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Abstract
Auditory prediction error responses elicited by surprising sounds can be reliably re-
corded with musical stimuli that are more complex and realistic than those typically 
employed in EEG or MEG oddball paradigms. However, these responses are reduced 
as the predictive uncertainty of the stimuli increases. In this study, we investigate 
whether this effect is modulated by musical expertise. Magnetic mismatch negativity 
(MMNm) responses were recorded from 26 musicians and 24 non-musicians while 
they listened to low- and high-uncertainty melodic sequences in a musical multi-
feature paradigm that included pitch, slide, intensity and timbre deviants. When com-
pared to non-musicians, musically trained participants had significantly larger pitch 
and slide MMNm responses. However, both groups showed comparable reductions 
in pitch and slide MMNm amplitudes in the high-uncertainty condition compared 
with the low-uncertainty condition. In a separate, behavioural deviance detection 
experiment, musicians were more accurate and confident about their responses than 
non-musicians, but deviance detection in both groups was similarly affected by the 
uncertainty of the melodies. In both experiments, the interaction between uncertainty 
and expertise was not significant, suggesting that the effect is comparable in both 
groups. Consequently, our results replicate the modulatory effect of predictive un-
certainty on prediction error; show that it is present across different types of listen-
ers; and suggest that expertise-related and stimulus-driven modulations of predictive 
precision are dissociable and independent.
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1 |  INTRODUCTION

Prediction is fundamental for the perception of auditory se-
quences. When listening to a series of sounds, the brain gen-
erates expectations about future events partly based on the 
statistical regularities of the context and long-term knowl-
edge of acoustic signals (Huron, 2006; Pearce, 2018). The 
violation of these expectations generates neural prediction 
error responses (den Ouden, Kok, & de Lange, 2012). So far, 
most research in this area has focused on very simple and 
artificial auditory contexts such as sequences of repeated 
tones or short-tone patterns (Heilbron & Chait, 2018). As a 
consequence, little is known about how auditory prediction 
operates in more complex, real-world settings.

In a previous study, we addressed this issue by measuring 
prediction error responses to surprising sounds embedded 
in auditory stimuli that resembled real music (Quiroga-
Martinez et al., 2019). As a marker of prediction error, we re-
corded the magnetic counterpart of the mismatch negativity 
(MMNm), which is a well-studied brain response to sounds 
that violate auditory regularities (Garrido, Kilner, Stephan, & 
Friston, 2009; Näätänen, Gaillard, & Mäntysalo, 1978). We 
compared a low-uncertainty condition—referred to as low 
entropy or LE—which consisted of a simple and repetitive 
pitch pattern, with a high-uncertainty condition—referred 
to as high entropy or HE—which consisted of more realistic 
and less predictable non-repetitive melodies. Note that en-
tropy was used as a measure of uncertainty. Pitch, intensity, 
timbre and slide (i.e. pitch glide) violations were introduced. 
We found reliable MMNm responses to the violations in both 
conditions, thus demonstrating that low-level prediction error 
responses could be elicited in a constantly changing and more 
ecologically valid auditory stream.

Interestingly, even though MMNm responses were reli-
able, their amplitudes were reduced in the HE context com-
pared with the LE context, for pitch and slide deviants. This 
is consistent with predictive processing theories which pro-
pose that prediction error responses are reduced in contexts 
with high as compared to low uncertainty or, equivalently, 
low as compared to high precision (Clark, 2016; Feldman & 
Friston, 2010; Hohwy, 2013; Ross & Hansen, 2016; Vuust, 
Dietz, Witek, & Kringelbach, 2018). The ensuing preci-
sion-weighted prediction error would ensure that primar-
ily reliable sensory signals drive learning and behaviour. 
While a growing body of research already provides evidence 
for this phenomenon in the auditory modality (Garrido, 
Sahani, & Dolan, 2013; Hsu, Bars, Hämäläinen, & Waszak, 
2015; Lumaca, Haumann, Brattico, Grube, & Vuust, 2019; 
Sedley et al., 2016; Sohoglu & Chait, 2016; Southwell & 
Chait, 2018), our study was the first to show its presence 
in a more ecologically valid setting such as music listening. 
Furthermore, the findings also pointed to a feature-selective 
effect in which only prediction error responses related to the 

manipulated auditory feature—pitch, in our case—are modu-
lated by uncertainty.

In the present work, we elaborate on this finding and in-
vestigate whether the effect of uncertainty on auditory predic-
tion error is modulated by musical expertise. This question is 
motivated by research showing that musicians tend to exhibit 
stronger auditory prediction error responses than non-musi-
cians. For example, larger MMN responses are often found 
for musically trained subjects, especially for pitch-related de-
viants (Brattico et al., 2009; Fujioka, Trainor, Ross, Kakigi, 
& Pantev, 2004; Koelsch, Schröger, & Tervaniemi, 1999; 
Putkinen, Tervaniemi, Saarikivi, Ojala, & Huotilainen, 2014; 
Tervaniemi, Huotilainen, & Brattico, 2014; Vuust, Brattico, 
Seppänen, Näätänen, & Tervaniemi, 2012; Vuust et al., 
2005). This has led some to propose that musical training en-
hances the precision of auditory predictive models (Hansen 
& Pearce, 2014; Hansen, Vuust, & Pearce, 2016; Vuust et 
al., 2018), as more precise representations of musically rele-
vant regularities would facilitate the detection of unexpected 
sounds.

Crucially, a distinction can be made between exper-
tise-driven and stimulus-driven precision or uncertainty. The 
former corresponds to the fine-tuning of predictive models 
by musical training, whereas the latter refers to the uncer-
tainty inferred from the stimulus currently being listened to. 
Note that stimulus-driven uncertainty was the one manipu-
lated in Quiroga-Martinez et al. (2019). Consequently, our 
goal here is to address whether its effect on prediction error 
is modulated by expertise-driven precision. Thus, we conjec-
tured that when musical sequences are predictable, long-term 
knowledge of music would only have a moderate impact on 
the processing of sounds. Conversely, when musical stimuli 
become more unpredictable, listeners would need to rely more 
on their musical knowledge, which would provide a greater 
processing advantage to musically trained participants. 
Therefore, we hypothesized an interaction effect in which the 
modulation of prediction error by uncertainty would be less 
pronounced for musicians than for non-musicians.

In this study, we used magnetoencephalography (MEG) 
and behavioural measures to test this hypothesis, employing 
the same stimuli and experimental designs as in Quiroga-
Martinez et al. (2019). To this purpose, we compared a 
group of musicians with the group of non-musicians re-
ported in the previous study. In the MEG experiment, 
participants passively listened to high- and low-entropy 
melodic sequences where pitch, intensity, timbre and slide 
deviants were introduced. In the behavioural experiment, 
participants were asked to detect pitch deviants embedded 
in different melodies and report the subjective confidence 
in their responses. In this case, five levels of context uncer-
tainty were employed in order to detect fine-grained effects 
of predictive precision and dissociate pitch-alphabet size—
the number of pitch categories used in the melodies—and 
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repetitiveness as sources of uncertainty. We expected mu-
sicians to exhibit smaller reductions in MMNm responses, 
deviance detection scores and confidence ratings than 
non-musicians, as the uncertainty of auditory contexts in-
creased. Finally, we performed source reconstruction on 
the MMNm responses and the difference in MMNm am-
plitude between HE and LE conditions in order to further 
our understanding of the neural underpinnings of the preci-
sion-weighting effect.

2 |  METHOD

For a more detailed description of the methods, see Quiroga-
Martinez et al. (2019). The data, code and materials neces-
sary to reproduce these experiments and results are openly 
available at https ://osf.io/my6te/ ; https ://doi.org/10.17605/ 
OSF.IO/MY6TE .

2.1 | MEG experiment

2.1.1 | Participants

Twenty-six musicians and twenty-four non-musicians par-
ticipated in the experiment (see Table 1 for demograph-
ics). The non-musicians’ group was the same as the one 
reported in Quiroga-Martinez et al. (2019). All participants 
were right-handed with no history of neurological condi-
tions and did not possess absolute pitch. For recruitment 
purposes, participants who considered themselves musi-
cians and had considerable experience playing an instru-
ment were included in the musicians’ group. The musical 
training subscale of the Goldsmiths Musical Sophistication 
Index (GMSI) was used as a self-report measure of musical 
expertise (Müllensiefen, Gingras, Musil, & Stewart, 2014), 
and both the melody and rhythm parts of the Musical Ear 
Test (MET) were used as objective measures of musical 

skills (Wallentin, Nielsen, Friis-Olivarius, Vuust, & Vuust, 
2010). Note that the GMSI musical training subscale is 
composed of seven items that measure years of formal 
training on a musical instrument, years of daily practice 
on a musical instrument, music theory training, hours of 
daily practice, number of instruments played, self-percep-
tion as a musician and social acknowledgement as a musi-
cian. These items are rated on a seven-point scale, rather 
than with truly continuous measures of, for example, years 
of training. The total score of the subscale is the sum of 
the individual items, thus allowing a minimum of 7 and a 
maximum of 49. Individual ratings are shown in Appendix 
S4, arranged by group and item. GMSI values (t = 16.55, 
p < .001) and MET total values (t = 5.2, p < .001) were sig-
nificantly higher for musicians than for non-musicians. All 
non-musicians’ scores lay in the 37 percentile of the norm 
of the subscale, whereas all musicians’ scores lay above the 
45 percentile of the norm.

Participants were recruited through an online database 
and agreed to take part in the experiment voluntarily. All 
participants gave informed consent and were paid 300 
Danish kroner (approximately 40 euro) as compensation. 
Data from two musicians (not included in the reported de-
mographics) were excluded from the analysis due to arte-
facts related to dental implants. The study was approved 
by the Central Denmark Regional Ethics Committee (De 
Videnskabsetiske Komitéer for Region Midtjylland in 
Denmark) and conducted in accordance with the Helsinki 
declaration.

2.1.2 | Stimuli

Low-entropy (LE) and high-entropy (HE) conditions were 
included in the experiment. LE stimuli corresponded to 
a simple four-note repeated pitch pattern (low–high–me-
dium–high) known as the Alberti bass, which has previ-
ously been used in musical MMNm paradigms (Vuust et 

MEG experiment Behavioral experiment

M NM M NM

Sample size 26 24 24 21

Female 10 13 14 16

Age 24.15 (±2.89) 26.54 (±3.4) 22.75 (±4.42) 21.9 (±5.18)

GMSI 35.96 (±6.57) 10.67 (±4.03) 35.42 (±5.69) 12.76 (±5.88)

MET (melody) 41.5 (±4.43) 33.17 (±5.39)

MET (rhythm) 40.77 (±4.55) 35.79 (±5.33)

MET (Total) 82.27 (±8.35) 69.12 (±9.44)

Note: Mean and standard deviation values are reported.
Abbreviations: M, musicians; NM, non-musicians.

T A B L E  1  Participants’ demographic 
and musical expertise information in the two 
experiments

https://osf.io/my6te/
https://doi.org/10.17605/OSF.IO/MY6TE
https://doi.org/10.17605/OSF.IO/MY6TE
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al., 2011; Vuust, Liikala, Näätänen, Brattico, & Brattico, 
2016). In contrast, HE stimuli consisted of a set of major 
and minor versions of six novel melodies which did not 
have a repetitive internal structure and spanned a broader 
local pitch range than LE stimuli (Figure 1; see Appendix 
S1 in Quiroga-Martinez et al., 2019 for the full stimulus 
set). Individual HE and LE melodies were 32-note long, 
lasted eight seconds and were pseudorandomly transposed 
from 0 to 5 semitones upwards. The order of appearance 
of the melodies was pseudorandom. After transposi-
tion during stimulation, the pitch range of the HE condi-
tion spanned 31 semitones from B3 (F0 ≈ 247 Hz) to F6 
(F0 ≈ 1,397 Hz). LE melodies were transposed to two dif-
ferent octaves to cover approximately the same pitch range 
as HE melodies. The uncertainty of the stimuli along the 
pitch dimension was estimated with Information Dynamics 
of Music (IDyOM), a variable-order Markov model of 
auditory expectation (Pearce, 2005, 2018). When predict-
ing pitch continuations based on scale-degree and pitch-
interval transition probabilities, and a training corpus of 
Western tonal hymns and folk songs, this model confirmed 
higher mean entropy (which is a measure of uncertainty) 
and information content (which is a measure of surprise) 
for HE as compared to LE melodies (see Quiroga-Martinez 
et al., 2019 for more details).

For stimulus delivery, a pool of 31 standard piano tones 
was created with the “Warm-grand” sample in Cubase 

(Steinberg Media Technology, version 8). Each tone was 
250 ms long, was peak-amplitude-normalized and had 3-ms-
long fade-in and fade-out to prevent clicking. No gaps be-
tween tones were introduced. For the creation of deviants, 
the standards were modified as follows: pitch: +50 cents; 
intensity: −20 dB; timbre: band-pass filter (1–4 kHz); slide: 
continuous pitch glide from −2 semitones. Deviants were 
created with Audition (Adobe Systems Incorporated, version 
8).

Each condition was presented in a separate group of 
three consecutive blocks. Within each block, melodies were 
played one after the other without pauses. At the beginning 
of each block, a melody with no deviants was added to en-
sure a certain level of auditory regularity at the outset. One 
deviant per feature was introduced in each melody. There 
were 144 deviants per feature in each condition. The posi-
tion of each deviant was defined by segmenting the melody 
in groups of four notes, selecting some of these groups and 
choosing randomly any of the four places within a group, 
with equal probability. The order of appearance of the 
different types of deviants was pseudorandom, so that no 
deviant followed another deviant of the same feature. The 
selection of four-note groups was counterbalanced among 
trials attending to the constraints of a combined condition 
included to assess the predictive processing of simultane-
ous musical streams (see Quiroga-Martinez et al., 2019 for 
further details). The analysis of the combined condition is 

F I G U R E  1  Examples of the 
individual melodies employed in (a) the 
MEG and (b) the behavioural experiment. 
Coloured notes represent deviants (see 
online version for colour display). LE = low 
entropy, IE = intermediate entropy, 
HE = high entropy. For the full stimulus 
set, see Quiroga-Martinez et al. (2019) and 
the online repository
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beyond the scope of this article and will be presented else-
where. HE and LE conditions were counterbalanced across 
participants and always came after the combined condition.

2.1.3 | Procedures

Participants gave their consent after receiving oral and writ-
ten information, and then completed the MET, filled out the 
GMSI questionnaire and put on MEG-compatible clothes. 
Electrodes and HPI coils were attached to their skin, and 
their heads were digitized. During the recording, partici-
pants were sitting upright in the MEG scanner looking at a 
screen. Before presenting the musical stimuli, their individ-
ual hearing threshold was measured through a staircase pro-
cedure and the sound level was set at 60 dB above threshold. 
Participants were instructed to watch a silent movie of their 
choice, ignore the sounds and move as little as possible. 
They were told there would be musical sequences play-
ing in the background interrupted by short pauses so that 
they could take a break and adjust their posture. Sounds 
were presented through isolated MEG-compatible ear tubes 
(Etymotic ER•30). The recording lasted approximately 
90 min, and the whole experimental session took between 
2.5 and 3  hr including consent, musical expertise tests, 
preparation, instructions, breaks and debriefing.

2.1.4 | MEG recording and analyses

Brain magnetic fields were recorded with an Elekta 
Neuromag MEG TRIUX system with 306 channels (204 
planar gradiometers and 102 magnetometers) and a sam-
pling rate of 1,000 Hz. Continuous head position informa-
tion (cHPI) was obtained with four coils attached to the 
forehead and the mastoids. Offline, the temporal extension 
of the signal source separation (tSSS) technique (Taulu 
& Simola, 2006) was used to isolate signals coming from 
inside the skull employing Elekta's MaxFilter software 
(Version 2.2.15). This procedure included movement com-
pensation for all participants except two non-musicians, for 
whom continuous head position information was not reli-
able due to suboptimal placement of the coils. These partic-
ipants, however, exhibited reliable auditory event-related 
fields (ERFs), as successfully verified by visually inspect-
ing the amplitude and polarity of the P50(m) component. 
Electrocardiography, electrooculography and independ-
ent component analysis were used to correct for eye-blink 
and heartbeat artefacts, employing a semi-automatic rou-
tine (FastICA algorithm and functions “find_bads_eog” 
and “find_bads_ecg” in MNE-Python) (Gramfort, 2013). 
Visual inspection of the rejected components served as a 
quality check.

Using the Fieldtrip toolbox (version r9093) (Oostenveld, 
Fries, Maris, & Schoffelen, 2011) in MATLAB (R2016a, 
The MathWorks Inc.), epochs comprising a time window of 
400 ms after sound onset were extracted and baseline-cor-
rected with a pre-stimulus baseline of 100 ms. Epochs were 
then low-pass-filtered with a cut-off frequency of 35  Hz 
and down-sampled to a resolution of 256 Hz. For each par-
ticipant, ERFs were computed by averaging the responses 
for all deviants for each feature and averaging a selection 
of an equal number of standards. These were selected by 
finding, for each single deviant, a standard tone that was 
not preceded by a deviant and was in the same position 
of the same HE or LE melody—although not necessarily 
the same transposition—in a different trial. This ruled out 
artefacts related to the difference in noise between condi-
tions—as there are many more standards than deviants—
and the position of the deviant within the melody. After 
averaging, planar gradiometers were combined by com-
puting root mean square values. Finally, a new baseline 
correction was applied and MMNm difference waves were 
computed by subtracting the ERFs of standards from the 
ERFs of deviants.

Statistical analyses were performed on combined gradiom-
eter data. For the main analyses, a mass univariate approach 
was used in combination with cluster-based permutations 
(Maris & Oostenveld, 2007) for family-wise error correction. 
Two-sided paired- and independent-samples t tests were used 
for within- and between-subjects contrasts, respectively. The 
cluster-forming alpha level was 0.05, the cluster-level statistic 
was the maximum sum of t-values (maxsum) and the number 
of permutations was set to 10,000. All tests were conducted 
for each feature separately in a time window between 100 
and 250  ms, which covers the typical latency of the MMN 
(Näätänen, Paavilainen, Rinne, & Alho, 2007). To assess the 
elicitation of the MMNm, we compared the ERFs of standards 
with the ERFs of deviants for each group independently. The 
main effect of entropy was assessed by comparing, for each 
feature, the MMNm responses of all participants for LE and 
HE conditions. The main effect of expertise was assessed 
by comparing the average of LE and HE responses between 
groups. The entropy-by-expertise interaction was tested by 
subtracting HE from LE MMNm responses for each partici-
pant and comparing the resulting differences between groups. 
Post hoc, exploratory tests of simple effects were performed 
for the effect of entropy and expertise for each group and con-
dition, respectively.

To assess the relative evidence for the null and alternative 
hypotheses, a secondary Bayesian analysis was performed 
on mean gradient amplitudes (MGAs). The assessment of 
evidence was not possible under classical null hypothesis 
testing where we could only infer the probability of the data 
assuming the null hypothesis was true. Therefore, a Bayesian 
analysis allowed us to quantify the evidence in favour of and 



6 |   QUIROGA-MARTINEZ ET Al.

against the entropy-by-expertise interaction and measure its 
conclusiveness. Furthermore, Bayesian estimation allowed 
the inclusion of prior knowledge, thus providing informed 
constraints that typically improve inference (Wagenmakers et 
al., 2018).

MGAs were obtained as the mean activity  ±  25  ms 
around the MMNm peak, defined as the highest local 
maxima of the ERF between 100 and 250 ms after sound 
onset. This average was obtained from the four tempo-
ral-combined gradiometers in each hemisphere with the 
largest P50(m) response (right channels: 1342–1343, 
1312–1313, 1322–1323 and 1332–1333; left channels: 
0222–0223, 0212–0213, 0232–0233 and 0242–0243). 
Using R (R Core Team, 2019), the differences between HE 
and LE MMNm amplitudes were computed for each par-
ticipant and used as the dependent variable in a Bayesian 
mixed-effects model including parameters for the effects 
of feature, hemisphere and group and their interactions 
(brms package, Bürkner, 2017). Participants were in-
cluded as a random effect with respect to the intercept and 
the slopes of feature and hemisphere. Priors were taken 
from our previous work with the non-musicians’ group 
(see the analysis scripts and saved model fits in the online 
repository for a full description of priors and parameters). 
For the effect of expertise and the interactions with hemi-
sphere and feature, a conservative prior was set with a 
mean of 0 and a standard deviation of 3 fT/cm, which is 
around half of the effect of entropy for the pitch MMNm 
in non-musicians. This prior assumes that small effect 
modulations are most likely and that situations in which 
the effect of entropy in musicians disappears, changes 
direction or is at least twice the effect in non-musicians 
are unlikely. Inference was based on 95% credible inter-
vals, Bayes factors (BFs) and posterior probabilities, as 
estimated for each feature and hemisphere (“hypothesis” 
function, brms package).

2.1.5 | Source reconstruction

Source reconstruction was performed with the multiple 
sparse priors (MSP) method (Friston et al., 2008) imple-
mented in SPM12 (version 7478). Only data from twenty 
musicians and twenty non-musicians were included, as 
individual anatomical magnetic resonance images (MRI) 
were available for these participants only. For one of the 
excluded musicians and one of the excluded non-musi-
cians, the images were corrupted by artefacts, whereas the 
remaining excluded participants did not attend the MRI 
session. Brain scans were obtained with a magnetization-
prepared two rapid gradient echo (MP2RAGE) sequence 
(Marques et al., 2010) in a Siemens Magnetom Skyra 3T 
scanner, which produced two images that were combined 

and motion-corrected to form unified brain volumes. 
These volumes were segmented, projected into MNI co-
ordinates and automatically coregistered with the MEG 
sensor positions using digitized head shapes and preau-
ricular and nasion landmarks. Coregistration outputs were 
visually inspected. Lead fields were constructed using a 
single-shell BEM model with 20.484 dipoles (fine grid). 
A volume of the inverse solution was created for each 
participant feature and condition, in the following time 
windows: 175–215 ms for pitch, 110–150 ms for timbre 
and intensity, and 275–315 ms for slide. These time win-
dows were chosen based on the peak MMNm amplitudes 
for each feature. Source reconstruction was also con-
ducted for the differences between HE and LE conditions 
for pitch and slide MMNm amplitudes, with the aim to 
reveal the neural substrates of the entropy effect. To this 
end, individual volumes of the inverse solution were ob-
tained for a time window between 150 and 200 ms. Note 
that the case of the slide deviant is somewhat particular as 
the peak MMNm response occurred later than expected, 
whereas the effect of entropy was restricted to an ear-
lier time window. For greater detail and an interpretation 
of this result, see Quiroga-Martinez et al. (2019). The 
volumes for each feature and condition, as well as the 
volumes for the entropy effect, were submitted to a one-
sample t test to reveal the sources consistently identified 
across all participants. The error rate of voxel-wise mul-
tiple tests was corrected with random field theory with 
a cluster-level alpha threshold of 0.05 (Worsley, 2007).

2.2 | Behavioural experiment

2.2.1 | Participants

Twenty-four musicians and twenty-one non-musicians 
participated in the behavioural experiment (Table 1). The 
non-musicians’ group is the same as the one reported in 
Quiroga-Martinez et al. (2019). Musical expertise was 
measured with the GMSI musical training subscale which 
yielded significantly higher scores for musicians than for 
non-musicians (t  =  13.08, p  <  .001). All non-musicians’ 
scores lay in the 42 percentile of the norm of the subscale, 
whereas all musicians’ scores lay above the 45 percentile 
of the norm. Individual ratings are shown in Appendix S1, 
arranged by group and subscale item. Participants were re-
cruited through an online database for experiment partici-
pation, agreed to take part voluntarily, gave their informed 
consent and received 100 Danish kroner (approximately 
13.5 euro) as compensation. The data from all participants 
were analysed, as above-chance deviance detection was 
verified in all cases. The sample size was chosen to be 
comparable to that of the MEG experiment. Two musicians 
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and two non-musicians had previously participated in the 
MEG experiment.

2.2.2 | Experimental design

Five conditions were included (Figure 1). Two of them cor-
respond to the HE and LE conditions of the MEG experi-
ment and employ a selection of the respective melodies. 
Three additional conditions with intermediate levels of 
entropy (IE1, IE2 and IE3) were included to investigate 
whether more fine-grained manipulations of uncertainty 
modulate prediction error responses in musicians, as was 
previously shown in non-musicians. The pitch alphabet of 
these conditions spanned eight tones and was always the 
same, comprising a major diatonic scale from C4 to C5. 
Note that, in the MEG experiment, HE stimuli were not 
only less repetitive but also had a larger pitch alphabet than 
LE (at least before transposition during the experiment). In 
contrast, in the IE conditions we manipulated uncertainty 
by changing repetitiveness only. Thus, IE1 consisted of a 
repeated eight-note pattern, IE2 consisted of proper melo-
dies with less constrained repetition, and IE3 consisted of 
pseudorandom orderings of the tones. Note that the con-
trast LE > IE1 would reveal whether the pitch-alphabet size 
alone is sufficient to modulate prediction error, whereas the 
comparisons IE1 > IE3, IE1 > IE2 and IE2 > IE3 would 
reveal the same with regard to repetitiveness.

For each single melody in the experiment, a target version 
was created by raising the pitch of a tone by 25 cents. This 
deviation was smaller than in the MEG experiment to avoid 
ceiling effects observed for non-musicians during piloting. 
The target tone was located in a random position in the sec-
ond half of each melody. Only pitch deviants were included 
because we manipulated uncertainty along the pitch dimen-
sion and because this was the feature showing the largest 
uncertainty effect in the MEG results. All melodies were 32-
note long and were played with the same sound pool as the 
MEG experiment. There were ten target melodies and ten foil 
melodies (with no deviants) per condition. Participants were 
instructed to listen to the melodies, decide after each of them 
whether an out-of-tune note was present or not, and report 
how certain they were about their answer on a scale from 1 
(not certain at all) to 7 (completely certain). The experimen-
tal session lasted around 30 min.

2.2.3 | Statistical analyses

We used signal detection theory to analyse accuracy 
(Macmillan, 2004), based on the assumption that larger predic-
tion error responses would enhance the ability to distinguish 
target from non-target stimuli. For each condition, d-prime (d’) 

scores were computed as a measure of sensitivity and criterion 
(c) scores was computed as a measure of response bias. In the 
few cases where participants achieved 100% or 0% of hits or 
false alarms, values were adjusted to 95% and 5%, respectively, 
to avoid infinite values in the estimations (Macmillan, 2004).

Statistical analyses were run in R. For d’ scores, different 
mixed-effects models were estimated using maximum likeli-
hood (“lmer” function, lme4 package, Bates, Mächler, Bolker, 
& Walker, 2015) and compared using likelihood ratio tests and 
Akaike information criteria (AIC). Model d0 included only 
an intercept as a fixed effect, whereas two alternative models 
added categorical (d1) or continuous (d2) terms for the entropy 
conditions. For model d2, we assigned values 1, 2, 3, 4 and 5 
to the conditions according to their estimated uncertainty and 
treated them as a continuous linear predictor. This allowed 
us to assess the extent to which a linear decreasing trend was 
present in the data, as was done previously with non-musicians 
(Quiroga-Martinez et al., 2019). Building on these models, in 
d1e and d2e a term for musical expertise was added, and in d1i 
and d2i a term for the entropy-by-expertise interaction was fur-
ther included. Random intercepts for participants were included 
in all models. Random slopes were not added, as the number 
of data points per participant was not sufficient to avoid over-
fitting. For c scores, mixed-effects models were similarly com-
pared, including an intercept-only model (cr0), a model with a 
categorical effect of entropy (cr1), a model with an additional 
effect of expertise (cr1e) and a model with an additional term 
for the entropy-by-expertise interaction (cr1i). Random inter-
cepts for participants were added.

Regarding confidence ratings, ordinal logistic regression 
was employed in the form of a cumulative-link mixed model 
(“clmm” function, ordinal package; Christensen, 2019) using 
logit (log-odds) as link. Models with an intercept only (co0), 
categorical (co1s) terms for entropy and additional terms for 
expertise (co1se) and the entropy-by-expertise interaction 
(co1si) were estimated and compared. These models included 
random intercepts and slopes for participants. Unlike with d’ 
scores, no model included continuous terms for entropy, as 
categorical models were previously shown to explain the data 
significantly better for non-musicians. Moreover, note that 
the cumulative-link model estimates an intercept for each cut 
point between adjacent categories in the response variable. 
Post hoc, Bonferroni-corrected pairwise contrasts for the ef-
fect of entropy on confidence ratings, d’ scores and c scores 
were conducted with the function “emmeans” (emmeans 
package; Lenth, Singmann, Love, Buerkner, & Herve, 2019) 
for musicians and non-musicians separately.

Bayesian estimation was used to assess the evidence 
for the entropy-by-expertise interaction. Models d1i, d2i 
and co1i were re-estimated and labelled as d1ib, d2ib and 
co1ib. Priors were defined based on our previous work 
with non-musicians (see corresponding analyses scripts 
in the online repository for a full description of priors 



8 |   QUIROGA-MARTINEZ ET Al.

and parameters). For the continuous model of d’ scores 
(d2ib), the prior for the entropy-by-expertise interac-
tion was Gaussian with mean 0 and standard deviation 
0.1, which corresponds to half of the slope for the ef-
fect of entropy previously estimated for non-musicians. 
This prior is conservative and implies that small effect 
modulations are deemed most likely and that a complete 
absence, change in direction or excessive enhancement 
of the effect is considered unlikely. For the categorical 
model of d’ scores (d1ib), a Gaussian prior with mean 0 
and standard deviation 0.4 was used for each of the en-
tropy conditions. This prior corresponds to about half of 
the difference between the LE and HE conditions and, 
as with the continuous model, is conservative and deems 
extreme modifications of the effect unlikely. Regarding 
confidence ratings, a similar conservative Gaussian prior 
was set for the interaction term, with mean 0 and stan-
dard deviation 0.35. This prior deems small effects as 
the most likely and odds modifications larger than twice 
(e2×0.35

=2) or smaller than half 
(

e
2×−0.35

=0.5
)

 of the orig-
inal effect as unlikely. Inference was based on 95% cred-
ible intervals, Bayes factors and posterior probabilities, 
estimated for each feature and hemisphere (“hypothesis” 
function, brms package).

3 |  RESULTS

3.1 | Presence of the MMNm

As previously reported for the non-musicians (Quiroga-
Martinez et al., 2019), we also found a difference between 
standards and deviants for each feature in the musicians’ 
group (all p  <  .001, Appendix S1). This difference had 
virtually the same topography and polarity as previously 
reported, thus confirming the presence of the MMNm 
(Figure 2).

3.2 | Effects of entropy, expertise and 
interaction

There was a significant main effect of entropy for pitch 
(p < .001), slide (p < .001) and intensity (p < .001), but not 
for timbre (p = .068), in the MMNm responses. Analyses 
of simple effects revealed significant differences for pitch 
and slide in both groups and for intensity in musicians 
only (Figure 3). A significant main effect of expertise was 
observed for pitch and slide, but not intensity or timbre, 
in the MMNm responses (Figure 4). The same pattern 

F I G U R E  2  Topographic maps of the MMNm for all features, groups and conditions in (a) magnetometers and (b) gradiometers. The activity 
corresponds to an average of ±25 ms around the peak latency, which is shown above each plot. The slide MMNm is displayed in both early and late 
time windows (see Quiroga-Martinez et al. (2019) for an explanation of early and late effects in the slide MMNm). LE = low entropy, HE = high 
entropy, M = musicians, N = non-musicians
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F I G U R E  3  MMNm amplitudes for low-entropy (LE) and high-entropy (HE) conditions and the difference between conditions in both 
groups. The displayed activity corresponds to the average of the four right temporal-combined gradiometers with the largest amplitude (channels 
1342–1343, 1312–1313, 1322–1323 and 1332–1333). Grey lines depict individual MMNm responses. Shaded grey areas indicate 95% confidence 
intervals. Dashed vertical lines mark the onset of the next tone. Topographic maps show activity ±25 ms around the peak difference. For 
descriptive purposes, green horizontal lines indicate when this difference was significant, according to the permutation tests (see online version 
for colour display). Note, however, that this is not an accurate estimate of the true extent of the effect (Sassenhagen & Draschkow, 2019)

F I G U R E  4  Activity related to the main effect of expertise and the entropy-by-expertise interaction—that is difference between low-
entropy and high-entropy MMNm amplitudes for musicians and non-musicians. The displayed activity corresponds to the average of the four 
right temporal-combined gradiometers with the largest amplitude (channels 1342–1343, 1312–1313, 1322–1323 and 1332–1333). Shaded areas 
indicate 95% confidence intervals. Dashed vertical lines mark the onset of the next tone. Topographic maps show activity ±25 ms around the peak 
difference. For descriptive purposes, green horizontal lines indicate when this difference was significant (see online version for colour display). 
Note, however, that this is not an accurate estimate of the true extent of the effect (Sassenhagen & Draschkow, 2019)
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emerged when LE (pitch: p = .01; slide: p = .018; inten-
sity: p =  .99; timbre: p =  .68) and HE (pitch: p =  .005; 
slide: p = .014; intensity: p = .3; timbre: p = .89) condi-
tions were analysed separately. The entropy-by-expertise 
interaction was not significant for any of the four features 
(Figure 4).

Regarding secondary Bayesian analyses, the posterior 
distributions of the differences between musicians and 
non-musicians for each hemisphere and feature are shown 
in Figure 5b. 95% credible intervals included zero in all 
cases. Bayes factors suggested that the null hypothesis 
was between 1.18 and 3.06 times more likely than the 
alternative, and the posterior probability of a null effect 
varied between 0.62 and 0.75, depending on the feature 
and hemisphere. We regard this as anecdotal/inconclu-
sive evidence for the null hypothesis. Moreover, Bayesian 
pairwise contrasts between features reproduced the pat-
terns observed in the maximum-likelihood estimates pre-
viously reported for non-musicians (Quiroga-Martinez et 
al., 2019), in which pitch and slide tended to have larger 
entropy-related reductions in MMNm amplitude than 
intensity and timbre, in the right but not the left hemi-
sphere. For musicians, this pattern was different, with 
conclusive evidence for a difference between pitch and 
timbre in both hemispheres, and moderate evidence for 
a difference between pitch and intensity in the left hemi-
sphere (Table 2).

3.3 | Source reconstruction

Neural generators of the MMNm were located in the sur-
roundings of right and left auditory cortices, including both 
the posteromedial and anterolateral portions of Heschl's 
gyrus (Figure 6). No prefrontal generators were observed, 
with the exception of the pitch MMNm for which there was 
a small source in the ventral part of the premotor cortex 
(BA6). Small clusters were also found for pitch in the so-
matosensory and parietal cortices, and for intensity in the 
parietal lobe around the perisylvian region. Regarding the 
entropy effect, the neural generators for pitch were located 
in the superior temporal gyrus anterior to the generator of 
the MMNm, whereas for slide a significant cluster was 
found in the right fusiform gyrus—an area involved in 
higher-order visual processing—which could be related to 
spurious visual activity arising from watching the movie. 
For this reason, uncorrected values thresholded at 0.001 are 
shown for the entropy effect on the slide MMNm in the 
Appendix S2, which includes clusters in the anterior part of 
the superior temporal gyrus.

3.4 | Behavioural experiment

Parameter estimates and data from the behavioural experi-
ment are shown in Figure 7. Analyses of d’ scores revealed 

F I G U R E  5  (a) Bayesian estimates of the mean gradient MMNm amplitude differences between high-entropy (HE) and low-entropy (LE) 
conditions for each group. Error bars represent 95% credible intervals. (b) Posterior probability densities of the differences in the entropy effect 
between musicians and non-musicians (i.e. entropy-by-expertise interaction) for each hemisphere and feature. Shaded areas depict 95% credible 
intervals. NM = non-musicians, M = musicians, BF01 = Bayes factor in favour of the null, p = posterior probability of the null
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that adding entropy as a categorical (d1) or continuous (d2) 
factor explained the data significantly better than an inter-
cept-only (d0) model (Table 3). Furthermore, the compari-
sons d1e-d1 and d2e-d2 revealed a significant main effect 
of expertise, whereas the comparisons d1i-d1e and d2i-d2e 
were non-significant, thus failing to provide evidence for 
an entropy-by-expertise interaction. A contrast between the 
continuous (d2e) and the categorical model (d1e) was not 
significant (�2

=1.53,p= .67). The residuals of these two 
models were normally distributed. AIC values revealed a 
similar picture and slightly favoured d2e over d1e as the 
winning model (Table 3). Bonferroni-corrected pairwise 
comparisons for the full model (d1i) showed significant 
differences between LE and the other four conditions for 
non-musicians. For musicians, however, the comparisons 
LE  >  IE1 and LE  >  IE2 were non-significant, whereas 
the contrasts LE >  IE3, LE > HE, IE1 >  IE2, IE1 >  IE3 
and IE1  >  HE were significant. Finally, other compari-
sons such as IE1 > IE3, IE2 > HE and IE2 > HE, although 

non-significant, resulted in large effect sizes in both groups 
(Table 4).

Regarding Bayesian analyses, there was anecdotal/in-
conclusive evidence that the interaction terms were not dif-
ferent from zero, for both the d1ib and d2ib models (Figure 
8). The only exception was the parameter for LE > IE1 in 
model d1ib, for which zero was located slightly to the left 
of the credible interval. An interaction in this case was 
about three times more likely than a null effect. This is in 
agreement with the likelihood ratio test between d1i and 
d1e, for which the p-value was close to the alpha threshold 
(Table 3).

An analysis of c scores revealed a main effect of en-
tropy and an interaction between entropy and expertise 
(Table 3). The mean c score for both groups was positive, 
thus indicating a mild bias towards missing the targets. The 
bias changed between conditions following different pat-
terns for each group, as revealed in the pairwise contrasts. 
Concretely, for non-musicians there was a significant 

T A B L E  2  Pairwise Bayesian contrasts between features for entropy-related MMNm amplitude differences in each group and hemisphere

Hemisphere Expertise Contrast Estimate CI 2.4% CI 97.5% BF01 BF10 p

Right NM Pitch > slide −0.01 −3.02 3.01 1.96 0.51 .66

Pitch > intensity 3.45 0.47 6.4 0.61 1.64 .38

Pitch > timbre 5.97 2.96 8.98 0.02 60.09 .02*

Slide > intensity 3.46 −0.29 7.14 0.85 1.18 .46

Slide > timbre 5.98 2.17 9.8 0.1 10.39 .09*

Intensity > timbre 2.52 −1.09 6.16 1.03 0.97 .51

M Pitch > slide 1.41 −2.05 4.89 1.79 0.56 .64

Pitch > intensity 3.15 −0.32 6.6 0.96 1.04 .49

Pitch > timbre 5.58 2.12 9.07 0.06 17.11 .06*

Slide > intensity 1.74 −2.28 5.77 2.92 0.34 .75

Slide > timbre 4.17 −0.02 8.38 0.8 1.25 .45

Intensity > timbre 2.43 −1.51 6.44 1.53 0.65 .6

Left NM Pitch > slide −0.14 −3.88 3.66 3.02 0.33 .75

Pitch > intensity 1.36 −2.34 5.07 3.57 0.28 .78

Pitch > timbre 2.67 −1.09 6.51 2.4 0.42 .71

Slide > intensity 1.5 −2.87 5.82 3.59 0.28 .78

Slide > timbre 2.81 −1.72 7.3 2.48 0.4 .71

Intensity > timbre 1.31 −3.01 5.61 3.31 0.3 .77

M Pitch > slide 2.23 −2.63 6.95 1.35 0.74 .57

Pitch > intensity 5.99 1.29 10.75 0.16 6.29 .13*

Pitch > timbre 7.09 2.33 11.87 0.08 13.2 .07*

Slide > intensity 3.76 −2.15 9.79 1.51 0.66 .6

Slide > timbre 4.86 −1.09 10.98 1.09 0.91 .52

Intensity > timbre 1.1 −4.67 6.95 2.46 0.41 .71

Abbreviations: BF01, Bayes factor in favour of the null; BF10, Bayes factor in favour of the alternative; CI, credible interval; M, musicians; NM, non-musicians; P, 
posterior probability of the null.
Contrasts with moderate or strong evidence for either the null hypothesis or the alternative hypothesis are highlighted in bold and marked with a star (*).
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difference in the contrasts LE  >  IE3 and IE1  >  IE3, 
whereas for musicians c scores were significantly higher 
for LE than the other four conditions (Appendix S3). When 
contrasting musicians and non-musicians for each condi-
tion separately, the nature of the interaction was clearer. 
For LE and IE1, the bias was significantly lower for musi-
cians than non-musicians and even became negative in the 
case of LE (Table 5, Figure 7).

Regarding classical linear mixed-effects models of confi-
dence ratings, there were main effects of entropy and exper-
tise, as revealed by the contrasts co1s-co0 and co1se-co1s,  
respectively (Table 3). Adding an interaction term (co1si) 
did not explain the data significantly better. AIC values 
suggested co1se as the winning model. Pairwise compar-
isons revealed significant differences between LE and the 
other four conditions and the contrast IE1 > IE3 for non- 
musicians (Table 6). For musicians, there was not a  
significant difference for the contrast LE  >  IE1 but for 
contrasts IE1  >  LE2, IE1  >  LE3, IE  >  HE, IE1  >  IE3, 

IE1 > HE and IE2 > IE3. Finally, Bayesian analyses sug-
gested moderate evidence for an interaction in the case of 
the LE-IE1 and LE-IE2 slopes and inconclusive evidence 
in favour of the null for the LE-IE3 and LE-HE parameters 
(Figure 8).

4 |  DISCUSSION

In the present work, we show that the reduction in predic-
tion error responses by predictive uncertainty (Quiroga-
Martinez et al., 2019) is also found in musically trained 
participants. This indicates that the effect is robust and 
is present across listeners with different levels of musical 
expertise. Moreover, while musicians had larger MMNm 
responses to pitch and slide deviants, there was no evi-
dence for an entropy-by-expertise interaction that would 
indicate a less pronounced effect of uncertainty for musi-
cal experts.

F I G U R E  6  Statistical maps of the 
source reconstruction for (a) the MMNm for 
each feature and condition and (b) the effect 
of entropy on pitch MMNm responses. 
Clusters are thresholded at p < .05 after 
multiple-comparisons correction. Clusters 
for the entropy effect are marked with 
a circle. Participants from both groups 
(musicians and non-musicians) were 
included in the statistical tests. P = pitch, 
S = slide, I = intensity, T = timbre
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4.1 | Expertise-related effects

Across different degrees of melodic entropy, musicians were 
more accurate and confident in detecting pitch deviations, and 
had larger pitch and slide MMNm responses in the MEG exper-
iment. This extends previous findings showing larger MMNm 
responses—especially for pitch-related deviants—in musicians 
than non-musicians (Brattico et al., 2009; Fujioka et al., 2004; 

Koelsch et al., 1999; Putkinen et al., 2014; Tervaniemi et al., 
2014; Vuust et al., 2012, 2005). As this indicates an enhance-
ment of auditory discrimination skills and could be framed as 
an increase in predictive precision, it is rather surprising that 
the effect of contextual uncertainty on prediction error is not 
significantly different between the two groups.

What these results suggest is that expertise-driven and stim-
ulus-driven changes in predictive precision are dissociable and 

F I G U R E  7  (a) d’ scores, (b) c scores and (c) confidence ratings—expressed as the probability of response for each confidence category. Note 
how the number of higher ratings (e.g. 7) tended to decrease, and the number of lower ratings (e.g. 1) tended to increase, with increasing entropy 
levels. Also, note how musicians were more confident or certain overall. All parameter values were taken from maximum-likelihood estimates. 
For d’ scores, the slopes of the continuous (d2i) model are also plotted as dashed lines. Error bars and shaded areas represent 95% confidence 
intervals. M = musicians, NM = non-musicians, LE = low entropy, IE = intermediate entropy, HE = high entropy
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independent. Thus, intensive musical training might sharpen 
the long-term representation of in-tune musical pitch catego-
ries and therefore facilitate the detection of pitch deviants. This 
would result in higher baseline levels of deviance detection 
and confidence as well as larger baseline MMNm amplitudes 
for musicians. In contrast, the uncertainty of the current stim-
ulus would be inferred dynamically from its local statistics, 
leading to a short-term modulation of prediction error that is 
independent from long-term expertise, hence explaining the 
additive effects observed in both the MEG and behavioural 
experiments.

The observed pattern of results is surprising also with 
regard to behavioural studies in which musicians gave sig-
nificantly higher unexpectedness ratings to melodic continu-
ations than non-musicians, in contexts with low but not high 
entropy (Hansen & Pearce, 2014; Hansen et al., 2016). This 
finding has been taken to reflect a better ability of musicians 
to distinguish between low- and high-entropy contexts. Note 
that these results would predict a larger effect of entropy in 
musical experts, which is the opposite of what we hypothe-
sized, but for which there was no evidence in our data either. 
It has to be noted, though, that the type of unexpected tones 
that we used was different from the one reported in those 
experiments. Here, surprising tones corresponded to out-of-
tune deviants, whereas in the behavioural studies unexpect-
edness judgements were made on plausible in-tune melodic 
continuations. Furthermore, the effect of entropy was re-
ported for expected and unexpected tones combined, whereas 
here we only employed tones that were highly unexpected. 
These discrepancies point to future research addressing the 

effect of entropy on the neural responses to in-tune compared 
with out-of-tune surprising tones, and to expected and unex-
pected tones separately.

Bayesian estimation allowed us to evaluate the relative 
evidence for the null and alternative hypotheses. For the 
change in MMNm amplitude between conditions, the param-
eter estimates of the difference between groups generally had 
small mean values (Figure 5b), indicating a rather small or 
absent modulation of expertise. However, while all credible 
intervals contained zero, they were also uncertain, spanning 
a rather broad amplitude range. This is reflected in Bayes fac-
tors, which were inconclusive, and therefore not much can be 
said about the null hypothesis.

In the behavioural experiment, the picture was slightly 
different. For d’ scores, there was moderate evidence that 
the difference between LE and IE1 was reduced in musical 
experts. Evidence for other interaction terms, including LE-
IE3, LE-HE and the slope for the continuous model, although 
inconclusive, suggested that the effect of entropy was slightly 
less pronounced for musicians. A similar pattern was ob-
served for the confidence ratings. Therefore, although like-
lihood ratio tests were non-significant for the interactions, 
Bayesian analyses provided some evidence for a group differ-
ence, at least for some interaction parameters.

Based on this, it would be tempting to conclude that 
there is evidence for our hypothesis at the behavioural 
level. However, these results might as well arise from a 
ceiling effect in musicians’ d’ scores and confidence rat-
ings that would reduce differences between LE and IE1 or 
LE and IE2, compared with the non-musicians’ noticeable 

Measure Effect Comparison AIC LR (�2) Df p > LR

d’ scores 
(categorical)

Null d0 576.28 – – –

Entropy (cat) d1-d0 529.14 55.13 4 <.001*

Expertise d1e-d1 505.15 26 1 <.001*

Interaction d1i-d1e 504.06 9.09 4 .06

d’ scores 
(continuous)

Entropy (con) d2-d0 524.68 53.6 1 <.001*

Expertise d2e-d2 500.68 26 1 <.001*

Interaction d2i-d2e 501.46 1.22 1 .27

c scores Null cr0 369.81 – – –

Entropy (cat) cr1-cr0 364.8 13.01 4 .01*

Expertise cr1e-cr1 365.61 1.19 1 .28

Interaction cr1i-cr1e 348.43 25.18 4 <.001*

Confidence Null co0 14,660.73 – – –

Entropy (cat) co1s-co0 14,182.46 514.28 18 <.001*

Expertise co1se-co1s 14,179.11 5.34 1 .02*

Interaction co1si-co1se 14,180.86 6.25 4 .18

Abbreviations: AIC, Akaike information criterion; cat, categorical; con, continuous; Df, difference in degrees 
of freedom; LR, likelihood ratio.
Significant contrasts are highlighted in bold and marked with a star (*).

T A B L E  3  Likelihood ratio tests for all 
models in the behavioural experiment
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differences between these conditions. The distribution of 
individual data points in Figure 7 suggests that this might 
be the case. Taking into consideration the results of the 
MEG experiment, the generally inconclusive Bayes factors 
and the possibility of a ceiling effect, it is fair to remain 
sceptical about the presence of an entropy-by-expertise in-
teraction when the two experiments are considered together.

4.2 | Feature-specific effects

One intriguing finding in Quiroga-Martinez et al. (2019) 
was that the effect of predictive uncertainty on prediction 
error was restricted to pitch-related deviants (out-of-tune 
tones and pitch glides). This was interpreted as suggest-
ing a feature-selective effect, given that uncertainty was 
manipulated in the pitch dimension only, while uncertainty 
in other dimensions such as timbre and intensity was kept 
constant. In the current work, this result was replicated 
in musicians, although with a slightly different pattern of 
differences. In non-musicians, larger entropy effects were 
observed for pitch and slide deviants, compared with inten-
sity and timbre deviants, in the right but not the left hemi-
sphere. For musicians, larger entropy effects were found 
for pitch deviants when compared with timbre deviants in 

both hemispheres, and when compared with intensity devi-
ants in the left hemisphere.

Care should be taken not to overinterpret these potential 
expertise-related differences, until they have been shown 
in direct group comparisons. However, attention should be 
paid to the intensity MMNm because, for musicians, a small 
yet significant difference between LE and HE contexts was 
found in the cluster-based permutation analyses, which in 
turn resulted in a significant main effect of entropy for this 
feature. Note that, for non-musicians, there was already a 
hint of such a difference. Therefore, it seems that intensity 
prediction errors are also somewhat affected by the pitch 
entropy of the melodies, something that challenges the pro-
posed feature selectivity.

These results suggest that uncertainty is mainly fea-
ture-selective, but has a residual effect on predictive pro-
cessing in other features as well. However, there might be 
two confounding factors here. First, the perception of loud-
ness changes with pitch height (Suzuki, Møller, Ozawa, & 
Takeshima, 2003). In that case, the slightly different pitch 
distributions in HE and LE conditions (see Figure S1 in 
Quiroga-Martinez et al., 2019) might have made the loudness 
violation slightly more or less salient for different conditions. 
The second confound could be the baseline salience of the 
deviants, which might have differed between features. For 

T A B L E  4  Bonferroni-corrected pairwise comparisons for d’ scores

Expertise Contrast Estimate CI 2.5% CI 97.5% t p Cohen's d

NM LE > IE1 0.55 0.02 1.07 2.96 .04* 0.93

LE > IE2 0.54 0.01 1.06 2.91 .04* 0.92

LE > IE3 1.04 0.51 1.56 5.61 <.001* 1.77

LE > HE 1.04 0.52 1.57 5.66 <.001* 1.79

IE1 > IE2 −0.01 −0.53 0.52 −0.04 1 −0.01

IE1 > IE3 0.49 −0.03 1.01 2.65 .09 0.84

IE1 > HE 0.5 −0.03 1.02 2.7 .08 0.85

IE2 > IE3 0.5 −0.03 1.02 2.7 .08 0.85

IE2 > HE 0.51 −0.02 1.03 2.74 .07 0.87

IE3 > HE 0.01 −0.52 0.53 0.04 1 0.01

M LE > IE1 −0.11 −0.6 0.38 −0.64 1 −0.19

LE > IE2 0.39 −0.1 0.88 2.25 .25 0.67

LE > IE3 0.52 0.03 1.01 3.02 .03* 0.89

LE > HE 0.66 0.17 1.15 3.81 <.001* 1.13

IE1 > IE2 0.5 0.01 0.99 2.9 .04* 0.86

IE1 > IE3 0.63 0.14 1.12 3.67 <.001* 1.08

IE1 > HE 0.77 0.28 1.26 4.46 <.001* 1.32

IE2 > IE3 0.13 −0.36 0.62 0.77 1 0.23

IE2 > HE 0.27 −0.22 0.76 1.56 1 0.46

IE3 > HE 0.14 −0.35 0.63 0.79 1 0.23

Abbreviations: CI, confidence interval; HE, high entropy; IE, intermediate entropy; LE, low entropy; M, musicians; NM, non-musicians.
Significant contrasts are highlighted in bold and marked with a star (*).
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example, a very strong timbre violation might have been less 
affected by entropy than a less strong intensity violation or 
an even weaker pitch violation, thus yielding the observed 
feature-specific patterns.

Another interesting feature-wise finding is that musicians 
had larger MMNm amplitudes for pitch and slide but not tim-
bre or intensity compared with non-musicians. This is consis-
tent with the literature, in which larger amplitudes have been 
consistently found for pitch-related deviants in musicians but 
less so for other features (Putkinen et al., 2014; Tervaniemi et 
al., 2014). This might reflect a focus on pitch discrimination 
as a core ability for musical experts and the fact that musi-
cal pitch is organized in rich multidimensional cognitive sys-
tems (Krumhansl, 1990), which is not the case for intensity 
or timbre.

4.3 | Source reconstruction

As expected from the literature (Deouell, 2007), neural gen-
erators of the MMNm were located in primary and secondary 
bilateral auditory cortices. No prefrontal generators were ob-
served, with the exception of the pitch MMNm for which there 
seemed to be a small source in the ventral part of BA6. This, 
however, could be caused by leakage of the temporal source. 
The location of the entropy effect for the pitch MMNm, which 
was anterior to the primary source, suggests that entropy af-
fected the passing of prediction error responses from primary 
auditory cortex to secondary auditory cortex. This is consist-
ent with predictive processing theories (Clark, 2016; Feldman 
& Friston, 2010; Hohwy, 2013) that suggest an uncertainty-
driven reduction in the gain of prediction error responses, 

F I G U R E  8  Bayesian posterior probability densities for the entropy-by-expertise interaction parameters—that is expertise-related modulation 
of the comparisons LE-IE1, LE-IE2, LE-IE3, LE-HE and the slope of the continuous model. Densities for (a) categorical and (c) continuous 
mixed models of d’ scores, as well as (b) a cumulative-link mixed model of confidence ratings, are displayed. Shaded areas represent 95% credible 
intervals. As accuracy and confidence generally decreased with higher entropy levels, positive parameter values indicate smaller differences 
between conditions for musicians compared with non-musicians. BF01 = Bayes factor in favour of the null, p = posterior probability of the null, 
LE = low entropy, IE = intermediate entropy, HE = high entropy

T A B L E  5  Bonferroni-corrected contrasts of c scores between musicians and non-musicians for each condition

Condition Contrast Estimate CI 2.5% CI 97.5% t p Cohen's d

LE NM - M 0.6 0.26 0.94 3.46 <.001* 1.41

IE1 NM - M 0.35 0.01 0.7 2.05 .04* 0.84

IE2 NM - M −0.1 −0.44 0.25 −0.55 .58 −0.22

IE3 NM - M −0.19 −0.53 0.16 −1.08 .28 −0.44

HE NM - M 0.02 −0.32 0.36 0.1 .92 0.04

Abbreviations: CI, confidence interval; HE, high entropy; IE, intermediate entropy; LE, low entropy; M, musicians; NM, non-musicians.
Significant contrasts are highlighted in bold and marked with a star (*).
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which prevents them from driving inference and learning at 
higher levels of the cortical hierarchy (Griffiths & Warren, 
2002). Moreover, this is partly consistent with results reported 
by Southwell and Chait (2018), who found reduced anterior 
temporal responses to deviant sounds in contexts with high as 
compared to low uncertainty. Note that other prefrontal sources 
were also found in that study which was not detected here. 
However, their results were based on EEG source reconstruc-
tions with no individual anatomical images, which may explain 
the differences in the sources found in the two studies.

4.4 | Behavioural experiment

As mentioned above, the effect of entropy on accuracy and 
confidence scores was present in musicians as well. There 
was also a main effect of expertise in which musicians were 
better and more confident at discriminating the deviants, but 
there was no conclusive evidence for an entropy-by-exper-
tise interaction. Thus, behavioural measures were in agree-
ment with the outcomes of the MEG experiment. Apart from 
these findings, two results deserve attention. First, pairwise 
differences were found between HE and IE1, and between 
intermediate conditions (e.g. IE1 and IE3) in both groups. 
This corroborates the finding that any of the two sources of 

uncertainty manipulated in the experiment, namely pitch-al-
phabet size and stimulus repetitiveness, can modulate predic-
tion error separately. Second, c scores revealed a reduced bias 
in musicians for LE and IE1 conditions, indicating a higher 
rate of hits only for categories with the highest precision. 
Interestingly, for LE stimuli, some musicians systematically 
reported deviants when there were none, which suggests that 
the expectancy of a deviation might have occasionally in-
duced the illusion of a mistuning.

4.5 | Limitations and future directions

As we used the same methods as in Quiroga-Martinez et al. 
(2019), the limitations already discussed in that work also apply 
to the current report. Briefly, these include the impossibility of 
disentangling the contribution of pitch-alphabet size and repeti-
tiveness to the modulation of the MMNm; the different repeti-
tion rates of individual melodies in different conditions, which 
might have created different veridical expectations during stim-
ulation; the difference in the distribution of pitches between 
conditions in the MEG experiment and its possible implica-
tions for the pitch MMNm; the measurement of uncertainty at 
the context level rather than on a note-by-note basis; the unu-
sual listening situation—that is participants listening passively 

T A B L E  6  Bonferroni-corrected pairwise comparisons for confidence ratings

Expertise Contrast Odds ratio CI 2.5% CI 97.5% z p

NM LE > IE1 2.64 1.59 4.38 5.39 <.001*

LE > IE2 4.24 2.09 8.59 5.74 <.001*

LE > IE3 6.23 2.69 14.44 6.11 <.001*

LE > HE 3.99 2.19 7.25 6.49 <.001*

IE1 > IE2 1.6 0.84 3.08 2.03 .42

IE1 > IE3 2.36 1.04 5.35 2.94 .03*

IE1 > HE 1.51 0.82 2.79 1.88 .6

IE2 > IE3 1.47 0.96 2.24 2.57 .1

IE2 > HE 0.94 0.65 1.36 −0.46 1

IE3 > HE 0.64 0.4 1.01 −2.74 .06

M LE > IE1 1.53 0.92 2.52 2.36 .18

LE > IE2 2.14 1.08 4.21 3.14 .02*

LE > IE3 3.56 1.6 7.92 4.46 <.001*

LE > HE 2.79 1.56 4.99 4.96 <.001*

IE1 > IE2 1.4 0.75 2.62 1.5 1

IE1 > IE3 2.33 1.07 5.08 3.06 .02*

IE1 > HE 1.83 1.01 3.31 2.86 .04*

IE2 > IE3 1.67 1.1 2.52 3.48 .01*

IE2 > HE 1.31 0.9 1.89 2.02 .43

IE3 > HE 0.78 0.5 1.22 −1.54 1

Abbreviations: CI, confidence interval; HE, high entropy; IE, intermediate entropy; LE, low entropy; M, musicians; NM, non-musicians.
Significant contrasts are highlighted in bold and marked with a star (*).
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while watching a silent movie—which limits the generality of 
the findings; the rather artificial auditory context—even though 
our stimuli are much more realistic than in most MMN re-
search; and the lack of a preregistration of our hypothesis and 
analysis plan—something that is partly overcome by the fact 
that we have now replicated our main findings and have openly 
shared materials, code and data.

Despite these limitations, our work provides further 
evidence for the effect of uncertainty—or precision—on 
prediction error, which is consistent with an increasing 
number of empirical findings (Garrido et al., 2013; Hsu et 
al., 2015; Lumaca et al., 2019; Sedley et al., 2016; Sohoglu 
& Chait, 2016; Southwell & Chait, 2018), theories of pre-
dictive processing and models of music perception (Clark, 
2016; Feldman & Friston, 2010; Hohwy, 2013; Ross & 
Hansen, 2016; Vuust et al., 2018). Furthermore, our find-
ings confirm that MMNm responses can be reliably re-
corded in realistic paradigms where sounds constantly 
change, which constitutes a methodological improvement 
on existing approaches.

Consequently, we hereby open the possibility of address-
ing questions about predictive processing and predictive 
uncertainty in more realistic and complex auditory environ-
ments. One possible future direction in this regard would 
be to elucidate where and how the modulation of prediction 
error takes place in the auditory frontotemporal network. 
Specifically, it would be interesting to address whether the 
precision-weighting effect arises from top-down or intrin-
sic connectivity, and whether neuromodulation plays a role 
(Auksztulewicz et al., 2018). Paradigms similar to the one 
presented here could be used in combination with connec-
tivity measures, such as dynamic causal modelling (Moran, 
Pinotsis, & Friston, 2013), and intracranial recordings (e.g. 
Omigie et al., 2019) to address these questions. Moreover, for 
music research, methods such as these could be very infor-
mative about the nature of musical knowledge and musical 
expectations and how these are represented in the cortical hi-
erarchy. Relatedly, this line of research could inform musical 
aesthetics, given that some musical styles exploit uncertainty 
as an artistic resource (Mencke, Omigie, Wald-Fuhrmann, 
& Brattico, 2019). Finally, the use of more realistic stimuli 
could help us understand how different types of musical stim-
uli (e.g. different styles) are processed by listeners of differ-
ent backgrounds, something that we have started to address 
here with musical experts, but that could be extended, for 
example, to listeners from different cultures or with instru-
ment-specific expertise.

5 |  CONCLUSION

In the present study, we have shown that pitch prediction 
error responses in musical experts—as indexed by MMNm 

responses, accuracy scores and confidence ratings—are re-
duced by pitch predictive uncertainty when listening to rela-
tively complex and realistic musical stimuli. This suggests that 
our previous findings in non-musicians are robust and repli-
cable and provides further support for theories of predictive 
processing which propose that neural responses to surprising 
stimuli are modulated by predictive uncertainty. Furthermore, 
our results show that, while musicians have generally larger 
prediction error responses, the uncertainty effect does not 
substantially change with expertise, thus pointing to separate 
long-term and short-term mechanisms of precision modula-
tion. Overall, our work demonstrates that music, as a rich and 
multifaceted auditory signal, is an ideal means to improve our 
understanding of uncertainty and predictive processing in the 
brain.
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