to disentangle the contribution of individual
components of the computational model by assessing the explanatory
power of different IDyOM configurations. We contrasted configurations
including short-term or long-term components; configurations predicting
representations of pitch interval (the pitch distance between consecutive
tones) and scale degree (the pitch interval between a tone and another
tone perceived as the tonal center of the context); and configurations
with different combinations of these factors (see section 2.3 for further
details). These comparisons aimed to reveal, for example, the extent to
which participants’ expectations relied on long-term schematic knowl-
edge relative to short-term knowledge, or on pitch interval representa-
tions relative to scale-degree representations.

Second, we compared—in sensor and source space—the N1m mod-
ulation with the magnetic counterpart of the mismatch negativity
(MMNm), which is a well-studied brain response to the violation of
auditory regularities (Bendixen et al., 2012; Garrido et al., 2009;
N€a€at€anen et al., 1978; N€a€at€anen et al., 2007). Since our dataset was
recorded employing a novel MMN experimental paradigm with realistic
non-repetitive melodies as stimuli (Quiroga-Martinez et al., 2019b,
2019a), it provided a valuable opportunity to compare these responses in
1 Henceforth, an “m” will be added when referring to the magnetic counter-
part of ERP components. When the “m” is omitted, we refer to the components
in a more general sense, encompassing both their EEG and MEG manifestations.
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the same subjects. This comparison aimed to determine whether the N1m
modulation could be better interpreted as anMMNm, something that was
not clear from the results in Omigie et al. (2013). This is interesting
because, although these components have similar scalp topography and
latency, the N1 is thought to reflect stimulus-specific adaptation (SSA)—
a process whereby neurons become less responsive to repeated sensory
stimulation—(May and Tiitinen, 2010; N€a€at€anen and Picton, 1987;
Ulanovsky et al., 2003), whereas the MMN has been proposed to reflect
the violation of auditory predictive models (Bendixen et al., 2012; Gar-
rido et al., 2009). Therefore, since the type of expectations modeled by
IDyOM are much closer to the ones that would give rise to the MMN—or
similar responses such as the Early Right Anterior Negativity (ERAN)
(Koelsch et al., 2000)—it would be surprising to see such an early sensory
component as the N1m, but not the MMNm, being modulated. This
distinction is crucial when considering musical expertise, as one would
expect probabilistic prediction, rather than SSA, to be modulated by
accurate knowledge of the statistical regularities of a musical style.

Overall, this study sought to unveil the nature of the expectations
reflected in neural responses to non-disruptive surprise, as well as the
effect of expertise on them. Anticipating the results, the lack of differ-
ences between musicians and non-musicians, the fact that pitch-interval
models show the best performance, and the clear dissociation between
the N1m and the MMNm, all point to a rather surprising set of conclu-
sions: that SSA, instead of probabilistic prediction, underlies the modu-
lation of the N1m; that pitch-interval size alone better explains this effect;
and that auditory regularities and higher-order probabilistic predictions
are reflected in later components such as the MMNm and the P3am.

2. Methods

The data, code and materials necessary to reproduce these experi-
ments and results are openly available at: https://osf.io/my6te/; DOI:
10.17605/OSF.IO/MY6TE.

2.1. Participants

Twenty-six musicians and 24 non-musicians took part in the experi-
ment (see Table 1 for demographics). All participants were neurologi-
cally healthy, right-handed and did not possess absolute pitch. Musical
expertise was assessed with the musical training subscale of the Gold-
smiths Musical Sophistication Index (GMSI) (Müllensiefen et al., 2014).
Musical skills were measured with the rhythm andmelody sections of the
Musical Ear Test (MET) (Wallentin et al., 2010). GMSI (t ¼ 16.5, p <

.001) and MET total scores (t ¼ 5.2, p < .001) were significantly higher
for musicians than for non-musicians. Moreover, most musicians played
pitched instruments, the most common being the piano. See supple-
mentary file 1 for a full report of instruments played, and supporting file
4 in Quiroga-Martinez et al. (2019a) for a detailed report of individual
items of the GMSI subscale. Participants were recruited through an online
database and agreed to take part in the experiment voluntarily. All par-
ticipants gave informed consent and were paid 300 Danish kroner
(approximately 40 euro) as compensation. Two musicians (not included
in the reported demographics) were excluded from the analysis due to
strong artefacts caused by dental implants. The study was approved by
Female 10 13
Age 24.15 (�2.89) 26.54 (�3.4)
GMSI 35.96 (�6.57) 10.67 (�4.03)
MET (melody) 41.5 (�4.43) 33.17 (�5.39)
MET (rhythm) 40.77 (�4.55) 35.79 (�5.33)
MET (Total) 82.27 (�8.35) 69.12 (�9.44)

https://osf.io/my6te/
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the Regional Ethics Committee (De Videnskabsetiske Komit�eer for Re-
gion Midtjylland in Denmark) and conducted in accordance with the
Helsinki Declaration.
2.2. Stimuli

The stimuli corresponded to a set of six novel melodies composed
following the rules of classical Western tonal music. These melodies were
used in a recent MMN experiment (high entropy condition in Quir-
oga-Martinez et al., 2019b). Each melody was 32 notes long and lasted 8
s. Major- andminor-mode versions of the melodies were transposed to six
different keys (C, C#, D, D#, E, F) and were presented pseudorandomly
one after the other so that no melody was repeated before all melodies
were played. The major and minor versions of each melody were
repeated twelve times, in randomly selected transpositions. The stimuli
were delivered in three blocks lasting around 7min each and were part of
a longer experimental session that included other conditions addressing
questions beyond the scope of this study. Data from these conditions have
been (Quiroga-Martinez et al., 2019a, 2019b) and will be published
elsewhere. Individual tones were created using a piano sample and had a
duration of 250 ms. The pitch range of the melodies, as presented during
the session, spanned 31 semitones from B3 (F0 � 247 Hz) to F6 (F0 �
1397 Hz). Since the experiment was designed as a multifeature MMN
paradigm, several types of deviants were inserted in the melodies.
Relevant for this study are pitch (or mistuning) deviants, which consisted
of a 50-cents (quarter-tone) pitch rise with respect to the standard tones.
See Quiroga-Martinez et al. (2019b) for further details.
Table 2
Widely Applicable Information Criteria (WAIC) and their standard error (SE), for
each of the estimated mixed-effects models. For each comparison between
adjacent models (i.e. “Model” vs “Null”), Bayes factors in favor of the alternative
(BF10) and the null (BF01) are also reported. The predictors included in each
model are indicated as follows: Int ¼ Intercept, quant ¼ IC quantile, hem ¼
hemisphere, exp¼ expertise. Interactions are marked with colons (“:”). Note that
the models also included participant-wise random effects for the intercept, the
effects of IC quantile and hemisphere, and the quantile-by-hemisphere interac-
tion. Comparisons with moderate or strong evidence for either the null or the
alternative are highlighted in bold and marked with an asterisk “*”.

Model Predictors Null WAIC WAIC
(SE)

BF10 BF01

m0 Int NA 8945.24 56.57 NA NA
m1 Int þ quant m0 8839.13 55.83 >

1000*
< .001

m2 Intþ quantþ hem m1 8360.36 65.14 >
1000*

< .001

m3 Int þ quant þ hem
þ exp

m2 8360.44 65.12 0.34 2.93

m4 Int þ quant þ
hem þ exp þ
quant:exp

m3 8361.24 65.06 0.24 4.21*

m5 Int þ quant þ
hem þ exp þ
quant:exp þ
quant:hem

m4 8362.08 64.69 <.001 434.07*

m6 Int þ quant þ hem
þ exp þ quant:exp
þ quant:hem þ
hem:exp

m5 8362.46 64.71 0.89 1.12

m7 Int þ quant þ hem
þ exp þ quant:exp
þ quant:hem þ
hem:exp þ
quant:hem:exp

m6 8363.41 64.67 0.43 2.33
2.3. A computational model of auditory expectation

To obtain continuous measures of auditory surprise we used IDyOM
(Pearce, 2005, 2018), a variable-order Markov model of expectation that
quantifies surprise as information content (IC):

ICp ¼ � log2 p

Here p is the conditional probability of the current sound event, given
previous events in the sequence and the long-term training of the model.
This formulation implies that the lower the probability of the event, the
larger its IC value and thus the surprise it generates in the listener.
IDyOM estimates continuation probabilities by keeping track of the
number of times a given pattern of events has occurred. The model takes
into account patterns of variable length (“n-grams”) whose probabilities
are combined through a smoothing process to produce the output values
(see Pearce, 2005 for details). An advantage of IDyOM is that it can
simulate different types of expectations. Specifically, it has a short-term
(stm) submodel that generates dynamic expectations derived from the
current auditory sequence and a long-term (ltm) submodel that simulates
life-long schematic expectations derived from a large training corpus. In
Omigie et al. (2013), a configuration that combined both the ltm and stm
submodels was used. This configuration, known as bothþ, simulates a
listener who employs short-term and long-term expectations to predict
pitch continuations, but who also updates the ltm submodel with the
knowledge gathered from the current stimulus (as indicated by the “þ”

symbol). Here, the corpus used to train the ltm submodel was the same as
in Omigie et al. (2013) and corresponded to a collection of hymns and
folk songs belonging to the Western tonal tradition.

IDyOM can use representations of different features of the auditory
input, known as viewpoints, to make its probabilistic predictions.
Following Omigie et al. (2013) and other behavioral work (Agres et al.,
2018; Hansen and Pearce, 2014; Hansen et al., 2016), we used a joint
representation of scale degree (“cpint”) and pitch interval (“cpintfref”)
viewpoints to predict pitch (“cpitch”) continuations in the melodies. This
is our reference model. The scale degree viewpoint assigns a category to
each tone in a musical scale with reference to its tonal center, irrespective
of its absolute pitch height. Scale degrees are hierarchically organized in
3

Western tonal music so that, if context is kept constant, more prominent
degrees (e.g., the tonic) are more frequent and are perceived as more
expected than less prominent degrees (e.g., the leading tone) (Krum-
hansl, 1990). Transitions between scale degrees are idiomatic so that, for
example, a leading tone would most often be followed by the tonic
(Huron, 2006, p. 160). The pitch-interval viewpoint, on the other hand,
quantifies the distance in semitones between consecutive tones. Idio-
matic preferences pertaining to pitch interval also exist in Western tonal
music such as the preponderance of small pitch intervals and note rep-
etitions (Huron, 2006, p. 74).

To assess the contribution of different components to model perfor-
mance, we compared different configurations of IDyOM. As a first step,
we compared the reference configuration (both þ with scale degree and
pitch interval viewpoints combined) with a model that did not derive
long-term knowledge from the current sequence (i.e., both). This aimed to
reveal the extent to which listeners updated their long-term knowledge
based on the current melodies. In a second step, the parameters were
manipulated along two dimensions. First, we created submodels with
either an stm or ltm component only, the comparison of which indicated
the extent to which listeners relied on long-term or short-term expecta-
tions only. Second, we created submodels with either a scale degree or a
pitch interval viewpoint only. Comparing these models allowed us to
assess the extent to which participants’ expectations were primarily
based on one of these musical features compared to the other. Orthogonal
manipulations of these dimensions gave rise to the configurations shown
in Fig. 5 and Table 3. IC values based on each of these configurations
were obtained for every tone in the melodies (see Fig. 1 for an example).
The values were binned into ten quantiles corresponding to increasing IC
levels across the entire stimulus set and used for the analyses of the MEG
data. Note that an stm model with scale degree and interval viewpoints
was not included, as the range of IC values was not sufficiently large to
avoid having the same value repeated in different quantiles.



Table 3
Performance of different IDyOM configurations in predicting the N1m amplitude from estimates of information content (IC), as measured by the variance explained at
the group (mixed-model) and individual (intra-subject) level. The slope of the association between surprise (IC quantile) and N1m amplitude and corresponding
confidence interval (CI), and the correlation between estimated surprise and the N1m amplitude averaged (or collapsed) across all subjects are also reported. The latter
provides measures comparable to the correlations reported in Omigie et al. (2013).

Viewpoint Submodel r2 (mixed model) max r2 (intra-subject) Slope CI (2.5%) CI (97.5%) r (collapsed mean amplitude)

interval ltm 0.15 0.44 �2.91 �3.5 �2.32 �0.89
interval both 0.14 0.41 �2.77 �3.32 �2.22 �0.86
interval bothþ 0.12 0.37 �2.47 �3.01 �1.94 �0.79
scale degree & interval bothþ 0.1 0.34 �2.16 �2.64 �1.69 �0.85
scale degree bothþ 0.05 0.26 �1.52 �1.96 �1.08 �0.75
interval stm 0.04 0.21 �1.3 �1.77 �0.83 �0.68
scale degree & interval both 0.03 0.28 �1.22 �1.68 �0.75 �0.56
scale degree & interval ltm 0.02 0.26 �1.07 �1.55 �0.6 �0.44
scale degree ltm 0.02 0.19 �0.92 �1.38 �0.47 �0.41
scale degree both 0.02 0.19 �0.81 �1.25 �0.38 �0.43
scale degree stm 0 0.19 0.47 0 0.93 0.16

Fig. 1. Example of one of the melodies used in the experiment and its estimated
information content (IC, blue line). Values were obtained employing the refer-
ence model (Both þ with scale degree and pitch-interval viewpoints combined).
Note that out-of-key accidental tones (preceded by sharps, i.e. #) that belong to
the 12-tone chromatic set (corresponding to all keys on the piano) but fall
outside the 7-tone diatonic set (corresponding to the white keys on the piano in
the key of C-major) typically result in higher information content (IC) than notes
belonging to the diatonic set. For this experiment, out-of-tune deviant tones
outside the chromatic set were also introduced (not displayed here). See Quir-
oga-Martinez et al. (2019b) for details in this regard, and the high-entropy (HE)
condition in the supporting file 1 of the same study for the full stimulus set and
corresponding IC estimates.
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2.4. Procedure

At the beginning of the session, participants received oral and written
information and gave their consent. Then they filled out the Gold-MSI
questionnaire and completed the MET. Once participants had put on
MEG-compatible clothing, electrodes and coils were attached to their
skin and their heads were digitized. During theMEG recording, they were
sitting upright in the MEG device looking at a screen. Before presenting
the musical stimuli, their auditory threshold was measured through a
staircase procedure and the sound level was set at 60 dB above threshold.
Participants were instructed to watch a silent movie, ignore the sounds,
and move as little as possible. They were told there would be music
playing in the background interrupted by short pauses so that they could
take a break and adjust their posture. Sounds were presented through
isolated MEG-compatible ear tubes (Etymotic ER�30). The MEG
recording lasted approximately 90 min and the whole experimental
session took between 2.5 and 3 h including consent, musical expertise
tests, preparation, instructions, breaks, and debriefing.
4

2.5. MEG recording and preprocessing

Magnetic correlates of brain activity were recorded at a sampling rate
of 1000 Hz using an Elekta Neuromag MEG TRIUX system with 306
channels (204 planar gradiometers and 102 magnetometers). Partici-
pants’ head position was continuously monitored with four coils (cHPI)
attached to the forehead and the mastoids. Offline, the signals coming
from inside the skull were isolated with the temporal extension of the
signal source separation (tSSS) technique (Taulu and Simola, 2006) using
Elekta’s MaxFilter software (Version 2.2.15). This procedure included
movement compensation in all but two non-musicians, for whom
continuous head position information was not reliable due to suboptimal
placement of the coils. However, in these cases the presence of reliable
auditory event-related fields (ERFs) was successfully verified by visually
inspecting the amplitude and polarity of the P50m component. Eye-blink
and heartbeat artefacts were corrected with the aid of electrocardiog-
raphy (ECG) and electrooculography (EOG) recordings, and independent
component analysis as implemented by a semi-automatic routine (Fas-
tICA algorithm and functions find_bads_eog and find_bads_ecg in the soft-
ware MNE-Python) (Gramfort, 2013). Visual inspection was used as a
quality check.

The ensuing analysis steps were conducted with the Fieldtrip toolbox
(version r9093) in Matlab (Oostenveld et al., 2011). Epochs comprising a
time window of 0–400 ms after sound onset were extracted and
baseline-corrected, with a pre-stimulus baseline of 100 ms. The epochs
were then low-pass filtered with a cut-off frequency of 35 Hz and
down-sampled to a resolution of 256 Hz. Each epoch was assigned to a
category according to the IC quantile of the corresponding sound, for a
given IDyOM model. For each participant and quantile, ERFs were
computed by averaging the responses for all the tones belonging to the
quantile. The four initial tones of each melody were excluded from the
analyses to avoid neural activity related to the transition between mel-
odies (e.g., effects of key change). Tones preceded by a deviant were also
excluded to avoid carryover effects from the deviant response. Between
250 and 350 epochs were averaged per IC quantile.
2.6. Sensor-level analyses

The statistical analyses were performed on the magnetometers
because this allowed us to properly look at the polarity of the magnetic
fields, which is fundamental to disentangle different components such as
the P50m, N1m and P2m. To assess whether ERF amplitude increased
with information content, we performed a dependent-samples regression
(ft_statfun_depsamplesregrT function in Fieldtrip) for musicians and non-
musicians separately in a mass-univariate analysis. This type of regres-
sion employs the mean of the participant-wise coefficients to assess
whether the association is greater than zero, thus giving a group-level t-
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statistic as output. To account for multiple comparisons, we used cluster-
based permutations with p¼ 0.05 as cluster-forming threshold, t-maxsum
as statistic, and 10,000 iterations. A time window between 0 and 300 ms
after onset was selected, to avoid substantial overlap with the neural
activity of the next tone (starting at 250ms), but at the same time explore
possible unexpected effects (e.g., in the P50m or the P2m components).
To assess whether the association between neural activity and surprise
was different for musicians and non-musicians, in a first-level analysis we
obtained t-values reflecting the strength of association between IC
quantile and neural activity for each participant, at each time point and
sensor (ft_statfun_indepsamplespregrT function), which were then
compared between groups in a second-level analysis with a two-sided
independent-samples t-test (ft_statfun_indepsamplesT function). Cluster-
based permutations were used to correct for multiple comparisons as
indicated above.

To assess the relative evidence for the absence or the presence of an IC
quantile-by-expertise interaction, we applied Bayesian estimation to
mean N1m amplitudes. These amplitudes corresponded to the mean ac-
tivity � 20 ms around the peak, extracted from the average of the 4
channels in each hemisphere that showed the strongest effect of IC
quantile in the mass-univariate analyses (left channels: 0231, 0241,
1611, 1621; right channels: 1341, 1331, 2411, 2421). Since the ERFs
have opposite polarities in different hemispheres, we multiplied left-
hemisphere mean amplitudes by �1, so that they had the same (nega-
tive-going) polarity found in right-hemisphere amplitudes.

Several mixed-effects models were estimated using the brm function
from the brms package (Bürkner, 2017) in R (R Core Team, 2019) and
compared in an incremental way, adding one term at the time until
reaching a full model with all main effects and interactions (Table 2).
Participant random effects were included for intercept and slopes. The
prior for the effect of IC quantile was taken from the reported results in
Omigie et al. (2013), which showed a difference of around 1.5 μV be-
tween quantiles 1 and 10 for control participants. Standardizing this
difference with the reported variance gives an effect size of about 0.96.
This effect was extrapolated to our magnetometer data using the variance
around the N1m time window taken from a previous auditory dataset
collected with the same MEG scanner, which resulted in a difference of
about 30 fT between quantiles 1 and 10. Therefore, a plausible slope
would be 30/9¼ 3.33 fT/quantile, which we rounded to 3.5 fT/quantile.
With this rough estimate, we set a conservative Gaussian prior centered
at 0 with SD ¼ 3.5 fT/quantile. In other words, we regard effects similar
or smaller than 3.5 fT/quantile as most likely, and effects larger than
twice this value as very unlikely. For the IC quantile-by-expertise inter-
action we set a similar prior centered at zero with SD¼ 1.75 fT/quantile,
which means that we regard modulations equal to or smaller than half of
the main effect to be most likely. The same prior was set for other
interaction terms involving IC quantile. Regarding the main effects of
expertise and hemisphere, Gaussian priors centered at zero with SD ¼ 10
fT were set, which are also conservative and represent rather small effect
sizes. Finally, for the intercept of the model as well as the standard de-
viation and random effects, weakly informative priors were set, corre-
sponding to a uniform distribution between 0 and 100 fT. Models were
built in an incremental way, with m0 having an intercept only (null
model), m1 adding a term for IC quantile, m2 adding a term for hemi-
sphere, and so on (Table 2). The full model (m7) included all main effects
and interactions. Comparisons between adjacent models (i.e., models
with and without a particular factor) were performed by estimating
Bayes factors (BF) and Widely Applicable Information Criteria (WAIC)
(Wagenmakers et al., 2018; Watanabe, 2010). Of particular interest is the
comparison between m3 and m4, as it assessed the evidence for the IC
quantile-by-expertise interaction.

2.6.1. Comparisons between IDyOM configurations
To compare the different IDyOM configurations shown in Table 3,

several metrics were used. First, we took the peak r2-value across the
whole sensor array for each model, resulting from the average of
5

participant-wise first-level regression analyses (ft_statsfun_indep-
samplesregrT function). Second, we obtained maximum likelihood esti-
mates of linear mixed effects models (function lmer, package lme4, Bates
et al., 2015) of N1m mean amplitudes (instead of Bayesian estimates for
speed of processing), including IC quantile and hemisphere as predictors,
and random intercepts and slopes for participants. r2-values for the effect
of IC quantile were also obtained.

2.6.2. Comparison with the MMNm
The preprocessing steps for the measurement of the MMNm were the

same as for the N1m, with the difference that, instead of surprise levels,
an ERF was computed for only two conditions: standards and deviants.
The MMNm is the difference between these two conditions, which was
assessed here for magnetometers through paired-samples t-tests in mass-
univariate analyses (note that statistical analyses for the MMNm had
previously been conducted for gradiometers in Quiroga-Martinez et al.,
2019a, 2019b). The deviants analyzed here correspond to out-of-tune
tones (i.e., tones with pitches outside the musical tuning system that
cannot normally be played on a piano). Note that other deviants were
also present in the experiment, but we focused on mistunings as they are
disruptive with regard to pitch, which is the feature modeledwith IDyOM
in this study. Independent-samples t-tests on MMNm difference waves
were used to assess the effect of expertise. For the comparison between
the two components, the N1m was calculated as the difference between
IC quantile 10 and IC quantile 1. In this case, the model with the best
performance was used (ltm with a pitch-interval viewpoint), to increase
the signal-to-noise ratio. Two-sided paired-samples t-tests were used to
compare the resulting MMNm and N1m difference waves. Cluster-based
permutations were employed as multiple comparisons corrections in all
analyses, as described above. Since, based on visual inspection, the peak
latency of the N1m and the MMNm seemed to be different—which might
give misleading results in the permutation tests—we additionally per-
formed two-sided paired-samples t-tests on peak latencies and mean
amplitudes separately, estimated as described above.
2.7. Source reconstruction

For source reconstruction we employed the multiple sparse priors
method (Friston et al., 2008) in SPM12 (version 7478). Individual
anatomical magnetic resonance images (MRI) were available for 20
musicians and 20 non-musicians only. These are the participants
included in the analysis. In the case of two excluded musicians and one
excluded non-musician, the images were corrupted by artefacts. The
remaining excluded participants did not attend the MRI session. Two
brain images were acquired with a magnetization-prepared two rapid
gradient echo (MP2RAGE) sequence (Marques et al., 2010) in a Siemens
Magnetom Skyra 3T scanner. These images were combined and
motion-corrected to form unified brain volumes, which were subse-
quently segmented, projected into MNI coordinates, and automatically
coregistered with the MEG sensor array employing digitized head shapes
and preauricular and nasion landmarks. Coregistration outputs were
visually inspected. Lead-fields were constructed using a single-shell BEM
model with 20.484 dipoles (fine grid). A volume of the inverse solution
was created for each participant between 75 and 125 ms for the N1m
(difference between quantile 10 and quantile 1 for the ltm pitch-interval
model), and between 175 and 225ms for the MMNm (difference between
deviants and standards). These time windows were chosen based on the
peak amplitude of each component and are warranted by the output of
statistical tests. The volumes for each component were submitted to a
two-sided one-sample t-test to reveal the sources consistently identified
across all participants. To assess possible differences between the N1m
and the MMNm, the volumes were also compared in a two-sided pair-
ed-samples t-test. The error rate of voxel-wise multiple comparisons was
corrected with random field theory, with a cluster-level alpha threshold
of 0.05 (Worsley, 2007).
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3. Results

3.1. Modulation of the N1m and expertise effects

Dependent-samples regressions revealed a significant association
between the amplitude of the evoked responses and IC quantile (Fig. 2)
for both musicians and non-musicians around 100 ms after sound onset .
This association was largest at temporal magnetometers, was negative in
the right hemisphere and was positive in the left hemisphere (Fig. 3a).
This reflects the inversion of the recorded magnetic field given the
hemisphere-dependent orientation of the source with respect to the
sensor array. No significant differences between musicians and non-
musicians were detected in the second-level analysis (smallest p-value
¼ .2).
3.2. Bayesian analyses of N1m amplitudes

Results from the Bayesian analyses are shown in Table 2 and Fig. 4.
WAIC values indicate that adding IC quantile (m1) and hemisphere (m2)
significantly improves predictive power, but adding the main effect of
expertise (m3) or any interaction term does not improve the predictive
power any further. Estimations of model weights (Fig. 4c) also suggest
m2 as the winning model. A similar picture can be inferred from Bayes
factors. The m1model—with a term for IC quantile—is much more likely
than an intercept-only model (m0), and the m2 model—including hem-
isphere—is much more likely than the m1 model. This strong effect of
hemisphere might be a carryover from the P50m component, which was
larger in right-hemisphere channels. No other comparisons support
alternative models. Instead, in a few cases there is evidence for null
models. Of paramount interest here is the comparison between m3 and
m4, which suggests that a model with no interaction between IC quantile
and expertise is about 4.2 times more likely than a model with it
(Table 2). We regard this as moderate evidence for the null hypothesis.
Similarly, a model with no IC quantile-by-hemisphere interaction (m4) is
about 434 times more likely than a model with it (m5). The remaining BF
suggest the absence of an effect of expertise, the absence of a hemisphere-
by-expertise interaction, and the absence of a three-way-interaction
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between IC quantile, hemisphere and expertise. In these cases, however,
the BF are inconclusive. Finally, a look at the parameters shows that only
the estimates for the main effects of IC quantile and hemisphere are
credibly different from 0 across all models compared (supplementary file
2 / supplementary figure 1).
3.3. Comparison of IDyOM configurations

The performance of IDyOM configurations in terms of predicting the
N1m amplitude from IC estimates is reported in Table 3 and Fig. 5. Even
though the reference model (Bothþ, with scale degree and interval
viewpoints combined) performed well, models that included only a long-
term component and an interval-only viewpoint performed better. This
was reflected in larger r2-values and steeper slopes. Models with only
scale-degree viewpoints and/or short-term components performed
poorly. The best model employed a long-term component and an
interval-only viewpoint. Given that in Western tonal music (and there-
fore in our training corpus), smaller intervals are more common than
larger ones, it could be the case that the effects observed are caused by
the size of the interval itself rather than its IC, which would explain why
long-term interval-only models had the best fit. For this reason, in further
exploratory analyses, four categories of tones were averaged for each
participant, comprising small-interval transitions (� 2 semitones) with
either low IC (small/low-IC, � 4) or high IC (small/high-IC, > 4); and
large-interval transitions (� 3 semitones) with either low IC (large/low-
IC) or high IC (large/high-IC). Cluster-based, permutation-corrected
paired-samples t-tests conducted in a 50–300 ms time window revealed
significant differences between large/high-IC and large/low-IC for mu-
sicians and non-musicians (Fig. 6). Crucially, these differences were
found in later time windows that excluded earlier N1m latencies.
Moreover, the direction of this effect was the opposite of that of the N1m
modulation. This resulted in the polarity shown in Fig. 3e, which would
presumably correspond to a positive deflection in an EEG recording and
could be interpreted as the magnetic counterpart of the P3a (P3am) (see
section 4.2). Using the methods described above, the neural generators of
this effect were localized in frontal (peak location: 42, 32, �14), parietal
(peak locations: -36,-64, 54; 56, �24, 32 and 38,-26, 56) and inferior
Fig. 2. Effect of surprise (IC quantile) on the
amplitude of the evoked response for both
groups and hemispheres. For descriptive
purposes, the time points when positive
(“pos”) and negative (“neg”) clusters were
significant are indicated with green hori-
zontal bars. Note that this is not an accurate
estimate of the true temporal extent of the
effects (Sassenhagen and Draschkow, 2019).
Displayed activity corresponds to the average
of the four temporal magnetometers in each
hemisphere with the strongest effect (left
channels: 0231, 0241, 1611, 1621; right
channels: 1341, 1331, 2411, 2421). Vertical
dashed lines indicate the onset of the next
tone.



Fig. 3. Topographic maps of the difference
between: a) surprising (quantile 10) and
unsurprising (quantile 1) tones for the
reference model (bothþ with scale degree
and pitch interval viewpoints combined); b)
tones following large (� 5 semitones) and
small (1 semitone) intervals; tones following
large (� 3 semitones) and small (� 2 semi-
tones) intervals with either c) low-IC or d)
high-IC; and e) high-IC and low-IC tones
following large intervals. For a, b, c, and d,
activity between 80 and 120 ms is displayed,
corresponding to a modulation of the N1m
component; whereas for e, activity between
150 and 300 ms is displayed, potentially
corresponding to a P3am component. Note
the change in polarity between the two time
windows. Stars mark the channels where
regression analyses (a, b) or pairwise con-
trasts (c, d, e) were significant. Note that this
is not an accurate estimate of the true spatial
extent of the effects (Sassenhagen and
Draschkow, 2019).

Fig. 4. A) N1m amplitude as a function of
surprise (IC quantile). Bayesian estimates of
the IC quantile slopes (colored lines) and
corresponding 95% credible intervals
(shaded areas) are also displayed. Note that
mean amplitudes in the left hemisphere were
multiplied by �1 in order for them to have
the same polarity as those in the right
hemisphere. B) Bayesian estimates of the
individual- (small gray dots) and group-level
(larger circles) association between IC
quantile and N1m amplitude. Error bars
represent 95% credible intervals. C) Poste-
rior model weights resulting from the incre-
mental Bayesian model comparisons. N ¼
non-musicians, M ¼ musicians. See Table 2
for a description of each model.
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temporal regions (peak location: 52, �58, �6) (Fig. 9). Note, however,
that the signal-to-noise ratio of this effect was lower than that of the
MMNm or the N1m effect, which resulted in no significant differences
after multiple-comparisons correction. For this reason, we report un-
corrected statistical maps thresholded at p < 0.0005.

Regarding small intervals, a significant difference was found between
small/high-IC and small/low-IC around 200 ms after sound onset, only for
musicians in the right hemisphere. The direction of this effect was opposite
to the one found for the comparison between large/high-IC and large/low-
IC (Fig. 6). Note, however, that the p-value was close to the significance
threshold in this case. Finally, in contrast to these analyses, when large and
small intervals were compared for low-IC and high-IC tones separately,
significant differences in the N1m time window (50–150 ms) in the ex-
pected direction were found in both groups (Fig. 3c and d).
7

In addition, we performed a within-subjects regression analysis using
absolute interval size (with no IDyOM modeling) as predictor. We
grouped and averaged the tones into five categories comprising intervals
with either 1, 2, 3, 4 or�5 semitones. The number of categories could not
be increased as there were few instances of large intervals. The analysis
showed that interval size was strongly associated with the amplitude of
the N1m in musicians and non-musicians (Figs. 7 and 3b; maximum
grand-averaged intra-subject r2 ¼ 0.52). The variance explained by this
model was higher than the one explained by any of the IDyOM config-
urations (Table 3). However, note that part of this outcome might be due
to including five instead of ten categories, which already reduced the
variance in the data. Interestingly, all categories showed a monotonic
amplitude increase, except for 1-semitone intervals, whose amplitude
was larger than expected (Fig. 7).



Fig. 5. Grand-averaged topographic maps of the variance (r2) in neural activity explained by each IDyOM configuration for each participant (i.e., first-level intra-
subject variance). Configurations included scale degree and pitch interval viewpoints, and their combination, as well as short-term (stm) and long-term (ltm) sub-
models, and their combination (Both and Bothþ).

Fig. 6. Event-related fields for tones with
high (>4 bits) or low ð� 4 bits) surprise (i.e.,
information content) following small (� 2
semitones) or large (� 3 semitones) in-
tervals. The reference model (Bothþ with
scale degree and pitch-interval viewpoints
combined) was used to obtain the estimates.
For descriptive purposes, horizontal colored
lines indicate positive (“pos”) or negative
(“neg”) clusters associated with differences
between conditions. Note that they are not
an accurate estimate of the true temporal
extent of the effects (Sassenhagen and
Draschkow, 2019). The color of the lines
indicates whether the contrast between
high-IC (dashed lines) and low-IC (solid
lines) tones was made for large (red) or small
(blue) intervals. Vertical dashed lines mark
tone onsets.
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3.4. Comparison between the MMNm and the N1m difference wave

Mass-univariate analyses revealed that the MMNm and the N1m dif-
ference wave (high IC – low IC) were substantially different (Fig. 8). The
latency of the MMNmwas significantly longer (t¼ 35.68, p< .001) and its
amplitudewas significantly larger (t¼8.37,p< .001) than thoseof theN1m
8

effect, in themeanandpeakamplitude analyses.Moreover, expertise effects
were found for the MMNm (p < .001), thus reproducing in the magne-
tometer space the differences previously reported for combined gradiom-
eters (Quiroga-Martinez et al., 2019a). Regarding source analyses,
one-sample t-tests suggested that the main generators of both the MMNm
and the N1m effect were located in the surroundings of primary auditory



Fig. 7. Neural responses to pitch intervals of
different size (in semitones) in both groups
and hemispheres. For descriptive purposes,
the time points when positive (“pos”) and
negative (“neg”) clusters were significant are
indicated with green horizontal bars. Note
that they are not an accurate estimate of the
true temporal extent of the effects (Sassen-
hagen and Draschkow, 2019). Displayed ac-
tivity corresponds to the average of the four
temporal magnetometers in each hemisphere
with the strongest effect (left channels: 0231,
0241, 1611, 1621; right channels: 1341,
1331, 2411, 2421). Vertical dashed lines
indicate the onset of the next tone.

Fig. 8. Event-related fields of the N1m effect
(i.e. quantile 10 - quantile 1 of the ltm
interval-only model) and the MMNm
(deviant - standard). For descriptive pur-
poses, green horizontal lines indicate the
times when differences between components
were significant. Note that this is not an ac-
curate estimate of the true temporal extent of
the effects (Sassenhagen and Draschkow,
2019). Shaded areas depict 95% confidence
intervals. Displayed activity corresponds to
the average of the four temporal magne-
tometers in each hemisphere with the
strongest N1m modulation (left channels:
0231, 0241, 1611, 1621; right channels:
1341, 1331, 2411, 2421). Dashed vertical
lines indicate tone onsets.
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cortex, as expected (Fig. 9). The peak activation for theMMNmwas located
in the anterior part of the primary auditory cortex (A1) in the right hemi-
sphere (56, 0, 2), and in the posterior portion of A1 in the left hemisphere
(�48,-16,�4). For theN1meffect, thepeakwas located in theposterior part
of A1 inbothhemispheres (right: 48,�18, 6; left: -46,-18,�4). The contrast
between the two components did not yield significant results.
9

4. Discussion

In this study, we aimed to determine whether the modulation of
neural activity by subtle changes in auditory surprise—as estimated with
a computational model of expectations (IDyOM)—is affected by musical
expertise. Our results showed that surprise estimates were associated



Fig. 9. Neural generators of the MMNm, N1m effect and P3am effect. Color
maps depict t-statistics from one-sample t-tests. For the N1m and MMNm, the
maps are thresholded at p ¼ 0.05, after multiple-comparisons correction. For the
P3am effect the map is thresholded at p ¼ 0.0005, without multiple-
comparisons correction. Participants from both groups were included in the
tests, as no statistically significant differences were detected between musicians
and non-musicians.
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with the amplitude of the N1m in both groups, thus replicating the
findings by Omigie et al. (2013). However, contrary to our expectations,
non-significant null-hypothesis-testing results and Bayesian analyses
indicated no differences between musicians and non-musicians in the
strength of this association.
4.1. Interval size and sensory adaptation better explain N1m responses

Further exploratory analyses provided clues about the nature of the
expectations reflected in the N1mmodulation, and an explanation for the
lack of differences between the groups. Comparisons of IDyOM config-
urations indicated that models predicting pitch interval based on long-
term knowledge performed best, and even better than the reference
model used by Omigie et al. (2013) (Bothþ with pitch interval and scale
degree viewpoints combined). In contrast, models predicting scale de-
gree based on short-term expectations performed the worst. Given that,
in Western tonal music (which is the style that IDyOM was configured to
model in the present experiment), smaller intervals are much more
common and therefore overall less surprising than larger intervals, it is
possible that the modulation of the N1m could be explained by a much
simpler factor: Interval size.

In additional analyses, we showed that if high-IC (i.e., surprising)
tones are contrasted with low-IC (i.e., less surprising) tones when interval
size is kept constant, the differences previously observed in the N1m are
not detected anymore. Conversely, if tones following a large interval are
contrasted with those following a small interval while surprise is kept
constant, then the differences still persist. Furthermore, N1m amplitude
was shown to significantly increase with larger interval sizes. All of this
indicates that interval size, rather than probabilistic prediction, is the
most likely factor behind the reported effect.

This explanation is compelling when one considers that the amplitude
of the N1 is modulated by stimulus specific adaptation or SSA (May and
Tiitinen, 2010; May et al., 2015; N€a€at€anen and Picton, 1987;
P�erez-Gonz�alez and Malmierca, 2014). SSA occurs when neural pop-
ulations that respond to the spectral content of the stimulus become less
responsive with subsequent presentations of the same or a similar stim-
ulus, likely due to synaptic depression (May et al., 2015; Ulanovsky,
2004; Ulanovsky et al., 2003; Yarden and Nelken, 2017). Thus, tonotopic
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neurons responding to a tone become adapted, and therefore the neural
activity generated by an equal or spectrally similar successive tone would
be attenuated. However, if the successive tone is sufficiently different,
non-adapted neurons would be engaged, thus producing more robust
neural responses. Therefore, while the melodies used here were delib-
erately composed to avoid pitch repetitions, it could be that our results
are driven by increased neural responses to sounds farther apart in their
spectral content, which is the case for tone transitions with larger pitch
intervals. It has to be noted that, although SSA has almost exclusively
been studied with pure tones—as opposed to the complex tones used
here—some studies have demonstrated SSA for complex sounds (Nelken
et al., 2013) and even frequency selectivity for broadband sounds
(Rauschecker et al., 1995). Moreover, an acoustic analysis of our stimulus
set (supplementary file 3) shows that the spectral similarity within pairs
of piano tones decreases with pitch distance, which is consistent with the
suggested explanation. Finally, pitch distance might not be the only
relevant variable affecting SSA, as 1-semitone intervals were shown to
have a larger amplitude than expected. This points to future research
efforts in which the spectral difference between consecutive tones and its
effect on N1 amplitudes are carefully modeled, measured and tested.

The results in Omigie et al. (2013) are in agreement with the expla-
nation above. When comparing different IDyOM configurations, they
found that those including a pitch-interval viewpoint performed the best.
Note, though, that scale degree viewpoints had a good performance as
well. This could be explained by the fact that scale degree and interval
size are also correlated, since scale degree transitions are dominated by
stepwise motion (Huron, 2006, p. 160). In our study, scale degree was
also associated with neural activity, although to a lesser degree than in
Omigie et al. (2013). This might have to do with potential differences in
interval distributions between the two stimulus sets. Moreover, Hansen
and Pearce (2014) found that long-term models were the best at pre-
dicting expectedness ratings. This is consistent with the ltm/pitch--
interval configuration yielding the best performance in our analyses. This
might be due to amore accurate estimation of pitch intervals in aWestern
tonal context—where interval size and interval probability are con-
founded—presumably arising from the larger amount of data present in
the long-term training corpus compared to the stimuli themselves.

The current explanation is also consistent with early research
showing that the amplitude of the N1 is larger when a pure tone is farther
apart from preceding pure tones in the frequency continuum (Butler,
1968; N€a€at€anen et al., 1988; Picton et al., 1978). Thus, our results
generalize this effect to the spectral content of complex tones in more
realistic and complex auditory sequences. Moreover, speech research
showing modulations of the N1m component by the acoustic properties
of phonemes provides further support to our proposal (Manca and Gri-
maldi, 2016; Shestakova et al., 2004). On the same line, in a previous
EEG study reporting an effect similar to the one found here, manipula-
tions of surprise were also confounded with interval size, which is
consistent with our data (Koelsch and Jentschke, 2010). Finally and most
importantly, the proposed confound would explain why no differences
between the groups were found in our study, since the long-term ex-
pectations captured by IDyOM rely on culture-specific knowledge of
higher-order statistical dependencies between tones, which are arguably
different from the early and rather unspecific sensory processes reflected
in the N1m.

4.2. Hierarchical auditory predictive processing

The current results are not necessarily at odds with IDyOM being a
good model of auditory expectation, for which there is otherwise solid
supporting behavioral evidence (Agres et al., 2018; Bianco et al., 2019;
Hansen and Pearce, 2014; Hansen et al., 2016; Morgan et al., 2019;
Pearce, 2018). Rather, they indicate that probabilistic prediction is not
reflected in the N1, but instead might engage later processing stages.
Interestingly, in the analyses keeping interval size constant, ICmodulated
the amplitude of a later component in the case of large intervals. Given its
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latency, polarity and putative neural generators, this effect could be
interpreted as a P3, a component associated with the orientation of
attention and the engagement of higher-order cognitive processes
(Masson and Bidet-Caulet, 2019; Polich and Criado, 2006; Squires et al.,
1975). Notably, in the first EEG study using IDyOM as a model of
expectedness, surprising tones generated a similar positive late response
that was larger for unexpected than expected sounds (Pearce et al.,
2010).

Modulations of the P3 have been found in global-local MMN para-
digms where local expectations about tones and global expectations
about patterns are generated and violated independently (Bekinschtein
et al., 2009; Wacongne et al., 2011). In this case, P3 responses are
observed for global deviants. Thus, it might be that the higher-order
musical expectations reflected in IDyOM’s estimates are of a similar
kind to the global patterns in the aforementioned paradigm. Note,
however, that in Bekinschtein et al. (2009) responses to global deviants
were observed only under conscious perception, which differs from the
passive listening condition used in our study. Therefore, the late response
found here may correspond to the magnetic counterpart of an early
subcomponent of the P3, the P3a (or P3am), which is thought to reflect
the orientation of attention to violations of the context, in contrast to the
later P3b subcomponent, which is taken to reflect proper conscious
perception (Polich and Criado, 2006; Squires et al., 1975).

In addition to the late effect of IC in the case of large intervals, we
found similar differences for small intervals in musicians in the right
hemisphere. However, the direction of this effect was opposite to that of
the putative P3am, the reason for which is difficult to infer from our data.
It might be the case that this effect corresponds to an emergent MMNm
hidden by attention-related P3am responses in the case of large intervals,
which are arguably more salient than small intervals. In any case, this
effect should be interpreted with caution since the corresponding p-value
was close to the significance threshold.

While these findings come from exploratory analyses and need to be
replicated in a controlled experiment, they speak to a predictive pro-
cessing hierarchy encompassing different representational levels and
time scales. Thus, the N1m would be restricted to tonotopic predictions
about the spectral content of sounds mainly driven by the immediate
past. In contrast, later components, such as the P3am, may reflect higher-
order stylistic predictions about categories derived from the initial sen-
sory parsing—e.g., pitch—and would index the encoding of patterns
spanning longer temporal scales. This is consistent with empirical evi-
dence suggesting hierarchical processing along the auditory system
(Escera and Malmierca, 2014; Griffiths and Warren, 2002; Parras et al.,
2017; Rauschecker et al., 1995; Wacongne et al., 2011), and with the-
ories of predictive processing in the brain (Clark, 2016; Friston, 2005;
Friston et al., 2017a,b; Vuust and Witek, 2014).

4.3. The distinction between MMN and N1 revisited

The relationship between N1 and MMN has been long debated
(Jaaskelainen et al., 2004; May and Tiitinen, 2010; N€a€at€anen et al., 2005;
N€a€at€anen and Picton, 1987). While their scalp topographies and latencies
are similar, and both components respond to changes in the auditory
signal, they can be dissociated in specific cases. For example, an unex-
pected tone repetition (Tervaniemi et al., 1994), tone omission (Bendixen
et al., 2012), or intensity decrease (N€a€at€anen et al., 2007) would atten-
uate the N1 but nonetheless elicit a robust MMN. This has led to the
conclusion that the N1 is mainly modulated by SSA, whereas the MMN
reflects the breach of a memory trace (N€a€at€anen et al., 2007; N€a€at€anen
and Picton, 1987) or a probabilistic predictive model (Bendixen et al.,
2012; Garrido et al., 2009; Lieder et al., 2013; Wacongne et al., 2012).
This is consistent with the two components reflecting different levels of
hierarchical processing.

Here, we were able to dissociate the N1m and the MMNm in the same
subjects and in the same stimulus sequence. Consistent with hierarchical
processing, our results indicate that the N1m effect is much smaller and
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happens earlier than the MMNm. Importantly, the sounds that gave rise
to the MMNm in our experiment (i.e., quarter-tone mistunings) violated
the musical tuning system, which prescribes the pitches and pitch in-
tervals that can be expected (Brattico et al., 2006). This entails that the
listener needs to infer abstract regularities and relationships between
tones (such as: “the distance between consecutive pitches cannot be
smaller than a semitone”), which goes beyond the sensory parsing re-
flected in the N1m. This is consistent with the fact that the MMNm, but
not the N1m, was modulated by expertise, given that learning with
precision the pitch heights and pitch intervals allowed in a musical sys-
tem (i.e., learning to be “in tune”) is an essential musical skill.

Source reconstructions revealed overlapping generators for the N1m
and MMNm in primary auditory cortex. This indicates that the two hi-
erarchical processing stages are performed by the same or contiguous
neural populations. Note that it has been previously argued that the
neural generators of the MMN are slightly anterior to those of the N1
(e.g., Rosburg et al., 2004; Sams et al., 1991). These studies, however,
typically rely on equivalent current dipoles for source estimation,
whereas here we used distributed sources. Note, though, that peak ac-
tivity in the right hemisphere was more anterior for the MMNm than the
N1m, which would be consistent with the literature andwith hierarchical
processing stages. Methods such as intracranial recordings (e.g. Omigie
et al., 2019) and dynamic causal modeling (Moran et al., 2013) could
potentially disentangle the generators and the dynamics of the processes
reflected in the two components, in the case of musical stimuli.

When considered together, our results present a coherent picture in
which three stages of processing can be identified. In an initial stage,
tonotopic neurons in A1 adapt to incoming sensory input thus modu-
lating N1m amplitude. In a second stage, auditory objects are formed and
low-level regularities are established, giving rise to the MMNm when
violated. Finally, in a third stage, higher-order predictions arising from
knowledge of the musical context are deployed. These are indexed by late
components such as the P3am.

4.4. Implications, limitations and future directions

One limitation of our study is that the explanatory power of surprise
estimates could not be assessed at the single-trial level due to the
inherent noisiness of neurophysiological data. Nonetheless, this is an
interesting future research direction that could benefit from techniques
such as intracranial recordings and multivariate pattern analysis (e.g.
Demarchi et al., 2019). Moreover, while here we found compelling evi-
dence for the dissociation between interval size and estimated surprise, a
more controlled study is needed to properly demonstrate this claim and
confirm SSA as the underlying mechanism. Similarly, although we
employed more realistic stimuli than many previous studies on auditory
predictive processing, the melodies used here are still far from being truly
musical. Future experiments could address, for example, how intro-
ducing rhythm, expressive timing and dynamics and concurrent melodic
lines affects predictive processing at the sensory levels reflected in the
N1. Another caveat is that information about musicians’ practiced
musical style was not available. This variable could be relevant to rule
out that the lack of differences between groups is simply due to the lack
of familiarity of musicians with Western tonal music. However, this
explanation is unlikely considering the widespread presence of Western
tonal music; the fact that the experiment was conducted in a Western
country; the typical repertoire associated with the instruments played by
the musicians (supplementary file 1), and the strikingly similar associa-
tion between IC and N1m amplitudes in both groups (Fig. 4).

Despite these shortcomings, our findings have clear consequences for
research on music and auditory predictive processing. We have shown
that it is crucial to account for interval size and SSA when addressing
statistical learning, even in the case of complex sounds. Regarding music
perception, our results provide neural evidence that early sensory
mechanisms might be fundamental for the perceptual processing of
melodies and coexist with higher-order probabilistic predictions arising
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from knowledge of musical styles. Similarly, the evidence presented
makes a contribution to the ongoing debate regarding the distinction
between N1 and MMN by further suggesting that these reflect different
hierarchical processing stages.

Two interesting research avenues can be derived from this study.
First, we have shown that interval size can be a good predictor of N1m
amplitude. However, a mechanistic link between this metric and neural
responses is yet to be made. This would imply creating and refining a
detailed computational model that links the acoustic properties of suc-
cessive sounds with the corresponding neural activity. Second, our study
shows how early sensory processing and higher-order probabilistic pre-
diction can be disentangled. Therefore, experimental designs similar to
ours might be a good way to test theories of cortical function such as
predictive coding (Friston, 2005; Rao and Ballard, 1999) and active
inference (Friston et al., 2017a,b), which have hierarchical processing at
their core.

5. Conclusion

In this study, we aimed to determine whether the modulation of N1m
amplitude by auditory surprise was different betweenmusicians and non-
musicians. Using a computational model of auditory expectation, we
showed no differences between the groups in the otherwise clear asso-
ciation between neural responses and estimated surprise. Further
exploratory analyses suggested that interval size and stimulus-specific
adaptation, rather than probabilistic prediction, underlie the observed
effects. This offers an explanation to why no effect of expertise was found,
since we would expect higher-order probabilistic prediction, instead of
early sensory processing, to be affected by the accuracy of musical
knowledge. Interestingly, our results also suggest that auditory regular-
ities and probabilistic prediction are reflected in later processing stages
indexed by the MMNm and the P3am. Overall, our findings reveal a hi-
erarchy of expectations in the auditory system, including early sensory
processing, the formation of low-level regularities and higher-order
probabilistic prediction. Therefore, our study constitutes an advance
towards the understanding of hierarchical predictive processing in
complex and realistic auditory contexts.
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