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Theories of predictive processing propose that prediction error responses are modulated by

the certainty of the predictive model or precision. While there is some evidence for this

phenomenon in the visual and, to a lesser extent, the auditory modality, little is known

about whether it operates in the complex auditory contexts of daily life. Here, we examined

how prediction error responses behave in a more complex and ecologically valid auditory

context than those typically studied. We created musical tone sequences with different

degrees of pitch uncertainty to manipulate the precision of participants' auditory expec-

tations. Magnetoencephalography was used to measure the magnetic counterpart of the

mismatch negativity (MMNm) as a neural marker of prediction error in a multi-feature

paradigm. Pitch, slide, intensity and timbre deviants were included. We compared high-

entropy stimuli, consisting of a set of non-repetitive melodies, with low-entropy stimuli

consisting of a simple, repetitive pitch pattern. Pitch entropy was quantitatively assessed

with an information-theoretic model of auditory expectation. We found a reduction in

pitch and slide MMNm amplitudes in the high-entropy as compared to the low-entropy

context. No significant differences were found for intensity and timbre MMNm ampli-

tudes. Furthermore, in a separate behavioral experiment investigating the detection of

pitch deviants, similar decreases were found for accuracy measures in response to more

fine-grained increases in pitch entropy. Our results are consistent with a precision mod-

ulation of auditory prediction error in a musical context, and suggest that this effect is

specific to features that depend on the manipulated dimensiondpitch information, in this

case.
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1. Introduction

Prediction is considered a core principle for brain function.

Several theories propose that the brain anticipates and ex-

plains incoming information during perception based on its

own predictive model of the world (Bar, 2009; Clark, 2016;

Friston, 2005; Hohwy, 2013; Rao & Ballard, 1999). When un-

expected information is encountered, it generates prediction

error responses that are passed forward through brain hier-

archies, so that they can drive perceptual inference, learning

and action (den Ouden, Kok, & de Lange, 2012; Friston, 2010).

Prediction error responses are hypothesised to depend, not

only on the novelty of sensory signals, but also on the precision

of the brain's predictive model. Here we understand precision

as the specificity and certainty of predictions, which can be

driven both by the statistical properties of sensory signals and

by internal factors such as attention. Precision is proposed to

modulate the gain of prediction error responses so that they

are stronger in perceptual contexts with low as compared to

high uncertainty (Clark, 2013; Feldman & Friston, 2010;

Hohwy, 2012). This mechanism, known as precision-

weighting of prediction error, would ensure that primarily

reliable perceptual contexts drive learning and behavior.

Research on predictive precision has mainly centered on

the visual modality and selective attention as precision opti-

mization (Feldman & Friston, 2010; Jiang, Summerfield, &

Egner, 2013; Kok, Rahnev, Jehee, Lau, & de Lange, 2012). In

the auditory domain, some studies have similarly focused on

attention (Auksztulewicz & Friston, 2015; Chennu et al., 2013;

Garrido, Rowe, Hal�asz, & Mattingley, 2018; Schr€oger,

Marzecov�a, & SanMiguel, 2015) and only a handful have

shownhow the statistical properties of the stimuli themselves

can drive precision (Garrido, Sahani,&Dolan, 2013; Heilbron&

Chait, 2018; Hsu, Bars, H€am€al€ainen, & Waszak, 2015; Sedley

et al., 2016; Sohoglu & Chait, 2016; Southwell & Chait, 2018).

These experiments, however, have employed very simple and

artificial auditory stimuli, which limit the generality of the

conclusions that can be drawn from them. As a result, it is not

known how prediction error responses behave in more com-

plex and realistic contexts. Consequently, the goal of the

present study is to assess empirically whether prediction error

responses are modulated by precision in a richer and more

ecologically valid auditory context such as music.

Music perception provides a useful model of auditory

prediction. Listeners are known to generate expectations in

musical pieces, based on the statistical regularities of the

context and long-term knowledge of a musical style (Huron,

2006; Pearce, 2018). The violation of these expectations gen-

erates neural prediction error responses (e.g., Carrus, Pearce,

& Bhattacharya, 2013; Koelsch, Gunter, Friederici, &

Schr€oger, 2000; Vuust et al., 2005). Interestingly, precision

has been suggested to modulate musical prediction error and

play an important role in the perceptual, aesthetic and

emotional dimensions of musical experience (Hansen, Dietz,

& Vuust, 2017; Ross & Hansen, 2016; Vuust, Witek, Dietz, &

Kringelbach, 2018). Bringing empirical support to these

claims, two behavioral studies have shown that listeners es-

timate the precision of musical expectations and that low-

probability tones are judged as more unexpected in contexts
with low as compared to high uncertainty (Hansen & Pearce,

2014; Hansen, Vuust, & Pearce, 2016). Nevertheless, how pre-

cision affects musical prediction error at the neural level re-

mains unknown.

To address this question, we manipulated the precision

of participants' expectations by creating realistic melodic

sequences with different degrees of pitch uncertainty. This

was accomplished by manipulating two dimensions: the

repetitiveness and the pitch alphabetdi.e., the collection of

possible pitch categoriesdof the sequences. Research has

shown that both factors modulate the neural signatures of

predictive uncertainty (Auksztulewicz et al., 2017;

Barascud, Pearce, Griffiths, Friston, & Chait, 2016). As a

marker of prediction error, we recorded the mismatch

negativity (MMN) (N€a€at€anen, Gaillard, & M€antysalo, 1978),

which is a well-known neural response to regularity vio-

lations in a stimulus sequence (N€a€at€anen, Paavilainen,

Rinne, & Alho, 2007) with generators in the auditory and

inferior frontal cortices (Deouell, 2007). The MMN is taken

to reflect the violation and update of neural predictive

models (Bendixen, SanMiguel, & Schr€oger, 2012; Garrido,

Kilner, Stephan, & Friston, 2009; Lieder, Stephan,

Daunizeau, Garrido, & Friston, 2013). Some studies already

hint at a precision modulation of the MMN. In them, re-

petitive patterns are compared with random tone se-

quences that prevent the formation of regularities (Hsu

et al., 2015; Jacobsen & Schr€oger, 2001; Maess, Jacobsen,

Schr€oger, & Friederici, 2007), revealing no MMN for the

latter. In other words, a very imprecise predictive model

seems to lead to highly reduced prediction error responses.

Perhaps for this reason, most MMN studies employ very

simple and repetitive stimuli, which favor the strength of

the recorded signal, but fail to provide a full picture of

predictive processing in the rich and complex auditory

environments of daily life. This is the case even for musical

MMN paradigms that aim at making auditory stimuli more

real-sounding (e.g., Tervaniemi, Huotilainen, & Brattico,

2014; Vuust et al., 2011). Therefore, employing stimuli

that are more complex than in current paradigms, but at

the same time less complex and more real-sounding than a

random succession of tones, could reveal how predictive

processing and precision operate in more ecologically valid

settings.

The creation of more complex and realistic MMN para-

digms comes with the challenge of establishing regularities

in constantly changing acoustic streams. However, the

auditory system is capable of extracting abstract features

and complex relationships between sounds which give rise

to an MMN when violated (Paavilainen, 2013). For example,

in the no-standard multifeature paradigm (Pakarinen,

Huotilainen, & N€a€at€anen, 2010) deviants for different fea-

tures immediately follow each other and regularities are

created by keeping one feature constant for a period of time

while tones change in other features. This suggests that

features are processed independently from each other to a

good extent, which is the property that we exploited here. In

a novel MMN paradigm, we included intensity, timbre, pitch

and slide deviants, and created regularities by keeping the

same loudness, timbre, musical scale system and pitch

steadinessdas opposed to pitch glidedin the sequence, even

https://doi.org/10.1016/j.cortex.2019.06.010
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though standard tones constantly changed. Pitch deviants

are of particular interest, since there was not a unique pitch

height that served as standard. Rather, the regularity was

created by the abstract properties of musical scales (Brattico,

Tervaniemi, N€a€at€anen, & Peretz, 2006), which constitute

finite sets of possible pitch categories and distances between

consecutive tones (i.e., intervals). Therefore, our pitch de-

viants consisted of out-of-tune sounds that fall outside the

musical scale of reference (see section 2.1.2. for more de-

tails). Furthermore, the described feature independence is

interesting because we manipulated precision only in the

pitch dimensiondby changing the number of possible pitch

heights and intervals and their repetitivenessdwhile fea-

tures such as intensity and timbre kept the same simple

predictive model, with only one deviant and one standard

value across conditions. In consequence, our multifeature

paradigm provided an opportunity to explore the extent to

which precision in one auditory dimension affects predictive

processing in other auditory dimensions.

In the present study, we conducted separate neuro-

physiological and behavioral experiments to determine

whether auditory prediction error is modulated by preci-

sion during listening to musical sequences. In the

neurophysiological experiment, we used magnetoenceph-

alography (MEG) to record magnetic mismatch responses

(MMNm) to pitch, intensity, timbre and slide deviants in

high-entropy (HE) and low-entropy (LE) contexts. The LE

context consisted of an adapted version of the simple and

repetitive musical multi-feature paradigm (Vuust et al.,

2011) (see section 2.1.2. for more details), whereas the HE

context consisted of a set of novel non-repetitive melodies.

Entropy was quantitatively characterized with a computa-

tional model of auditory expectation (see section 2.1.2.1). In

line with a precision modulation of prediction error, we

expected reduceddbut still presentdMMNm amplitudes

for the HE as compared to the LE context. Moreover, in

exploratory analyses we addressed the possibility that

different features were affected by pitch entropy in

different ways, thereby providing a first investigation of the

feature-selectivity of the effect. In the behavioral experi-

ment, we asked participants to detect pitch deviants

introduced in several tone sequences, and to report the

confidence of their responses. This experiment had two

aims. The first was to assess behaviorally the putative

precision modulation of the MMNm. The second was to

determine whether listeners are sensitive to fine-grained

manipulations of precision. For this reason, we employed

stimuli with five degrees of entropy, which included a

subset of the HE/LE stimuli used in the MEG experiment

and three additional conditions with intermediate entropy

levels. We expected lower accuracy and confidence ratings

as the entropy of the melodic sequences increased.
2. Materials and methods

The data, code and materials necessary to reproduce the re-

ported experiments and results are available at http://bit.ly/

music_entropy_MMN; DOI 10.17605/OSF.IO/MY6TE.
2.1. MEG experiment

2.1.1. Participants
Twenty-four right-handed and neurologically healthy non-

musicians (13 women, mean age 27, range 19e34) took part

in the experiment. The sample sizewas chosen to be similar to

a previous study using the same MEG scanner in which rela-

tively small within-subjects differences were identified

(Hansen, Højlund, Møller, Pearce, & Vuust, 2019). Musical

expertise was measured with the musical training subscale of

the Goldsmiths Musical Sophistication Index (Gold-MSI)

questionnaire, which has been validated in a very large sam-

ple (n ¼ 147,636) (Müllensiefen, Gingras, Musil, & Stewart,

2014). The mean score was 10.3 (SD ¼ ± 3.5) and all scores

lay in the 26th percentile of the norm for the subscale. More-

over, participants'musical competence was assessed with the

Musical Ear Test (MET), which has been shown to accurately

discriminate between musicians and nonmusicians

(Wallentin, Nielsen, Friis-Olivarius, Vuust, & Vuust, 2010). The

test yielded a total score of 69.12 (SD ¼ ± 9.58), which falls

within normal values for this population (Wallentin et al.,

2010). Participants were recruited through an online data-

base for experiment participation, agreed to take part volun-

tarily, gave their informed consent and received 300 Danish

kroner (approximately 40 euro) as compensation. The data

from all participants were included in the analyses, since

reliable auditory responses were identified in all cases, which

was our predefined inclusion criterion. The study was con-

ducted in accordance with the Helsinki declaration and was

approved by the regional ethics committee (De Videnskabse-

tiske Komit�eer for Region Midtjylland in Denmark).

2.1.2. Stimuli
High-entropy and low-entropy stimuli were included (Fig. 1a).

For the LE condition, we adapted the original musical multi-

feature paradigm (Vuust, Brattico, Sepp€anen, N€a€at€anen, &

Tervaniemi, 2012; Vuust et al., 2011; Vuust, Liikala,

N€a€at€anen, Brattico, & Brattico, 2016), which consists of a

four-note repeating pattern (low-high-medium-high pitch)

employing the notes from a major or minor chord. This

pattern, known as the Alberti bass, is used across musical

styles (Fuller, 2001). The HE condition consisted of a novel

multi-feature paradigm including a set of six novel melodies

which contained almost no exact repetitions of pitch patterns

and a larger pitch alphabet than LE. All the tones in the mel-

odies were isochronous to make both conditions directly

comparable with each other and other MMN paradigms (the

full set of stimuli is shown in supplementary file 1). Individual

tone sequencesdi.e., single melodies or Alberti bass sequen-

cesdin both conditions were 32-notes long, lasted eight sec-

onds and were pseudo-randomly transposed from 0 to 5

semitones upwards to the keys comprising the major and

minor modes of C, C#, D, D#, E, and F. After transposition, the

pitch alphabet in the HE condition spanned up to thirty-one

semitones from B3 ðF0 z 247 HzÞ to F6 ðF0 z 1397 HzÞ. To

minimize acoustic confounds, we made sure that LE se-

quences spanned approximately the same global pitch al-

phabet as HE sequences by transposing half of them to the

octave from C4 ðF0z 262 HzÞ to C5 ðF0z 523 HzÞ, and the other

http://bit.ly/music_entropy_MMN
http://bit.ly/music_entropy_MMN
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Fig. 1 e Examples of the sequences used in A) the MEG experiment and B) the behavioral experiment (complete stimulus set

available in the supplementary file 1 and sound examples available in the online repository). LE ¼ low entropy,

IE¼ intermediate entropy, HE¼ high entropy. Two of the conditions in the behavioral experiment (LE, HE) correspond to the

conditions in the MEG experiment.
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half to the octave from C5 to C6 ðF0z 1046 HzÞ (supplementary

figure 1).

Stimuli were presented using a pool of piano tones made

with the “Warm Grand” sample from the Halion sampler in

Cubase (Steinberg Media Technology, version 8). Each tone

had a duration of 250ms,was peak-amplitude normalized and

had 3-ms-long fade-in and fade-out to prevent clicking. This

tone duration shortened stimulation time while preventing

the MMN from overlapping with the onset of the following

tone. No gapswere introduced between consecutive sounds to

create the perception of continuous melodic phrases with

legato articulation. We regard this as representative of how

melodies are played in real music. Pitch deviants consisted of

out-of-tune tones falling outside the musical scale of refer-

ence andwere created by raising the pitch of the original tones

by 50 cents. The slide deviant was a continuous pitch glide

which spanned thewhole duration of the tone, going from two

semitones below towards the pitch of the corresponding

standard tone. For the intensity deviant sound level was

decreased by 20 dB. The timbre deviant consisted of a tele-

phone receiver effect (bandpass-filtered between 1 and 4 kHz).

All deviants were created with Audition (Adobe Systems

Incorporated, version 8).

Each condition was presented in a separate group of three

consecutive blocks. Within each block, tone sequences were

played one after the other without pauses. The order of HE
sequences was pseudorandom so that any sequence of twelve

consecutive melodies contained no more than one major and

minor version of each. No melody was played twice in a row.

Transpositions in both conditions were pseudorandomized in

the sameway. At the beginning of each block, a sequencewith

no deviants was added to ensure a certain level of auditory

regularity at the outset. The duration of the pause between

blocks was not fixed but usually took around one minute.

Deviants were introduced as follows. Each 32-note

sequence was divided into eight groups of four notes

(Fig. 1a). In half of the sequences, deviants occurred in groups

1, 3, 5 and 7. In the other half, they occurred in groups 2, 4, 6

and 8. This was done because we also included a combined

condition where HE and LE sequences were played simulta-

neously, thereby creating two-part musical excerpts. Thus,

the position of the deviants was distributed across streams to

counterbalance the effects of key-changes between parts. The

purpose of this condition was to assess the predictive pro-

cessing of simultaneousmusical streams, which is beyond the

scope of this article. The corresponding results will be re-

ported elsewhere. Within each four-note group, only one

deviant could occur randomly in any of the four positionswith

equal probability. There was one deviant per feature in each

sequence and their order of appearance was pseudorandom.

There were 144 sequences in each condition and the same

number of deviants per feature. This number was close to the

https://doi.org/10.1016/j.cortex.2019.06.010
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minimum of 150 suggested by Duncan et al. (2009) for EEG

research in clinical populations. Since each deviant type

occurred once per thirty-two notes, its overall zeroth-order

probability was 1/32 z .031. In the session, we also included

another group of three consecutive blocks in which Alberti

bass sequences were played in a low pitch range. This con-

dition served as a control for the combined condition and

therefore is not the focus of this article either. The order of this

and the HE and LE conditions was counterbalanced across

participants. These conditions always came after the three

blocks of the combined condition.

2.1.2.1. QUANTITATIVE ESTIMATES WITH IDYOM. To characterize

quantitatively the stimuli, we used Information Dynamics of

Music (IDyOM), a variable-order Markov model of expectation

(Pearce, 2005, 2018). IDyOM generates expectations at each

point of an event sequence in the form of a probability dis-

tribution (P) over the set of possible continuations at that

particular moment. These probabilities are conditional on the

preceding context and the previous long-term exposure of the

model. The uncertainty of expectations is quantified in terms

of Shannon entropy:

EðPÞ¼ �
X

p 2 P

p log2p

Since the probabilities of the possible continuations (p)

sum to one, entropy is minimal when only one event has a

very high probability, and ismaximal when all possible events

are equally likely. IDyOM's entropy estimates correlate with

behavioral measures of uncertainty (Hansen et al., 2016;

Hansen & Pearce, 2014). Once the next event in the sequence

appears, IDyOM estimates its unexpectedness as information

content (IC):

ICp ¼ � log2p

Thus, unexpected or surprising events have high IC.

Here, mean entropy and mean IC values are used to esti-

mate how the statistical properties of the sequences drive

listeners' predictive precision (see section 2.1.2.1. for

further details). Our primary measure in this context is

entropy, as it directly estimates precision, given that pre-

cision is the inverse of uncertainty. Thus, contexts with

low entropy would generate more precise expectations

than contexts with high entropy. Our secondary measure is

mean IC, since stimuli with decreasing levels of pre-

cisiondand thus increasing levels of entropydwould tend

to yield higher levels of unexpectedness and IC in the long

run. Here we consider both measures to obtain a more

complete picture of the listener's predictive model in rela-

tion to the stimuli. Note, however, that our manipulations

are qualitative, and that we use IDyOM merely to charac-

terize the uncertainty of the previously generated stimuli

rather than to directly predict neural activity.

Mean entropy and IC values were quantified using a model

that combined short-term probabilities inferred from the se-

quences themselves with long-term probabilities learned

from a corpus of Western tonal hymns and folksongs (data-

sets 1, 2, and 9 from Table 4.1 in Pearce, 2005, comprising

50,867 notes). This corpus has been extensively used in prior
research. The model simulates a listener that generates pre-

dictions based on life-long knowledge ofWestern tonalmusic,

but who is also capable of learning and incorporating the

structure of the current stimuli into its long-term expecta-

tions. This configuration is known as Bothþmodel. IDyOM can

use different parameters of the musical surfacedknown as

viewpointsdto derive its probabilistic predictions (Conklin &

Witten, 1995; Pearce, 2005). Research has often used a view-

point combining tonal scale degree (i.e., the perceived stability

of a given pitch with respect to its tonal context) and pitch-

interval (e.g., Carrus et al., 2013; Hansen & Pearce, 2014;

Omigie, Pearce, Williamson, & Stewart, 2013; Pearce, Ruiz,

Kapasi, Wiggins, & Bhattacharya, 2010) in order to capture

both melodic and tonal structure (see Pearce, 2005, for more

details). This viewpoint was used here to obtain note-by-note

IC and entropy values, which were then averaged for each

sequence and condition. Crucially, IDyOM uses the pitch al-

phabet of the training corpus for its predictions, which in this

case was larger than the alphabets of our stimuli. This pro-

duces misleading estimates and makes the model insensitive

to differences in pitch alphabet between conditions, which

have been identified as an important source of uncertainty

(Auksztulewicz et al., 2017; Barascud et al., 2016). For this

reason, we adjusted the distributions to include only the

probabilities of the tones present in each condition, which

were then renormalized to sum to one (for non-adjusted

values see supplementary figure 3). The analysis revealed

higher mean entropy and IC for HE than LE stimuli (Fig. 2a and

c). IC and entropy profiles of all the sequences are shown in

supplementary file 1.

2.1.3. Procedures
Participants received oral and written information and gave

their consent. Then they filled out the Gold-MSI questionnaire

and completed the MET. Once participants had put on MEG-

compatible clothing, electrodes and coils were attached to

their skin and their heads were digitized. During the

recording, they were sitting upright in the MEG device looking

at a screen. Before presenting the musical stimuli, their

auditory threshold was measured through a staircase pro-

cedure and the sound level was set at 60 dB above threshold.

Participants were instructed to watch a silent movie of their

choice, ignore the sounds and move as little as possible. This

taskminimizes the overlap of theMMNwith attention-related

components such as the P300 (Duncan et al., 2009). Partici-

pants were told there would be musical sequences playing in

the background interrupted by short pauses so that they could

take a break and readjust their posture. Sounds were pre-

sented through isolated MEG-compatible ear tubes (Etymotic

ER�30). The recording lasted approximately 90 min and the

whole experimental session took between 2.5 and 3 h

including consent, musical expertise tests, preparation, in-

structions, breaks, and debriefing.

2.1.4. MEG recording and analyses
Magnetic correlates of brain activity were recorded using an

Elekta Neuromag MEG TRIUX system with 306 channels (204

planar gradiometers and 102 magnetometers) and a sampling

rate of 1000 Hz. Participants' head position was monitored

https://doi.org/10.1016/j.cortex.2019.06.010
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Fig. 2 e Entropy and information content (IC) values, in bits, measured with IDyOM for the stimuli included in the MEG (A, C)

and behavioral (B, D) experiments. Error bars represent standard deviation. LE ¼ Low entropy, IE ¼ Intermediate entropy,

HE ¼ High entropy.
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with four coils (cHPI) attached to the forehead and the mas-

toids. Offline, signals coming from inside the skull were iso-

lated with the temporal extension of the signal source

separation (tSSS) technique (Taulu, Kajola, & Simola, 2003)

using Elekta's MaxFilter software (Version 2.2.15). This pro-

cedure included movement compensation for all but two

participants, for whom continuous head position information

was not reliable due to suboptimal placement of the coils. In

these cases, the presence of reliable auditory event-related

fields (ERFs) was successfully verified by visually inspecting

the amplitude and polarity of the P50(m) component. Eye-

blink and heartbeat artifacts were corrected with the aid of

electrocardiography, electrooculography and independent

component analysis, as implemented by a semi-automatic

routine (FastICA algorithm and functions find_bads_eog and

find_bads_ecg in the software MNE-Python) (Gramfort, 2013).

Visual inspection served as quality check.

The ensuing analysis steps were conducted with the

Fieldtrip toolbox (version r9093) (Oostenveld, Fries, Maris, &

Schoffelen, 2011) in MATLAB (R2016a, The MathWorks Inc.,

Natick, MA). Epochs comprising a timewindow of 400ms after
sound onset were extracted and baseline-corrected, with a

pre-stimulus baseline of 100 ms. Epochs were then low-pass

filtered with a cut-off frequency of 35 Hz and down-sampled

to a resolution of 256 Hz. For each participant, ERFs were

computed by averaging the responses for all deviants for each

feature and averaging a selection of an equal number of

standards. These were selected by finding, for each single

deviant, a standard tone that was not preceded by a deviant

and was in the same position of the same HE or LE sequen-

cedalthough not necessarily the same transpositiondin a

different trial. This ruled out artefacts related to the difference

in noise between conditionsdsince there are many more

standards than deviantsdand the position of the deviant

within the sequence. After averaging, planar gradiometers

were combined by computing root mean square values.

Finally, a new baseline correction was applied and MMNm

difference waves were computed by subtracting the ERFs of

standards from the ERFs of deviants.

The statistical analyses were performed on combined

gradiometer data, as these sensors measure activity directly

above the neural sources and have a better signal-to-noise

https://doi.org/10.1016/j.cortex.2019.06.010
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ratio (Haumann, Parkkonen, Kliuchko, Vuust, & Brattico,

2016). Magnetometers were used to inspect the polarity of

components. For the primary analyses, we used two-sided

paired-samples t-tests in a mass-univariate approach with

cluster-based permutations as multiple comparisons

correction (Maris & Oostenveld, 2007). The sample-level

significance threshold was .05, the chosen statistic was the

maximal sum of clustered T-values (maxsum) and the num-

ber of iterations was 10,000. The tests were restricted to a

time window between 100 and 250 ms after sound onset as

this covers the typical latency of the MMNm (N€a€at€anen

et al., 2007). To assess the presence of MMNm responses,

the ERFs of deviants and standards were contrasted for each

feature and condition. To evaluate the effect of stimulus

entropy, the MMNm difference waves in the HE and LE

conditions were contrasted for each feature. Since separate

tests were performed for each feature, a Bonferroni correc-

tion for multiple comparisons was applied by multiplying p-

values by the number of features, namely four.

Further exploratory analyses onmean gradient amplitudes

(MGA) were performed to estimatewhether MMNm responses

for different features were affected differently by stimulus

entropy. These analyses were not conducted with a mass-

univariate approach since peak latencies were clearly

different between features, which does not allow a direct

comparison of amplitude. Instead, MGAs were computed for

each participant, feature and condition, by averaging ±25 ms

around the peak, defined as the highest local maxima of the

MMNm difference wave between 100 and 250 ms. This pro-

cedure was restricted to the average of the four combined

gradiometers in each hemisphere with the largest P50(m) re-

sponses in the grand average, which we regard as an indicator

of reliable auditory signals (channels in red in the top-right

head-plot of Fig. 3). These channels also exhibit the largest

MMNm amplitudes (Fig. 4). Differences in MGA between con-

ditions were computed and used as the dependent variable. A

linear mixed model including feature, hemisphere and their

interaction as predictors was fitted. Random intercepts were

also included. Random slopes were excluded as the amount of

data points was not sufficient for their estimation. Since this

analysis was exploratory, we report parameter estimates and

confidence intervals, but not p-values. Standardized effect

sizes (Cohen's d) of pairwise comparisons were also computed

as the difference between means divided by the residual

standard deviation.

2.2. Behavioral experiment

In this experiment, a deviance detection task was used to

confirm behaviorally the hypothesized neurophysiological

effects. In addition, since the MEG experiment included only

two highly contrasting conditions to observe clear differences

in the neural signal, in the behavioral experiment we aimed to

assess a more fine-grained precisionmodulation of prediction

error, and test whether repetitiveness or pitch alphabet alone

are sufficient to elicit the effect.

2.2.1. Participants
Twenty-one non-musicians (16 women, mean age 21.9, range

18e36) participated in the experiment. Musical expertise was
measured with the Gold-MSI musical training subscale which

yielded a score of 12.9 (SD ¼ ±5.77). All values lay in the 42nd

percentile of the norm for this subscale. Participants were

recruited through an online database for experiment partici-

pation, agreed to take part voluntarily, gave their informed

consent and received 100 Danish kroner (approximately 13.5

euro) as compensation. Two subjects had previously partici-

pated in the MEG experiment. The data from all participants

were analyzed, since above-chance deviance detection was

verified in all cases. This was our predefined inclusion crite-

rion. The sample size was chosen to be comparable to that of

the MEG experiment. In this regard, Bishop and Hardiman

(2010) demonstrated that behavioral deviance detection is

present even for subjects who do not show reliable individual

MMN responses, thus suggesting a higher sensitivity of

behavioral measures.

2.2.2. Experimental design
Participants were presented with 32-note sequences with

different levels of entropy and asked to decide after each one if

a note with a wrong pitch was present in the sequence or not,

and how certain they were about their response on a scale

from 1 (not certain at all) to 7 (completely certain). Five con-

ditions with different degrees of entropy were included

(Fig. 1b; the full stimulus set is shown in supplementary file 1).

As in the MEG experiment, there was an LE condition con-

sisting of an Alberti bass sequence, and an HE condition cor-

responding to a subset of five of the six melodies used in the

MEG session. Three intermediate conditions (IE) were added to

test for more fine-grained effects of entropy. The alphabet of

these conditions was restricted to a C-major scale spanning

eight tones fromC4 to C5. Based on previous research showing

an effect of pitch alphabet on the uncertainty of auditory

stimuli (Auksztulewicz et al., 2017; Barascud et al., 2016), we

conjectured that these sequences would have higher mean

entropy than LE sequences, which spanned only three pitch

categories, and lower mean entropy than HE sequences,

which spanned up to fifteen pitch categories. For the three

intermediate conditions, entropy was manipulated by

changing their repetitiveness. Thus, the least uncertain of the

three (IE1) was a repeated eight-note pattern. The middle

condition (IE2), which consisted of five melodies, relaxed the

constraint for exact repetition leading to reduced precision

over the IE1 condition. Finally, the most uncertain of the three

conditions (IE3) consisted of random orderings of the eight

tones, with equal probability and without playing any of them

twice in a row. These sequences were generated individually

for each participant. Since sequential constraints are minimal

in this condition, it was expected to have higher entropy than

IE1 and IE2, but lower entropy than HE, given its smaller pitch

alphabet. Note that the contrast LE-IE1 would reveal whether

pitch alphabet is sufficient to elicit an uncertainty effect

whereas the contrasts IE1-IE2, IE1-IE3 and IE2-IE3 would show

the same with regard to repetitiveness.

The conjectured pattern (LE < IE1 < IE2 < IE3 < HE) was

confirmed by IDyOM's mean entropy values (Fig. 2b), esti-

mated as described in section 2.1.2.1. Mean IC values followed

a similar pattern (LE < HE < IE1 < IE2 < IE3), with the exception

that HE had lower IC than all the intermediate conditions

(Fig. 2d). Thismight reflect the fact that HEmelodies tended to
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Fig. 3 e Standard, deviant and difference (MMNm) amplitudes in high- (HE) and low-entropy (LE) conditions. Traces

correspond to the average of the four right temporal combined gradiometers shown in red in the top-right head plot. Gray

lines show individual MMNm traces. Dashed vertical lines indicate sound onsets. Shaded areas indicate 95% confidence

intervals. For descriptive purposes, green lines indicate the time where the difference between standards and deviants was

significant. Note, however, that this interval is not a reliable estimate of the true extent of the effect (Sassenhagen &

Draschkow, 2019).
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have smaller pitch intervals (mostly 1- or 2-semitone steps)

which are more common than larger intervals in Western

tonal music (Huron, 2006) (supplementary figure 2). These

estimates were not meant to be used as predictors in the
analyses. Rather, they were used as approximate values to

confirm the putative ordering of the conditions and help the

interpretation of the results. Note that, since IE3 (random)

sequences were unique for each subject, in this case entropy

https://doi.org/10.1016/j.cortex.2019.06.010
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Fig. 4 e Topography of the MMNm (difference between standards and deviants) for (A) magnetometers and (B) gradiometers.

Peak latencies are shown above each plot. The displayed activity corresponds to an average of ±25 ms around the peak.

Slide MMNm topographies are shown for activity around the peak in both early (100e250 ms) and late (250e350 ms) time

windows. LE ¼ low entropy, HE ¼ high entropy.
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and IC values were estimated only for one participant, as a

representative sample. These are the ten sequences shown in

supplementary file 1. Finally, even though the variance of

single-tone estimates was high, mean values for individual

melodies showed little overlap between conditions

(supplementary figure 4), which indicates that entropy and IC

systematically changed for each sequence according to our

manipulations. This means that any effects observed in this

studywould bemost likely driven by context entropy because,

if uncertainty were mainly driven by single-note entropy, the

high variance would add a lot of noise to behavioral measures

and potentially make the effects undetectable.

To simplify the stimuli and make them comparable be-

tween conditions, only sequences in the C-major key were

included. Target sequences were created by randomly

choosing a tone from the second half of each sequence and

raising its pitch 25 cents up. Deviations were smaller than in

the MEG experiment to avoid ceiling effects observed during

piloting. Only pitch deviants were included, since this feature

showed the strongest reduction in amplitude between con-

ditions in the neurophysiological data (see section 3.1.2). The

creation of the pool of standard and deviant tones followed

the same procedure as in the MEG experiment. Ten targets

and ten foil sequences were presented for each condition in a

randomorder.We chose the number of trials as a compromise

between the length of the task, the number of conditions and

the amount of data required to produce reliable estimates,

based on pilot tests. Note that the number of possible se-

quences differed between conditions which meant that they

were repeated a different number of times. Thus, LE and IE1
consisted of only one sequence, and for this reason they were

repeated ten times as targets and ten times as foils. In

contrast, IE2 and HE consisted of five different sequences,

which entailed that they were repeated twice as targets and

twice as foils. Finally, since there were ten unique IE3 se-

quences for each participant, they were played only once as

foils and once as targets. There were four practice trials at the

beginning of the session. The complete procedure lasted

approximately 25 min.

2.2.3. Statistical analyses
Weused signal detection theory to analyze deviance detection

performance (Stanislaw & Todorov, 1999). Both d'- and crite-

rion (c-) scores were computed for each participant and con-

dition. In the few cases where a participant scored 100% or 0%

of hits or false alarms, values were adjusted to 95% or 5%,

respectively. This prevented the z values in the computations

from reaching infinity. d0-scores quantify the difference be-

tween the proportions of hits and false alarms. Therefore,

they provide a more accurate measure than hit rates, since

they take into account the bias in the responsede.g.,

answering always yes. This bias can be directly quantified by

c-scores, measured as the negative average of the proportion

of hits and false alarms.

Statistical analyses were performed using the software R (R

Core Team, 2019). To assess the effects of stimulus entropy,

mixed models were fitted using the lmer function from the

lme4 package (Bates, M€achler, Bolker, & Walker, 2015). The

models allowed a random intercept for each participant to

account for individual differences. No random slopes were

https://doi.org/10.1016/j.cortex.2019.06.010
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included, since there were not enough data points to avoid

overfitting and reach convergence. Three different models

were compared: one with an intercept only (d0), another with

an additional term for entropy as a categorical factor (d1), and

a final model (d2) with the five conditions treated as an or-

dered linear predictor, assigning values from 1 to 5 according

to our entropy manipulations. The comparison between d1

and d0 assessed the overall effect of entropy, whereas

comparing d2 and d1 revealed to what extent a linear trend

could explain the data. Regarding c-scores, we compared an

intercept-onlymodel (cr0) with amodel including entropy as a

categorical factor (cr1), to assess the extent to which bias

changed between conditions. Akaike Information Criteria

(AIC) and likelihood ratio tests were used for all comparisons.

Regarding confidence scores, ordinal logistic regression

was employed in the form of a cumulative link mixed model

(Christensen, 2015), as implemented by the function clmm

from the ordinal package (Christensen, 2018). Log-odds (“logit”)

was the link function. This method allowed the quantification

of the change in the proportion of responses in each confi-

dence category, relative to the entropy conditions. We fitted

three initial models (c0, c1, c2) in which the estimated pa-

rameters, random effects and model comparisons were the

same as in the analysis of d0-scores, with the only difference

that now there was an intercept for each of the six cut-points

between response categories (see supplementary file 2).

Moreover, we fitted two additional models (c1s, c2s) including

random slopes for the effect of entropy (categorical and or-

dered, respectively), since the amount of datamade it possible

in this case. Finally, post-hoc, Bonferroni-corrected pairwise

comparisons between conditions were conducted with the

function glht (from the multcomp package, Hothorn, Bretz, &

Westfall, 2008) for d'- and c-scores, and lsmeans (from the

lsmeans package, Lenth, 2016) for confidence ratings.
3. Results

3.1. MEG experiment

3.1.1. Presence of the MMNm
Significant differences were found between standard and

deviant ERFs in the 100e250 ms post-stimulus time window

for all features in both conditions (Fig. 3). The differences were

present bilaterally, were largest over right temporal gradi-

ometers, and showed a polaritydas observed in the magne-

tometersdconsistent with previous reports of the MMNm

(e.g., Bonetti, Haumann, Vuust, Kliuchko, & Brattico, 2017)

(Fig. 4).

3.1.2. Low-entropy vs high-entropy stimuli
An amplitude reduction in the MMNm difference waves was

found for HE as compared to LE stimuli, for pitch and slide

deviants bilaterally (Fig. 5). This reduction was maximal at

temporal gradiometers. No significant differences were found

for intensity or timbre. The exploratory MGA analyses sug-

gested that differences between HE and LE contexts were

larger for pitch and slide as compared to timbre and intensity,

in the right hemisphere (d > .6) (Fig. 6a, Table 1). From the

pairwise comparisons, only the ones between pitch and
timbre and slide and timbre yielded a 95% confidence interval

excluding zero. Differences in the left hemisphere, as well as

between pitch and slide or intensity and timbre, were small

(d � .4).

The slide MMNm displayed an unusual shape (Figs. 3 and

5). Specifically, it was sustained beyond 250 ms and peaked

around 280 ms. The magnetometer polarity of the late

response was the same as that of the MMNm for the other

features (Fig. 4a). Furthermore, stimulus entropy seemed to

affect the earlier portion of the ERF more than the later part.

In an exploratory analysis, a mixed effects model with

random intercepts, and latency and hemisphere as pre-

dictors, suggested larger differences in the earlier than the

later time window and no substantial differences as a

function of hemisphere or the interaction between hemi-

sphere and latency (Fig. 6b, parameters reported in the

supplementary file 2).

3.2. Behavioral experiment

The analyses of d0-scores showed that the d1 model (with a

term for entropy) explained the data better than the d0

(intercept-only) model (c2 ¼ 39.31, p < .001). The AIC value was

269.43 for d0 and 238.12 for d1, which agrees with the likeli-

hood ratio test. Moreover, the comparison between d1 and d2

(a model with entropy as an ordered linear variable) yielded a

nonsignificant result (c2 ¼ 5.43, p ¼ .14) and the AIC value for

model d2 (237.56) was lower than for d1. The residuals of

models d1 and d2 were normally distributed, according to a

visual inspection. Bonferroni-corrected pairwise comparisons

showed significant differences between LE and the other four

conditions, and between IE3 and IE2, HE and IE1, and HE and

IE2 (Table 2). Non-significant differences with large (d > .8)

effect sizes were found for IE3 and IE1. Non-significant dif-

ferences with small effect sizes (0 < d < .02) were observed for

the contrasts IE2 - IE1 and HE - IE3 (Fig. 7a; parameters re-

ported in supplementary file 2).

Regarding c-scores, an intercept-onlymodel (cr0) revealed a

positive bias (Fig. 7b; supplementary file 2), suggesting an

overall tendency for participants to answer negativelydi.e.,

no deviant present. A model with entropy as a categorical

factor (cr1) explained the data significantly better (c2 ¼ 11.74,

p ¼ .02) and had lower AIC (207.84) than the cr0 (211.59) model.

Pairwise comparisons revealed a significant difference only

for the IE1 - IE3 contrast, although a large effect (d ¼ .77) was

also seen for the LE e IE3 contrast (Table 3).

Regarding confidence ratings, the c1model (with a term for

entropy) explained the data better (c2 ¼ 236.88, p < .001) and

had lower AIC (6816.9) than the c0 (intercept-only) model

(7045.8) (Fig. 7c; supplementary file 2). The c1 model also per-

formed significantly better (c2 ¼ 88.33, p < .001) and had lower

AIC than the c2 model (6899.3), which included entropy as an

ordered variable. Adding random slopes improved model

performance, as revealed by the comparison between c1s and

c1 (c2 ¼ 234.02, p < .001), and c2s and c2 (c2 ¼ 101.36, p < .001). A

comparison between c1s and c2s (c2 ¼ 221, p < .001) showed

that the best model was c1sdi.e., a model with a categorical

effect of entropy and random slopes. AIC values for c1s and c2s

were 6610.9 and 6801.9, respectively. Pairwise comparisons for

the c1s model revealed significant differences between LE and
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Fig. 5 e MMNm difference waves according to the two conditions. Traces correspond to the average of the four right

temporal combined gradiometers shown in red in the top-right head plot on Fig. 3. Gray lines show individual differences.

Dashed vertical lines indicate sound onsets. Shaded areas indicate 95% confidence intervals. Topomaps show activity

±25 ms around the peak difference. For descriptive purposes, green lines indicate the time where the difference between

conditions was significant. Note, however, that this interval is not a reliable estimate of the true extent of the effect

(Sassenhagen & Draschkow, 2019).
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the other conditions (Table 4). No other comparisons were

significant and yielded odds ratios smaller than 3 and larger

than .5. In contrast, all pairwise comparisons for the c1 model

were significant, except between IE2 and HE, and IE1 and HE

(Table 5). This indicates that differences between IE1, IE2, IE3

and HE are not detectable when individual variability in the

relation between conditions is taken into account.
4. Discussion

In the present study, we investigated whether prediction error

responses are affected by uncertainty in auditory contexts

that are more complex, ecologically valid and real-sounding

than those typically used in neuroimaging research. Employ-

ing tone sequences that resembled real music, we found

decreased MMNm amplitudes for pitch and slide deviants in

high-entropy (HE) as compared to low-entropy (LE) stimuli.

This modulation was paralleled by accuracy scoresdand, to

some extent, confidence ratingsdin a behavioral deviance

detection task, which tended to decrease with higher entropy

levels. These findings are in agreement with theories of pre-

dictive processing (Clark, 2013; Feldman & Friston, 2010;

Hohwy, 2012) and models of musical expectations (Hansen

et al., 2017; Ross & Hansen, 2016; Vuust et al., 2018) which
propose that prediction error responses are reduced in con-

texts with low as compared to high predictive precision.

Our results are consistent with empirical research already

showing reduced auditory prediction error responses in un-

certain contexts (Garrido et al., 2013; Sohoglu & Chait, 2016;

Southwell & Chait, 2018). They are also in agreement with

studies that found differences in sustained tonic activitydas

opposed to phasic responses such as the MMNdwhen

comparing low- and high-entropy contexts (Auksztulewicz

et al., 2017; Barascud et al., 2016; Nastase, Iacovella, &

Hasson, 2014; Overath et al., 2007). Closer to assessing the

effect of precision in a musical context, recent research

shows that the entropy of short rhythmic sequences mod-

ulates MMN responses (Lumaca, Haumann, Brattico, Grube,

& Vuust, 2019). However, in this study rhythms were pre-

sented as repeated short patterns, which makes them less

akin to actual musical stimuli than our HE sequences.

Together with studies showing an absence of MMN re-

sponses in random contexts (Hsu et al., 2015; Jacobsen &

Schr€oger, 2001; Maess et al., 2007), the evidence suggests a

role of precision in auditory processing at the neural level.

However, our study is the first to suggest that precision

might also modulate prediction error during music

listeningda common, highly structured, and more ecologi-

cally valid auditory context.
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Fig. 6 e MMNm amplitude differences between low-entropy and high entropy conditions for (A) all features and (B) slide in

two time windows, in both hemispheres. Error bars represent 95% confidence intervals.
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4.1. Sources of uncertainty

In our experiments, differences in uncertainty arise from two

main sources. First, the degree of repetitiveness of the stimuli.

For example, in LE sequences, a simple pattern is iterated,

which allows very precise expectations about upcoming
Table 1 e Pairwise contrasts between features for theMMNmam
conditions. p ¼ pitch, s ¼ slide, i ¼ intensity, t ¼ timbre.

contrast hemisphere estimate CI

p - s right .4 �
p - i right 4.68 �
p - t right 7.18 2

s - i right 4.28 �
s - t right 6.79 2

i - t right 2.51 �
p - s left �2.31 �
p - i left �1.58 �
p - t left .06 �
s - i left .73 �
s - t left 2.37 �
i - t left 1.64 �
events. In contrast, the scarcity of exact repetitions in HE se-

quences makes it harder to predict specific continuations

from the preceding tones. This can be seen in the IDyOM es-

timates: for LE, IC drops after the first occurrence of the

pattern, whereas HE sequences tend to have higher IC levels

throughout (supplementary file 1). This is also the case for the
plitude differences between low-entropy and high-entropy

2.5% CI 97.5% t Cohen's d

4.4 5.19 .21 .06

.11 9.47 2.53 .75

.39 11.98 3.89 1.15

.51 9.08 2.32 .68

11.58 3.67 1.08

2.29 7.3 1.36 .4

7.1 2.48 �1.25 �.37

6.38 3.21 �.86 �.25

4.74 4.85 .03 .01

4.07 5.52 .39 .12

2.43 7.16 1.28 .38

3.15 6.43 .89 .26
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Table 2 e Bonferroni-corrected pairwise contrast for d0-scores.

contrast estimate CI 2.5% CI 97.5% t p Cohen's d

LE - IE1 .55 .07 1.02 3.16 .02 .98

LE - IE2 .54 .07 1.01 3.11 .02 .96

LE - IE3 1.04 .56 1.51 5.99 <.001 1.86

LE - HE 1.04 .57 1.52 6.04 <.001 1.86

IE1 - IE2 �.01 �.48 .46 �.04 1 �.02

IE1 - IE3 .49 .02 .96 2.84 .05 .88

IE1 - HE .5 .03 .97 2.88 .04 .89

IE2 - IE3 .5 .03 .97 2.88 .04 .89

IE2 - HE .51 .03 .98 2.93 .03 .91

IE3 - HE .01 �.46 .48 .05 1 .02

Fig. 7 e Plots of A) d0-scores, B) criterion scores and C) confidence ratings with their respective parameter estimates and 95%

confidence intervals. For d0-scores the slope from the d2model (with entropy as an ordered linear predictor) is also plotted as

a blue dashed line. Confidence ratings are presented as the probability of responses in each category (1e7) as a function of

the different entropy conditions. LE ¼ low entropy, IE ¼ intermediate entropy, HE ¼ high entropy.
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intermediate conditions in which repetitiveness decreased,

going from an iterative pattern to completely random se-

quences. The fact that we found differences in d0-scores be-

tween IE1 and IE3dwhere the pitch alphabet was the

samedsuggests that repetitiveness itself is sufficient to affect

deviance detection.
The other source of uncertainty is pitch alphabet. For

example, in the LE condition, where the alphabet consisted of

three pitch heights, the probability of each tone was higher on

average than in IE1 sequences, where the pitch alphabet

consisted of eight pitch heights. Therefore, the larger the al-

phabet, the higher the uncertainty of the context. The fact that

https://doi.org/10.1016/j.cortex.2019.06.010
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Table 3 e Bonferroni-corrected pairwise contrasts for c-scores.

contrast estimate CI 2.5% CI 97.5% t p Cohen's d

LE - IE1 �.14 �.57 .3 �.87 1 �.27

LE - IE2 .12 �.31 .56 .79 1 .23

LE - IE3 .4 �.03 .83 2.52 .12 .78

LE - HE .15 �.29 .58 .93 1 .29

IE1 - IE2 .26 �.17 .7 1.65 .98 .51

IE1 - IE3 .54 .1 .97 3.38 .01 1.05

IE1 - HE .29 �.15 .72 1.8 .72 .56

IE2 - IE3 .27 �.16 .71 1.73 .84 .52

IE2 - HE .02 �.41 .46 .15 1 .04

IE3 - HE �.25 �.68 .18 �1.58 1 �.49

Table 4 e Bonferroni-corrected pairwise contrasts for
confidence ratings with no random slopes (model c1).

contrast odds ratio CI 2.5% CI 97.5% z p

LE - IE1 2.88 2.01 4.13 8.23 <.001
LE - IE2 4.27 2.97 6.14 11.21 <.001
LE - IE3 6.41 4.44 9.25 14.2 <.001
LE - HE 4.05 2.84 5.79 11 <.001
IE1 - IE2 1.48 1.05 2.1 3.18 .01

IE1 - IE3 2.23 1.57 3.15 6.44 <.001
IE1 - HE 1.41 1 1.98 2.81 .05

IE2 - IE3 1.5 1.06 2.12 3.29 .01

IE2 - HE .95 .67 1.34 �.43 1

IE3 - HE .63 .45 .89 �3.76 <.001
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we found differences in d0-scores between LE and IE1dwhich

are equally repetitive but have different alphabetsdindicates

that this factor is also sufficient to modulate the detection of

unexpected sounds. Importantly, in the MEG experiment the

difference in pitch alphabet was minimized by transposing LE

sequences to cover the same range as HE sequences. There-

fore, it is tempting to conclude that differences in neural ac-

tivity are not driven by pitch alphabet but rather by

repetitiveness. However, it is possible that participants

learned the local alphabet of each 32-note sequence instead of

the global alphabet of all the sequences. This would be rein-

forced by the transpositions, assuming that participants

heard the sequences with respect to the tonal center of the

respective key. Further research could aim to disentangle the

contributions of repetitiveness and pitch alphabet to the

perceived context uncertainty and its effect on prediction

error at the neural level.
Table 5 e Bonferroni-corrected pairwise contrasts for
confidence ratings with random slopes (model c1s).

contrast odds ratio CI 2.5% CI 97.5% z p

LE - IE1 3.06 1.81 5.19 5.96 <.001
LE - IE2 5.34 2.12 13.45 5.09 <.001
LE - IE3 8.33 2.63 26.37 5.16 <.001
LE - HE 4.93 2.23 10.9 5.65 <.001
IE1 - IE2 1.74 .63 4.81 1.54 1

IE1 - IE3 2.72 .77 9.59 2.23 .26

IE1 - HE 1.61 .65 4.02 1.46 1

IE2 - IE3 1.56 .94 2.58 2.48 .13

IE2 - HE .92 .62 1.37 �.56 1

IE3 - HE .59 .34 1.03 �2.65 .08
4.2. IDyOM estimates

IDyOM's quantitative estimates generally followed our quali-

tative manipulations. Entropy values were lower for LE than

for the IE conditions, and in turn thesewere lower than for HE.

However, some nonlinearities can be observed. Specifically, LE

seemed to yield much lower values than the other four con-

ditions, whereas differences between IE1, IE2, IE3 and HEwere

more subtle. Considering that we have relatively complex and

realistic stimuli and that IDyOM was not used to make

quantitative predictions, these nonlinearities do not affect the

overall conclusions of the study. Instead, they help us un-

derstand how well the model captures context uncertainty in

more realistic settings. IC also tended to follow the expected

pattern, with higher values for contexts with higher uncer-

tainty. The only exception is the HE condition, which had

lower values than all the intermediate conditions. This might

reflect the fact that small pitch intervalsdi.e., 1 or 2 semi-

tonesdwhich have high probability in most Western tonal

music, were more common in HE than the IE conditions.

Therefore, these results constitute an interesting example of

how entropy and information content can sometimes be

dissociated. In sum, IDyOM's estimates seem to characterize

reasonably well the uncertainty of a context (cf. Hansen &

Pearce, 2014). Note, however, that the estimates are based

on an adjustment which was meant to account for the dif-

ferences in pitch alphabet between conditions. Without the

adjustment, the estimations are unreliable and lead to

misleading results such as LE sequences having higher en-

tropy than IE3 (random) sequences (supplementary figure 3).

Nonetheless, we regard the adjustment as the best approxi-

mation to the simulation of a listener who learns the alphabet

of a context, taking into account that such learning has not

been implemented in IDyOM yet.

Since IDyOM was used here descriptively as a way to

characterize the stimuli, the insight we can gain from it is

limited by several factors. First, we used low-level deviant

sounds which currently are not accounted for by the model

and do not happen in real music. We acknowledge that

directly modeling uncertainty, prediction error and their

interaction for the case of unexpected tones that actually

occur in music might provide a better insight on their neural

and behavioral manifestations. However, the deviants

employed here have the advantage that they allow a clear

dissociation between prediction error and uncertainty, since

they are equally unexpected regardless of the context, as they
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are always outside the reference distribution. A related issue

is that, even though IDyOM modeled pitch predictions, our

pitch deviantsdi.e., out-of-tune tonesdwere not included in

the model, which might lead some to argue that IDyOM's es-

timates and the pitch MMNm address predictive processes of

different kinds. A possible mechanism linking these seem-

ingly distinct levels of processing could be categorical

perception (Goldstone & Hendrickson, 2010; Schulze, 1989;

Siegel & Siegel, 1977), in which mistuned tones would be

heard as renditions of the closest pitch category in the tuning

system, and therefore be affected by its uncertainty. More-

over, an interesting future path of enquiry would be to use

single-tone entropy and IC estimates to assess the effect of

uncertainty on prediction error through regression and single-

trial analyses. Such an approach was not used here, as our

aims were different. We were interested in the uncertainty of

the context as a whole, rather than its moment by moment

fluctuations. We also tried to maximize the contrast between

LE and HE stimuli to observe clear differences in neural ac-

tivity. Furthermore, we wanted to assess the behavior of the

MMN in a more complex and real-sounding setting, which is

why the comparison with an existing MMN paradigm was a

natural choice. Therefore, our work can be seen as a step to-

wards more detailed models of the effect of precision on

prediction error.

4.3. Feature-specific effects

The observed MMNm amplitudes seemed to be more affected

by entropy for pitch and slide than for timbre and intensity

deviants. We attribute this to the fact that we manipulated

entropy in the pitch dimension, while other dimensions were

restricted to the same two standard and deviant values (piano

timbre vs telephone receiver; high intensity vs low intensity)

across all conditions. The fact that these differences were

most prominent in right temporal gradiometers might be due

to the MMNm signal being largest in these sites, which in turn

is consistent with the rightward asymmetry for music pro-

cessing (e.g., Brattico et al., 2006; Koelsch et al., 2000; Zatorre,

Belin, & Penhune, 2002). Consequently, it seems that stimulus

uncertainty particularly affected deviants that depend on

pitch information, which points to a feature-specific effect of

precision on the MMN. This interpretation is consistent with

MMN recordings in multi-feature (N€a€at€anen, Pakarinen,

Rinne, & Takegata, 2004; Vuust et al., 2011) and no-standard

(Kliuchko, Heinonen-Guzejev, Vuust, Tervaniemi, & Brattico,

2016; Pakarinen et al., 2010) paradigms in which auditory

regularities are created for a specific feature even though

sounds constantly change in other features.

Furthermore, the suggested feature-selectivity is particu-

larly interesting in the case of the slide MMNm, which had an

unusual shape that extended and peaked beyond 250ms. This

shape may be attributed to the fact that, unlike in previous

experiments, the pitch glide spanned the whole duration of

the tone and thus the MMNm amplitude seemed tomirror the

increasing magnitude of the continuous deviation. The fact

that only the earlier portion of the response was different

between conditions might reflect the coexistence of two vio-

lations. Since the slide deviant started two semitones below

its corresponding standard, we propose that the first section is
a pitchMMNm,while the second corresponds to a proper slide

MMNm. Thus, in the LE block, where there were much more

precise pitch expectations, slide deviants were heard first as a

“wrong” pitch and afterwards as a pitch glide. In contrast, for

HE sequences, the sense of a “wrong” pitch would be weaker

but the glide would be equally surprising. If this account is

correct, the fact that the first (pitch) but not the second (slide

proper) part is reduced for HE is consistent with the idea of a

feature-specific precision modulation of the MMNm. In any

case, the differences between features discussed above have

to be taken with caution since they constitute a non-

hypothesized finding. Future work manipulating uncertainty

across different features andmeasuring its effects on different

types of deviants is required to properly test the proposed

feature-selectivity.

4.4. Behavioral experiment

In the behavioral experiment, both d0-scores and confidence

ratings were lower for HE than LE sequences. This confirms

the MEG results and suggests that the effect of precision on

neural prediction error for pitch-related features is associated

with a reduced ability to distinguish pitch deviants from reg-

ular sounds. Criterion scores showed that participants were

generally biased towards not identifying the deviants, and

that there were no big differences between conditions except

for IE3, which was less biased than IE1 and seemingly LE. This

might suggest that when participants are faced with a

completely random context, they are less conservative and

guess more. However, given the absence of a consistent

pattern for other conditions, this difference has to be inter-

preted with caution.

Analyses of d0-scores revealed that even fine-grained dif-

ferences in context uncertainty can affect deviance detection.

This is the case of comparisons such as LE-IE1 or IE2-IE3. As

discussed above, these contrasts also show that both repeti-

tiveness and pitch alphabet are sufficient for the effect to be

elicited. In general, conditions with higher entropy tended to

yield lower d0-scores. This is further supported by the d2

model, in which the five entropy conditions were included as

an ordered linear predictor. Since this model has similar

likelihooddas suggested by the non-significant likelihood

ratio testd, but also less parameters and a lower AIC value

than the d1 (categorical) model, the results support the idea

that higher uncertainty leads to reduced deviance detection

even for small manipulations of the context. However, it has

to be noted that, for the categorical model, virtually no dif-

ferences were found between IE1 and IE2, and IE3 and HE,

which slightly departs from a decreasing linear trend and

IDyOM's estimates. The reason for this pattern are not easily

identifiable in the current design, but it is possible that

stimulus-specific variation played a role, since conditions had

a different number of unique sequences or melodies.

Regarding confidence scores, clear differences were found

between LE and the other four conditions. In other words,

participants tended to give higher ratings in the context with

the highest precision. This suggests that both neural and ac-

curacy measures are related to a subjective feeling of cer-

tainty. Interestingly, differences among the other conditions

were observable in the case of the c1 model, which did not

https://doi.org/10.1016/j.cortex.2019.06.010
https://doi.org/10.1016/j.cortex.2019.06.010


c o r t e x 1 2 0 ( 2 0 1 9 ) 1 8 1e2 0 0196
include random slopes, but not the c1smodel, which included

them. Thus, the apparent differences between subtle changes

in context uncertainty seemed to be driven only by a few

subjects and disappear when individual differences are taken

into account. This indicates that subjective certainty is less

sensitive to contextual factors than deviance detection itself.

It is worth noting that both d0-scores and confidence showed

large differences between LE and the other conditions, but

either smaller or no differences between IE1, IE2, IE3 and HE.

This goes in line with the nonlinearities in IDyOM estimates,

and suggests that precision is maximized in repetitive con-

texts with small pitch alphabets.

Taken together, MEG and behavioral results point to a

precision modulation of prediction error. However, the rela-

tionship between the two experiments has to be taken with

caution since the behavioral task required participants to

actively detect deviations, whereas in the MEG session they

listened to the sounds passively while watching a silent

movie. Thus, there were additional higher-order processes

involved in the former which means that differences in d0-
scores and confidence ratings cannot be ascribed exclusively

to the processes reflected in the MMN. Further research

involving active tasks and neurophysiological recordings is

needed to assess the contribution of different components

and processing stages to the effect of interest.

4.5. Limitations and future directions

The work presented here has some limitations. For example,

in theMEG experiment, we compared two types of stimuli that

differ in several aspects. As mentioned before, both repeti-

tiveness and pitch-alphabet seemed to play a role, and even

though they influence the entropy of the sequences, it is not

possible to properly disentangle their individual contributions

here. Another aspect is the repetition rate of individual se-

quences. In the LE condition of the MEG experiment, individ-

ual sequences were repeated every two trials, whereas

individual melodies in the HE condition were repeated every

twelve trials. This could have created a stronger long-term

memory representation for LE sequences which might be

responsible at least for part of the effect. Something similar

might have happened in the behavioral experiment. However,

this possible confound cannot be regarded as the only expla-

nation for our results since we found differences for condi-

tions with equal repetition rates (e.g., LE and IE1). This

interpretation is also compatible with the precision-based

explanation if one regards long-term representations as very

precise expectations. Moreover, even though acoustic con-

founds were minimized in the MEG experiment by using the

same pitch alphabet in both conditions, it is still possible that

differences in pitch distributions between conditions created

acoustic differences, as pitch discrimination is more difficult

at very low or very high frequency ranges (Sek &Moore, 1995).

However, this explanation is unlikely since in both conditions

the range of frequencies was similarly covered

(supplementary figure 1) and pitches were not higher than

5 kHz, which is the frequency range for which discrimination

significantly decreases.

Another aspect to consider is to what extent the findings

can be generalized outside the conditions of the
experiment. For example, even though our stimuli are

much more real-sounding than in most research, they are

still far from actual music. This comes from the use of

isochronous sounds, the lack of artistic expression, the

somewhat excessive repetition, the absence of concurrent

sound streams, and the introduction of deviants that do

not occur in real music. Nonetheless, we regard the stimuli

as realistic enough to be considered musical, and as a good

compromise between experimental control and ecological

validity. A related issue is that our participants watched a

movie, which arguably is not the most common setting for

music listening. Thus, how uncertainty affects prediction

error under attentive or other listening conditions remains

to be seen. Another caveat is that participants were all

nonmusicians and were recruited from an online database,

which might have introduced bias in the sample. There-

fore, replications with different populations are needed.

Finally, we acknowledge that our hypotheses and methods

were not pre-registered, which is not desirable if one aims

to minimize analytical bias. However, in the spirit of

transparency, we have shared our data and code openly so

that our work can be directly reproduced, scrutinized and

built upon by the research community.

Despite these shortcomings, we believe our study makes

two main contributions to the literature. First, our HE condi-

tion constitutes an advance in themulti-feature experimental

paradigms used to study prediction error responses through

theMMN.With it, we demonstrated that it is possible to obtain

reliabledalbeit reduceddMMN signals with more complex

and realistic stimuli in a multi-feature paradigm. We have

done so by exploiting the possibilities of abstract-feature

MMN responses (Paavilainen, 2013), which arise, not from

the violation of an exact sensory representation established

through the exact repetition of a stimulus, but from the breach

of an abstract regularity established in a constantly changing

acoustic stream.

Second and most importantly, our results show how

prediction error signals behave in more complex and more

ecologically valid auditory contexts than those typically

studied. This has consequences for the current knowledge

and future directions of research in audition and music

cognition. For example, some musical styles, such as atonal

music, exploit uncertainty as an artistic resource. There-

fore, one could hypothesize imprecise predictions and

reduced prediction error in these styles, something that

could be studied with the new MMN paradigm reported

here. This is relevant for the understanding of the aesthetic

and emotional experiences associated with these types of

music (Mencke, Omigie, Wald-Fuhrmann, & Brattico, 2019).

Another point of interest is how individual factors play a

role in predictive processing in uncertain contexts. For

instance, it has been suggested that musical expertise en-

hances the precision of auditory predictive models (e.g.,

Vuust et al., 2018). Thus, one could hypothesize that the

effect of precision on neural prediction error would be less

pronounced in musical experts and potentially be modu-

lated by stylistic expertise. Finally, the fact that the MMN

seems to be reduced and in some cases disappears in un-

certain contexts might question whether this brain

response fully represents the core processes involved in
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auditory prediction. Arguably, expectations are still gener-

ated in complex settings, which means that other neural

processes might also be at play. In that sense, the use of

more ecologically valid stimuli in combination with

computational models such as IDyOM could reveal more

accurately the neural mechanisms involved.
5. Conclusion

In this study, we investigated whether prediction error re-

sponses are modulated by uncertainty in more complex and

real-sounding auditory contexts than those typically studied.

Our results show that prediction error responsesdas indexed

by the MMNm, accuracy scores and, to some extent, confi-

dence ratingsdare reduced in contexts with higher uncer-

tainty and suggest that this reduction may be constrained to

features that depend on the auditory dimension whose un-

certainty is manipulated (pitch in our case). Thus, in line with

recent theories of predictive processing, our work provides

further support to precision-weighted prediction error as a

fundamental principle for brain function, andmoves us a step

closer to understanding auditory predictive processing in the

rich environments of daily life.
Design and analysis transparency (21-word
solution)

We report how we determined our sample size, all data

exclusions (if any), all data inclusion/exclusion criteria,

whether inclusion/exclusion criteria were established prior

to data analysis, all manipulations, and all measures in the

study.
Declaration of interests

None.
Open practices

The study in this article earned OpenMaterials and Open Data

badges for transparent practices. Materials and data for the

study are available at http://bit.ly/music_entropy_MMN, DOI:

10.17605/OSF.IO/MY6TE. Preprint versions of this article

available at: https://doi.org/10.1101/422949.
CRediT authorship contribution statement

David R. Quiroga-Martinez: Conceptualization, Methodology,

Software, Formal analysis, Data curation, Writing - original

draft, Visualization, Investigation. Niels C. Hansen: Concep-

tualization, Methodology, Writing - original draft. Andreas

Højlund: Conceptualization, Methodology, Software,Writing -

original draft, Supervision. Marcus T. Pearce: Software,

Formal analysis, Writing - original draft. Elvira Brattico:

Conceptualization, Supervision, Writing - original draft. Peter
Vuust: Conceptualization, Methodology, Supervision, Writing

- original draft.

Acknowledgments

We wish to thank the project initiation group, namely

Christopher Bailey, Torben Lund and Dora Grauballe, for

their help with setting up the experiments. We also thank

Nader Sedghi, Massimo Lumaca, Giulia Donati, Ulrika Var-

ankait�e, Giulio Carraturo, Riccardo Proietti, and Claudia Iorio

for assistance during MEG recordings. We are indebted as

well to the group of Italian trainees from IISS Simone-Morea,

Conversano, who helped with the behavioral experiment.

Finally, we thank Hella Kastbjerg for checking the English

language of this manuscript. The Center for Music in the

Brain is funded by the Danish National Research Foundation

(DNRF 117), which did not have any influence on the scien-

tific content of this article.
Supplementary data

Supplementary data to this article can be found online at

https://doi.org/10.1016/j.cortex.2019.06.010.
r e f e r e n c e s

Auksztulewicz, R., Barascud, N., Cooray, G., Nobre, A. C.,
Chait, M., & Friston, K. (2017). The cumulative effects of
predictability on synaptic gain in the auditory processing
stream. The Journal of Neuroscience, 37(28), 6751e6760. https://
doi.org/10.1523/JNEUROSCI.0291-17.2017.

Auksztulewicz, R., & Friston, K. (2015). Attentional enhancement
of auditory mismatch responses: A DCM/MEG study. Cerebral
Cortex, 25(11), 4273e4283. https://doi.org/10.1093/cercor/
bhu323.

Bar, M. (2009). Predictions: A universal principle in the operation
of the human brain. Philosophical Transactions of the Royal
Society B: Biological Sciences, 364(1521), 1181e1182. https://doi.
org/10.1098/rstb.2008.0321.

Barascud, N., Pearce, M. T., Griffiths, T. D., Friston, K. J., &
Chait, M. (2016). Brain responses in humans reveal ideal
observer-like sensitivity to complex acoustic patterns.
Proceedings of the National Academy of Sciences, 113(5),
E616eE625. https://doi.org/10.1073/pnas.1508523113.

Bates, D., M€achler, M., Bolker, B., & Walker, S. (2015). Fitting linear
mixed-effects models using lme4. Journal of Statistical Software,
67(1). https://doi.org/10.18637/jss.v067.i01.

Bendixen, A., SanMiguel, I., & Schr€oger, E. (2012). Early
electrophysiological indicators for predictive processing in
audition: A review. International Journal of Psychophysiology,
83(2), 120e131. https://doi.org/10.1016/j.ijpsycho.2011.08.003.

Bishop, D. V. M., & Hardiman, M. J. (2010). Measurement of
mismatch negativity in individuals: A study using single-trial
analysis. Psychophysiology, 47(4), 697e705. https://doi.org/10.
1111/j.1469-8986.2009.00970.x.

Bonetti, L., Haumann, N. T., Vuust, P., Kliuchko, M., & Brattico, E.
(2017). Risk of depression enhances auditory Pitch
discrimination in the brain as indexed by the mismatch
negativity. Clinical Neurophysiology, 128(10), 1923e1936. https://
doi.org/10.1016/j.clinph.2017.07.004.

http://bit.ly/music_entropy_MMN
https://doi.org/10.1101/422949
https://doi.org/10.1016/j.cortex.2019.06.010
https://doi.org/10.1523/JNEUROSCI.0291-17.2017
https://doi.org/10.1523/JNEUROSCI.0291-17.2017
https://doi.org/10.1093/cercor/bhu323
https://doi.org/10.1093/cercor/bhu323
https://doi.org/10.1098/rstb.2008.0321
https://doi.org/10.1098/rstb.2008.0321
https://doi.org/10.1073/pnas.1508523113
https://doi.org/10.18637/jss.v067.i01
https://doi.org/10.1016/j.ijpsycho.2011.08.003
https://doi.org/10.1111/j.1469-8986.2009.00970.x
https://doi.org/10.1111/j.1469-8986.2009.00970.x
https://doi.org/10.1016/j.clinph.2017.07.004
https://doi.org/10.1016/j.clinph.2017.07.004
https://doi.org/10.1016/j.cortex.2019.06.010
https://doi.org/10.1016/j.cortex.2019.06.010


c o r t e x 1 2 0 ( 2 0 1 9 ) 1 8 1e2 0 0198
Brattico, E., Tervaniemi, M., N€a€at€anen, R., & Peretz, I. (2006).
Musical scale properties are automatically processed in the
human auditory cortex. Brain Research, 1117(1), 162e174.
https://doi.org/10.1016/j.brainres.2006.08.023.

Carrus, E., Pearce, M. T., & Bhattacharya, J. (2013). Melodic pitch
expectation interacts with neural responses to syntactic but
not semantic violations. Cortex, 49(8), 2186e2200. https://doi.
org/10.1016/j.cortex.2012.08.024.

Chennu, S., Noreika, V., Gueorguiev, D., Blenkmann, A.,
Kochen, S., Ibanez, A., et al. (2013). Expectation and attention
in hierarchical auditory prediction. Journal of Neuroscience,
33(27), 11194e11205. https://doi.org/10.1523/JNEUROSCI.0114-
13.2013.

Christensen, R. (2015). Analysis of ordinal data with cumulative link
models d estimation with the R-package ordinal.

Christensen, R. (2018). Ordinaldregression models for ordinal data.
Clark, A. (2013). Whatever next? Predictive brains, situated

agents, and the future of cognitive science. Behavioral and Brain
Sciences, 36(03), 181e204. https://doi.org/10.1017/
S0140525X12000477.

Clark, A. (2016). Surfing uncertainty: Prediction, action, and the
embodied mind. Oxford ; New York: Oxford University Press.

Conklin, D., & Witten, I. H. (1995). Multiple viewpoint systems for
music prediction. Journal of New Music Research, 24(1), 51e73.
https://doi.org/10.1080/09298219508570672.

Deouell, L. Y. (2007). The frontal generator of the mismatch
negativity revisited. Journal of Psychophysiology, 21(3e4),
188e203. https://doi.org/10.1027/0269-8803.21.34.188.

Duncan, C. C., Barry, R. J., Connolly, J. F., Fischer, C., Michie, P. T.,
N€a€at€anen, R., et al. (2009). Event-related potentials in clinical
research: Guidelines for eliciting, recording, and quantifying
mismatch negativity, P300, and N400. Clinical Neurophysiology,
120(11), 1883e1908. https://doi.org/10.1016/j.clinph.2009.07.045.

Feldman, H., & Friston, K. J. (2010). Attention, uncertainty, and
free-energy. Frontiers in Human Neuroscience, 4. https://doi.org/
10.3389/fnhum.2010.00215.

Friston, K. (2005). A theory of cortical responses. Philosophical
Transactions of the Royal Society B: Biological Sciences, 360(1456),
815e836. https://doi.org/10.1098/rstb.2005.1622.

Friston, K. (2010). The free-energy principle: A unified brain
theory? Nature Reviews Neuroscience, 11(2), 127e138. https://doi.
org/10.1038/nrn2787.

Fuller, D. (2001). Alberti bass. In Oxford music online. https://doi.
org/10.1093/gmo/9781561592630.article.00447.

Garrido, M. I., Kilner, J. M., Stephan, K. E., & Friston, K. J. (2009).
The mismatch negativity: A review of underlying
mechanisms. Clinical Neurophysiology, 120(3), 453e463. https://
doi.org/10.1016/j.clinph.2008.11.029.

Garrido, M. I., Rowe, E. G., Hal�asz, V., & Mattingley, J. B. (2018).
Bayesian mapping reveals that attention boosts neural
responses to predicted and unpredicted stimuli. Cerebral
Cortex, 28(5), 1771e1782. https://doi.org/10.1093/cercor/
bhx087.

Garrido, M. I., Sahani, M., & Dolan, R. J. (2013). Outlier responses
reflect sensitivity to statistical structure in the human brain.
PLoS Computational Biology, 9(3), e1002999. https://doi.org/10.
1371/journal.pcbi.1002999.

Goldstone, R. L., & Hendrickson, A. T. (2010). Categorical
perception. Wiley Interdisciplinary Reviews: Cognitive Science,
1(1), 69e78. https://doi.org/10.1002/wcs.26.

Gramfort, A. (2013). MEG and EEG data analysis with MNE-Python.
Frontiers in Neuroscience, 7. https://doi.org/10.3389/fnins.2013.
00267.

Hansen, N. C., Dietz, M. J., & Vuust, P. (2017). Commentary:
Predictions and the brain: How musical sounds become
rewarding. Frontiers in Human Neuroscience, 11. https://doi.org/
10.3389/fnhum.2017.00168.
Hansen, N. C., Højlund, A., Møller, C., Pearce, M., & Vuust, P.
(2019). Domain-relevant auditory expertise modulates the
additivity of neural mismatch responses in humans. BioRxiv.
https://doi.org/10.1101/541037.

Hansen, N. C., & Pearce, M. T. (2014). Predictive uncertainty in
auditory sequence processing. Frontiers in Psychology, 5.
https://doi.org/10.3389/fpsyg.2014.01052.

Hansen, N. C., Vuust, P., & Pearce, M. (2016). “If you have to ask,
you’ll never know”: Effects of specialised stylistic expertise on
predictive processing of music. PLoS One, 11(10), e0163584.
https://doi.org/10.1371/journal.pone.0163584.

Haumann, N. T., Parkkonen, L., Kliuchko, M., Vuust, P., &
Brattico, E. (2016). Comparing the performance of popular
MEG/EEG artifact correction methods in an evoked-response
study. Computational Intelligence and Neuroscience, 2016, 1e10.
https://doi.org/10.1155/2016/7489108.

Heilbron, M., & Chait, M. (2018). Great expectations: Is there
evidence for predictive coding in auditory cortex?
Neuroscience, 389, 54e73. https://doi.org/10.1016/j.
neuroscience.2017.07.061.

Hohwy, J. (2012). Attention and conscious perception in the
hypothesis testing brain. Frontiers in Psychology, 3. https://doi.
org/10.3389/fpsyg.2012.00096.

Hohwy, J. (2013). The predictive mind (1st ed.). Oxford, United
Kingdom ; New York, NY, United States of America: Oxford
University Press.

Hothorn, T., Bretz, F., & Westfall, P. (2008). Simultaneous
inference in general parametric models. Biometrical Journal,
50(3), 346e363.

Hsu, Y.-F., Bars, S. L., H€am€al€ainen, J. A., & Waszak, F. (2015).
Distinctive representation of mispredicted and unpredicted
prediction errors in human electroencephalography. Journal of
Neuroscience, 35(43), 14653e14660. https://doi.org/10.1523/
JNEUROSCI.2204-15.2015.

Huron, D. B. (2006). Sweet anticipation: Music and the psychology of
expectation. Cambridge, Mass: MIT Press.

Jacobsen, T., & Schr€oger, E. (2001). Is there pre-attentive memory-
based comparison of pitch? Psychophysiology, 38(4), 723e727.
https://doi.org/10.1111/1469-8986.3840723.

Jiang, J., Summerfield, C., & Egner, T. (2013). Attention sharpens
the distinction between expected and unexpected percepts in
the visual brain. Journal of Neuroscience, 33(47), 18438e18447.
https://doi.org/10.1523/JNEUROSCI.3308-13.2013.

Kliuchko, M., Heinonen-Guzejev, M., Vuust, P., Tervaniemi, M., &
Brattico, E. (2016). A window into the brain mechanisms
associated with noise sensitivity. Scientific Reports, 6(1). https://
doi.org/10.1038/srep39236.

Koelsch, S., Gunter, T., Friederici, A. D., & Schr€oger, E. (2000). Brain
indices of music processing: “Nonmusicians” are musical.
Journal of Cognitive Neuroscience, 12(3), 520e541. https://doi.org/
10.1162/089892900562183.

Kok, P., Rahnev, D., Jehee, J. F. M., Lau, H. C., & de Lange, F. P.
(2012). Attention reverses the effect of prediction in silencing
sensory signals. Cerebral Cortex, 22(9), 2197e2206. https://doi.
org/10.1093/cercor/bhr310.

Lenth, R. V. (2016). Least-squares means: The R package lsmeans.
Journal of Statistical Software, 69(1). https://doi.org/10.18637/jss.
v069.i01.

Lieder, F., Stephan, K. E., Daunizeau, J., Garrido, M. I., &
Friston, K. J. (2013). A neurocomputational model of the
mismatch negativity. PLoS Computational Biology, 9(11),
e1003288. https://doi.org/10.1371/journal.pcbi.1003288.

Lumaca, M., Haumann, N. T., Brattico, E., Grube, M., & Vuust, P.
(2019). Weighting of neural prediction error by rhythmic
complexity: A predictive coding account using mismatch
negativity. European Journal of Neuroscience, 49(12), 1597e1609.
https://doi.org/10.1111/ejn.14329.

https://doi.org/10.1016/j.brainres.2006.08.023
https://doi.org/10.1016/j.cortex.2012.08.024
https://doi.org/10.1016/j.cortex.2012.08.024
https://doi.org/10.1523/JNEUROSCI.0114-13.2013
https://doi.org/10.1523/JNEUROSCI.0114-13.2013
http://refhub.elsevier.com/S0010-9452(19)30241-2/sref12
http://refhub.elsevier.com/S0010-9452(19)30241-2/sref12
http://refhub.elsevier.com/S0010-9452(19)30241-2/sref12
http://refhub.elsevier.com/S0010-9452(19)30241-2/sref13
http://refhub.elsevier.com/S0010-9452(19)30241-2/sref13
https://doi.org/10.1017/S0140525X12000477
https://doi.org/10.1017/S0140525X12000477
http://refhub.elsevier.com/S0010-9452(19)30241-2/sref15
http://refhub.elsevier.com/S0010-9452(19)30241-2/sref15
https://doi.org/10.1080/09298219508570672
https://doi.org/10.1027/0269-8803.21.34.188
https://doi.org/10.1016/j.clinph.2009.07.045
https://doi.org/10.3389/fnhum.2010.00215
https://doi.org/10.3389/fnhum.2010.00215
https://doi.org/10.1098/rstb.2005.1622
https://doi.org/10.1038/nrn2787
https://doi.org/10.1038/nrn2787
https://doi.org/10.1093/gmo/9781561592630.article.00447
https://doi.org/10.1093/gmo/9781561592630.article.00447
https://doi.org/10.1016/j.clinph.2008.11.029
https://doi.org/10.1016/j.clinph.2008.11.029
https://doi.org/10.1093/cercor/bhx087
https://doi.org/10.1093/cercor/bhx087
https://doi.org/10.1371/journal.pcbi.1002999
https://doi.org/10.1371/journal.pcbi.1002999
https://doi.org/10.1002/wcs.26
https://doi.org/10.3389/fnins.2013.00267
https://doi.org/10.3389/fnins.2013.00267
https://doi.org/10.3389/fnhum.2017.00168
https://doi.org/10.3389/fnhum.2017.00168
https://doi.org/10.1101/541037
https://doi.org/10.3389/fpsyg.2014.01052
https://doi.org/10.1371/journal.pone.0163584
https://doi.org/10.1155/2016/7489108
https://doi.org/10.1016/j.neuroscience.2017.07.061
https://doi.org/10.1016/j.neuroscience.2017.07.061
https://doi.org/10.3389/fpsyg.2012.00096
https://doi.org/10.3389/fpsyg.2012.00096
http://refhub.elsevier.com/S0010-9452(19)30241-2/sref35
http://refhub.elsevier.com/S0010-9452(19)30241-2/sref35
http://refhub.elsevier.com/S0010-9452(19)30241-2/sref35
http://refhub.elsevier.com/S0010-9452(19)30241-2/sref36
http://refhub.elsevier.com/S0010-9452(19)30241-2/sref36
http://refhub.elsevier.com/S0010-9452(19)30241-2/sref36
http://refhub.elsevier.com/S0010-9452(19)30241-2/sref36
https://doi.org/10.1523/JNEUROSCI.2204-15.2015
https://doi.org/10.1523/JNEUROSCI.2204-15.2015
http://refhub.elsevier.com/S0010-9452(19)30241-2/sref38
http://refhub.elsevier.com/S0010-9452(19)30241-2/sref38
https://doi.org/10.1111/1469-8986.3840723
https://doi.org/10.1523/JNEUROSCI.3308-13.2013
https://doi.org/10.1038/srep39236
https://doi.org/10.1038/srep39236
https://doi.org/10.1162/089892900562183
https://doi.org/10.1162/089892900562183
https://doi.org/10.1093/cercor/bhr310
https://doi.org/10.1093/cercor/bhr310
https://doi.org/10.18637/jss.v069.i01
https://doi.org/10.18637/jss.v069.i01
https://doi.org/10.1371/journal.pcbi.1003288
https://doi.org/10.1111/ejn.14329
https://doi.org/10.1016/j.cortex.2019.06.010
https://doi.org/10.1016/j.cortex.2019.06.010


c o r t e x 1 2 0 ( 2 0 1 9 ) 1 8 1e2 0 0 199
Maess, B., Jacobsen, T., Schr€oger, E., & Friederici, A. D. (2007).
Localizing pre-attentive auditory memory-based
comparison: Magnetic mismatch negativity to pitch change.
NeuroImage, 37(2), 561e571. https://doi.org/10.1016/j.
neuroimage.2007.05.040.

Maris, E., & Oostenveld, R. (2007). Nonparametric statistical testing
of EEG- and MEG-data. Journal of Neuroscience Methods, 164(1),
177e190. https://doi.org/10.1016/j.jneumeth.2007.03.024.

Mencke, I., Omigie, D., Wald-Fuhrmann, M., & Brattico, E. (2019).
Atonal music: Can uncertainty lead to pleasure? Frontiers in
Neuroscience, 12. https://doi.org/10.3389/fnins.2018.00979.
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