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Abstract

N-Gram based models have been used for a variety of
musical tasks including computer-assisted composition,
machine improvisation, music information retrieval, stylistic
analysis and cognitive modelling. We present an application-
independent evaluation of some recent techniques for
improving the performance of a subclass of n-gram models
on a range of monophonic music data. We have applied these
techniques incrementally to eight melodic datasets using
cross entropy computed by 10-fold cross-validation on each
dataset as our performance metric. The results demonstrate
that significant and consistent improvements in performance
are afforded by several of the evaluated techniques. We
discuss the results in terms of previous research carried out
in the field of data compression and with natural language
and music corpora and conclude by presenting some impor-
tant directions for future research.

1 Introduction

Markov models have been applied to a number of musical
research tasks including the development of practical appli-
cations and theoretical research. In the former category, we
cite models for computer-assisted composition (Ames, 1989;
Assayag et al., 1999; Hall & Smith, 1996), machine impro-
visation with human performers (Lartillot et al., 2001) and
music information retrieval (Pickens et al., 2003) and in the
latter, stylistic analysis of music (Conklin & Witten, 1995;
Dubnov et al., 1998; Ponsford et al., 1999) and cognitive
modelling of music perception (Ferrand et al., 2002; Reis,
1999a,b).

Our goal in the current paper is to investigate the perfor-
mance of a range of such models on a variety of monophonic

music data in an application independent manner. We are
concerned, in particular, with the application to music data
of a particular technique for combining the predictions of
Markov models called Prediction by Partial Match (PPM –
Cleary & Witten, 1984) which forms the central component
in some of the best performing data compression algorithms
currently available (Bunton, 1997). Outside the realm of data
compression, PPM has been applied to natural language data
(Chen & Goodman, 1999) and to music data (Conklin &
Witten, 1995). Since its introduction, a great deal of research
has focused on improving the compression performance 
of PPM models and our specific aim is to evaluate the 
performance of these improved models on a range of mono-
phonic music. It is our hope that these improvements, eval-
uated here in an application independent manner, may then
be applied usefully to some of the specific musical tasks cited
above.

The paper is organised as follows. In §2, we give a general
introduction to n-gram modelling as well as describing the
PPM scheme in some detail. The information-theoretic per-
formance metrics we shall use are also discussed. Much of
the background for this research is drawn from the fields of
statistical language modelling (Manning & Schütze, 1999)
and text compression (Bell et al., 1990) since research in
these fields is at a more mature stage of development than in
the musical domain. However, we hope to demonstrate that
practical techniques and methodologies from these fields can
be usefully applied in the modelling of music. As noted
above, n-gram models have been applied to a number of
musical tasks and in §3, we discuss research in the musical
domain which uses related models and methodologies. The
data and experimental methodology employed are discussed
in §4 where we also summarise the cross-product of PPM
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features to be evaluated. The results of our experiments are
presented in §5 and discussed in §6. Finally, in §7, we con-
clude by presenting a number of useful directions for future
research.

2 Background

2.1 Sequence prediction and n-gram models

For the purpose of describing this research we shall charac-
terise the acquisition of knowledge about melodic music as
a sequence learning problem (Dietterich & Michalski, 1986).
The objects of interest are sequences of events where each
event consists of a finite set of attributes and each attribute
may assume a value drawn from some finite alphabet x. The
simplified musical surface (Jackendoff, 1987) with which we
shall be concerned consists of events corresponding to
musical notes as notated on a score each of which consists
of a single attribute corresponding to the chromatic pitch 
of the note. We shall use the notation e j

i Œ x* to denote a
sequence of events ei . . . ej where i £ j Œ "+ and x* denotes
the set of all sequences composed of members of x includ-
ing the empty sequence e. The goal of sequence learning is
to derive from example sequences a model which estimates
the probability function p(ei|e1

i-1).
It is often assumed in statistical modelling that the prob-

ability of the next event depends only on the previous n - 1
events, for some n Œ "+:

Under this assumption, we have an (n - 1)th order Markov
model or n-gram model. An n-gram is a sequence ei

(i-n)+1 con-
sisting of a context ei-1

(i-n)+1 and a single-event prediction ei.
Since the use of a global order bound imposes assumptions
about the nature of the data, the selection of an appropriate
n is an issue when designing and building n-gram models. If
the order is too high, the model will overfit the training data
and fail to capture enough statistical regularity; low order
models, on the other hand, suffer from being too general and
failing to represent enough of the structure present in the
data. The optimal order for an n-gram model depends on the
nature of the data to which it is applied and, in the absence
of specific a priori knowledge about that data, can only be
determined empirically.

An n-gram parameter is the probability of the prediction
occurring immediately after the context. The parameters are
typically estimated on some corpus of example sequences.
There are several different means of estimating n-gram para-
meters, the simplest of which is maximum likelihood (ML)
estimation which estimates the parameters as:

where c(g) denotes the frequency count for n-gram g. In n-
gram modelling, the probability of a sequence of events is
expressed, following the chain rule, as the product of the esti-
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mated probabilities of the events (conditional on the identity
of the previous n - 1 events) from which it is composed:

When n > i, at the beginning of the sequence for example,
padding symbols must be introduced to provide the neces-
sary contexts.

Due to data sparseness, problems arise when using fixed
order ML models due to the occurrence of as-yet-unseen n-
grams. In particular, if a novel n-gram context is encountered
or a symbol occurs in the data which has not previously
appeared after an existing context (the zero-frequency
problem – see Witten & Bell, 1991), the ML estimate will be
zero. In these situations, the estimated probability of a novel
n-gram will be too low and consequently the estimated prob-
ability of n-grams with non-zero counts will be too high.
Additionally, as we shall see in §2.2, the information theo-
retic performance measures that we shall use require that
every symbol is predicted with non-zero probability.

In statistical language modelling, a set of techniques
known collectively as smoothing are commonly used to
address these problems. The central idea of smoothing is to
adjust the ML estimates in order to generate probabilities for
as-yet-unencountered n-grams. This is typically achieved by
combining the distributions generated by an h-gram model
with some fixed global order bound h with distributions less
sparsely estimated from lower order n-grams (where n < h).
Most existing smoothing techniques can be expressed using
the framework described in Equation (1) (Kneser & Ney,
1995).

(1)

For a given context ei-1
(i-n)+1, if a given symbol ei occurs with 

a non-zero count (i.e., c(ei|ei-1
(i-n)+1) > 0) then the estimate

a(ei|ei-1
(i-n)+1) is used; otherwise, we recursively backoff to a

scaled version of the (n - 2)th order distribution p(ei|ei-1
(i-n)+2)

where the scaling factor g (ei|ei-1
(i-n)+1) is chosen to ensure that

the conditional probability distribution over the alphabet
sums to one: SeŒx p(e|ei-1

(i-n)+1) = 1. The recursive step is typi-
cally terminated with the zeroth order model or by taking a
uniform distribution over x. The various smoothing algo-
rithms differ in terms of the techniques employed for com-
puting a(ei|ei-1

(i-n)+1) and g (ei|ei-1
(i-n)+1).

An alternative to backoff smoothing is interpolated
smoothing in which the probability of an n-gram is always
estimated by recursively computing a weighted combination
of the (n - 1)th order distribution with the (n - 2)th order dis-
tribution as described in Equation (2).

(2)

Detailed empirical comparisons of the performance of dif-
ferent smoothing techniques have been conducted on natural
language corpora (Chen & Goodman, 1999; Martin et al.,
1999). One of the results of this work is the finding that, in
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general, interpolated smoothing techniques outperform their
backoff counterparts. Chen & Goodman (1999) found that
this performance advantage is restricted, in large part, to n-
grams with low counts and suggest that the improved per-
formance of interpolated algorithms is due to the fact that
low order distributions provide valuable frequency informa-
tion about such n-grams.

2.2 Performance metrics

There exist many (more or less application dependent) ways
of assessing the quality of an n-gram model and the ultimate
evaluation metric can only be the impact it has on a specific
application. Here, however, we are interested in examining
the performance of such models in an application neutral
manner. It is common in the field of statistical language mod-
elling to use information theoretic, in particular entropy
based, measures to evaluate statistical models of language.
We have employed these metrics in this research and they are
briefly introduced below.

Given a probability mass function p(e Œ x) = p(c = e) of
a random variable c distributed over a discrete alphabet x =
{e1, e2, . . . , ek} such that the individual probabilities are
independent and sum to one, the entropy H( p) is defined as:

(3)

Shannon’s (1948) fundamental coding theorem states that
entropy provides a lower bound on the average number of
binary bits per symbol required to encode an outcome of the
variable c. The corresponding upper bound occurs in the case
where each symbol in the alphabet has an equal probability 

of occurring: "e Œx, p(e) =

(4)

Entropy has an alternative interpretation in terms of the
degree of uncertainty that is involved in selecting a symbol
from an alphabet: greater entropy implies greater uncertainty.

In practice, we rarely know the true probability distribu-
tion of the stochastic process and use a model to approximate
the probabilities in Equation (3). Cross entropy is a quantity
which represents the divergence between the entropy calcu-
lated from these estimated probabilities and the source
entropy. Given a model which assigns a probability of pm(e j

1)
to a sequence e j

1 of outcomes of c, we can calculate the cross
entropy Hm(pm, e j

1) of model m with respect to event sequence
e j

1. In particular, if we make some assumptions about the 
stochastic process which generated the sequence, the cross
entropy Hm(pm, e j

1) may be calculated as:1

H pmax ( ) = log2 x

1
x

.

H p p e p e
e

( ) = - ( ) ( )
Œ
Â log2

x

(5)

Cross entropy approaches the true entropy of the sequence
as the length of the sequence ( j) increases.

Since Hm(pm, e j
1) provides an estimate of the number of

binary bits required on average to encode a symbol in e j
1 in

the most efficient manner and there exist techniques, such as
arithmetic coding (Witten et al., 1987), which can produce
near optimal codes, cross entropy provides a direct perfor-
mance metric in the realm of data compression. However,
cross entropy has a wider use in the evaluation of statistical
models. Since it provides us with a measure of how uncer-
tain a model is, on average, when predicting a given sequence
of events, it can be used to compare the performance of dif-
ferent models on some corpus of data. In statistical language
modelling, cross entropy measures are commonly used:

For a number of natural language processing tasks, such as
speech recognition, machine translation, handwriting recogni-
tion, stenotype transcription and spelling correction, language
models for which the cross entropy is lower lead directly to better
performance. (Brown et al., 1992, p. 39)

A related measure, perplexity, is also frequently used in sta-
tistical language modelling. The perplexity PPm(pm, e j

1) of
model m on sequence e j

1 is defined as:

(6)

Perplexity provides a crude measure of average size of the
set of symbols from which the next symbol is chosen – lower
perplexities indicate better model performance.

2.3 The PPM algorithm

2.3.1 Overview

Prediction by PartialMatch (Cleary & Witten, 1984) is a data
compression scheme the central component of which is an
algorithm for performing backoff smoothing of n-gram dis-
tributions. Variants of the PPM scheme have set the standard
in lossless data compression since its introduction (Bunton,
1997). We shall describe several of these variants in terms of
Equations (1) and (2) where the recursive step is terminated
with a model which returns a uniform distribution over x.
This model is usually referred to as the order - 1 model and
allows for the prediction of events which have yet to be
encountered.

2.3.2 The zero-frequency problem and escaping

We shall now describe how the probability estimates 
a(ei|ei-1

(i-n)+1) and g (ei|ei-1
(i-n)+1) in Equations (1) and (2) are com-

puted in PPM models. The problem is usually characterised
by asking how we estimate g (ei|ei-1

(i-n)+1) – the amount of prob-
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1 In particular, it is standard to assume that the process is stationary
and ergodic (Manning & Schütze, 1999). A stochastic process is
stationary if the probability distribution governing the emission of
symbols is stationary over time (i.e., independent of the position in
the sequence) and ergodic if sufficiently long sequences of events
generated by it can be used to make inferences about its typical
behaviour.
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ability mass to assign to events which are novel in the current
context ei-1

(i-n)+1. a(ei|ei-1
(i-n)+1) is then set such that the distribu-

tions sum to one. As noted by Witten and Bell (1991), there
is no sound theoretical basis for choosing these escape prob-
abilities in the absence of a priori knowledge about the data
being modelled. As a result, although several schemes exist,
their relative performance on any particular task can only be
determined experimentally. In the following discussion, t(e j

i )
denotes the total number of symbol types, members of x, that
have occurred with non-zero frequency in context e j

i ; and
tk(e j

i ) denotes the total number of symbol types that have
occurred exactly k times in context e j

i .

Method A (Cleary & Witten, 1984) assigns a frequency
count of one to symbols that are novel in the current context
ei-1

(i-n)+1 and adjusts a(ei|ei-1
(i-n)+1) accordingly:

As the number of occurrences of the context increases,
g (ei|ei-1

(i-n)+1) decreases and a(ei|ei-1
(i-n)+1) approaches the ML 

estimate.

Method B (Cleary & Witten, 1984) classifies a symbol
occurring in a given context as novel unless it has already
occurred twice in that context. This is achieved by subtract-
ing one from the symbol counts when calculating a(ei|ei-1

(i-n)+1)
and has the effect of filtering out anomalies. In addition, the
appearance of the type count t(ei-1

(i-n)+1) in the numerator of
g (ei|ei-1

(i-n)+1) has the effect that the escape probability increases
as more types are observed.

Method C (Moffat, 1990) was designed to combine the
more attractive elements of methods A and B. It is a modi-
fied version of method A in which the escape count increases
as more types are observed (as in method B).

One particular smoothing technique called Witten-Bell
smoothing, often used in statistical language modelling, is
based on escape method C (Manning & Schütze, 1999).
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Method D (Howard, 1993) modifies method B by sub-
tracting 0.5 (instead of 1) from the symbol count c(ei|ei-1

(i-n)+1)
in a(ei|ei-1

(i-n)+1).

Method AX (Moffat et al., 1998) is motivated by the
assumption that novel events occur according to a Poisson
process model. On this basis, Witten and Bell (1991) have
suggested method P which uses the following escape proba-
bility:

and method X which approximates method P by computing
only the first term:

However, both of these methods suffer from the fact that
when t1(ei|ei-1

(i-n)+1) = 0 or t1(ei|ei-1
(i-n)+1) = SeŒxc(e|ei-1

(i-n)+1), the
escape probability will be zero (or less) or one respectively.
One solution to this problem, suggested by Moffat et al.
(1998) and dubbed method AX (for approximate X), is to
simply add one to the counts and use the singleton type count
in method C.

These methods are based on similar principles to Katz
backoff (Katz, 1987) one of the more popular techniques used
in statistical language processing.

These various escape methods have been subjected to
empirical evaluation in data compression experiments. In
general, A and B tend to perform poorly (Bunton, 1997;
Moffat et al., 1994; Witten & Bell, 1991), while D tends to
slightly outperform C (Bunton, 1997; Moffat et al., 1994)
and methods based on P (e.g., AX) tend to produce the best
results (Moffat et al., 1994; Teahan & Cleary, 1997; Witten
& Bell, 1991).
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2.3.3 Exclusion

Exclusion (Cleary & Witten, 1984) is a technique for improv-
ing the probabilities estimated by PPM. Events which are
predicted at higher order contexts do not need to be included
in the calculation of lower order predictions. Exclusion of
events which have already been predicted in the higher level
context will have no effect on the outcome (since they have
already been predicted) and doing so reclaims a proportion
of the overall probability mass that would otherwise be
wasted. Unless explicitly stated otherwise, we shall assume
that exclusion is enabled in all models discussed in the
remainder of the paper.

2.3.4 Interpolated smoothing

We have discussed the difference between backoff and inter-
polated smoothing in §2.1 and shown how they can be
described within the same framework. While the original
PPM algorithm uses a backoff strategy (called blending),
Bunton (1996, 1997) has experimented with using interpo-
lated smoothing within PPM. The approach is best described
by rewriting Equation (2) such that:

where:

and k is the initial event frequency count and a global con-
stant (ideally k = 0). The resulting smoothing mechanism is
described by:

(7)

When using the interpolated smoothing described in Equa-
tion (7), it is difficult to ensure that the conditional proba-
bility distribution computed sums to one. A simple, though
computationally expensive, solution to this problem is to
compute the entire distribution and then renormalise its com-
ponent probabilities such that they do sum to one.

As noted by Bunton (1996, ch. 6), methods A through D
may be described using a single weighting function l :x* Æ
[0, 1), defined as follows:
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if we allow the escape method to determine the values of k
and a variable d(ei-1

(i-n)+1) as follows:

We note further that method AX may be described within the
same framework as follows:

Bunton (1996) observes that the key difference between
escape methods A through D is the relative emphasis placed
on low order as compared to high order distributions. More
emphasis is placed on higher order distributions as both 
k and d(ei-1

(i-n)+1) increase in numerical value. Thus, while
method B places the lowest relative emphasis on higher order
distributions, method A tends to place the greatest emphasis
on higher order distributions (depending on the value of 
d(ei-1

(i-n)+1) = t(ei-1
(i-n)+1). Methods C and D fall in between these

extremes of emphasis and consistently outperform A and B
in data compression experiments.

Blending drops a term of Equation (7) for events which
are not novel by assuming that p(ei|ei-1

(i-n)+2) = 0. As we saw in
§2.1, this is true of backoff versions of interpolated smooth-
ing methods in general. Bunton notes that, as a consequence,
the estimates for novel events are slightly inflated while the
estimates for events which are not novel are slightly deflated.
Replacing blending with interpolated smoothing remedies
this and yields significant and consistent improvements in
compression performance (Bunton, 1996, 1997).

2.3.5 Update exclusion

Update exclusion (Moffat, 1990) is a modified strategy for
updating the n-gram counts in PPM models. When using the
original PPM model with blending and exclusion, the prob-
ability of an event which is not novel in a given context, will
be estimated in that context alone without blending the esti-
mate with lower order estimates. Update exclusion refers to
a counting strategy in which the event counts are only incre-
mented if an event is not predicted in a higher order context.
This has the effect that the counts more accurately reflect
which events are likely to have been excluded in higher order
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contexts. The use of update excluded counts tends to improve
the data compression performance of PPM models (Bell et
al., 1990; Bunton, 1997; Moffat, 1990).

2.3.6 Unbounded length contexts

One of the goals of universal modelling is to make minimal
assumptions about the nature of the stochastic processes (or
source) responsible for generating observed data. As we dis-
cussed in §2.1, n-gram models make assumptions about the
source to the effect that the probability of an event depends
only on the previous n - 1 events. Cleary and Teahan (1997)
describe an extension to PPM, called PPM*, which elimi-
nates the need to impose an arbitrary order bound. The policy
used to select a maximum order context can be freely varied
depending on the situation.

A context e j
i is said to be deterministic when it makes

exactly one prediction: t(e j
i ) = 1. Cleary and Teahan (1995)

have found that for such contexts the observed frequency of
novel events is much lower than expected based on a uniform
prior distribution. As a consequence, the entropy of the dis-
tributions estimated in deterministic contexts will tend to be
lower than in non-deterministic contexts. Since the event will
have occurred at least as many times in the lowest order
matching deterministic context as any of the other matching
deterministic contexts, it will produce the lowest-entropy
probability distribution (Bunton, 1997). Cleary and Teahan
(1997) exploit this in PPM* by selecting the shortest deter-
ministic matching context if one exists or otherwise select-
ing the longest matching context. Unfortunately, the original
PPM* implementation provided (at best) modest improve-
ment in compression performance over the original order
bounded PPM. When combined with interpolated smoothing
and update exclusion, however, PPM* does outperform 
the corresponding order bounded PPM models in data com-
pression experiments (Bunton, 1997). Furthermore, Bunton
(1997) describes an information-theoretic state-selection
mechanism which further improves the compression perfor-
mance of PPM* models.

As noted by Bunton (1997), PPM*’s state selection mech-
anism interferes with the use of update excluded frequency
counts since PPM* does not always estimate the probability
distribution using the frequency data from the maximum
order matching context. The solution is to use full counts to
compute probabilities for the selected context and update
excluded counts thereafter for the lower order contexts (see
Bunton, 1996, 1997, for further details).

2.3.7 Implementation issues

Since PPM* does not impose an order bound, all subse-
quences of the input sequence must be stored which makes
for increased demands on computational resources. Suffix-
tree representations provide a space-efficient means of
achieving this end (Bunton, 1996; Larsson, 1996). We have

implemented our PPM models as suffix trees using the online
construction algorithm described by Ukkonen (1995). The
application of this algorithm to the construction of PPM
models was first described by Larsson (1996) and the con-
struction developed independently by Bunton (1996) is
similar to the Ukkonen–Larsson algorithm in many respects.
In addition to being online, these algorithms have linear time
and space complexity and, as demonstrated by Bunton
(1996), the resulting models have optimal space require-
ments (in contrast to the original PPM* implementation).
Since our suffix trees are constructed from more than one
sequence, they are in fact generalised suffix trees which
require only minor modifications to Ukkonen’s suffix tree
construction algorithm (Gusfield, 1997). The existence of
path compressed nodes in suffix trees complicates the storage
of frequency counts and their use in prediction. We have 
followed the strategies for initialising and incrementing 
the counts employed by Bunton (1996) to address these 
complications.

2.4 Long- and short-term models

In data compression, a model which is typically empty ini-
tially is constructed incrementally as more of the input data
is seen. However, experiments with PPM using an initial
model that has been derived from a training text demonstrate
that pre-training the model, both with related and with unre-
lated texts, significantly improves compression performance
(Teahan, 1998; Teahan & Cleary, 1996). A complementary
approach is often used in the literature on statistical language
modelling where improved performance is obtained by aug-
menting n-gram models derived from the entire training
corpus with cache models which are constructed dynami-
cally from a portion of the recently processed text (Kuhn &
De Mori, 1990).

Conklin (1990) has employed similar ideas with music
data by using both a long-term model (LTM) and a short-
term model (STM). The LTM parameters are estimated on
the entire training corpus and new data is added to the model
after it is predicted on a composition-by-composition basis.
The STM, on the other hand, is constructed online for each
composition in the test set and is discarded after the relevant
composition has been processed. The predictions of both
models are combined to provide an overall probability esti-
mate for the current event. The motivation for doing so is to
take advantage of recently occurring n-grams whose struc-
ture and statistics may be specific to the individual compo-
sition being predicted.

A simple way of achieving the combination of predictions
from the LTM and STM is to use a weighted average of the
individual predictions (Conklin, 1990). Let e Œ x be the
current symbol to be predicted, M be a set {ltm, stm} con-
taining the LTM and STM and pm(e) be the probability
assigned to symbol e by model m Œ M. The weighted mean
of the two predictions is:
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(8)

Conklin describes a method for calculating the weights, wltm

and wstm based on the entropies of the distributions generated
by the LTM and STM such that greater entropy (and hence
uncertainty) is associated with a lower weight. Let Pm be the
probability distribution generated by model m. The relative
entropy of a model is:

where H and Hmax are as defined in Equations (3) and (4)
respectively. The weight of model m is:

where b Œ " is a parameter giving an exponential bias
towards models with lower relative entropy. Conklin (1990,
pp. 70–72) discusses this weighting mechanism in more
detail. The combined use of long- and short-term models
yields better prediction performance than either the LTM or
STM used individually (Conklin, 1990). Finally, Conklin and
Witten (1995, p. 61) have used a different scheme, based 
on the Dempster-Shafer theory of evidence, for combining
the predictions of long- and short-term models “with some
success” but do not provide any details of the scheme or the
performance improvements it yielded.

3 Related work

N-gram models have been used for music related tasks since
the 1950s when they were investigated as tools for composi-
tion and analysis (see e.g., Brooks Jr. et al., 1957; Hiller &
Isaacson, 1959; Pinkerton, 1956). Since extensive reviews of
this early research exist (Ames, 1987, 1989; Hiller, 1970),
we shall focus here on more recent approaches.

Ponsford et al. (1999), for example, have applied trigrams
and tetragrams (without smoothing) to the modelling of har-
monic movement in a corpus of 84 seventeenth-century sara-
bandes. The aim was to find out how adequate a simple
n-gram model would be for the description and generation
of harmonic movement in the style. Higher order structure
was represented in the corpus through the annotation of
events delimiting bars, phrases and entire pieces. A number
of pieces were generated from the models and subjected to
an informal stylistic analysis. The generated harmonies were
“characteristic of the training corpus in terms of harmony
transitions, the way in which pieces, phrases and bars begin
and end, modulation between keys and the relation between
harmony change and metre” (Ponsford et al., 1999, p. 169).
The generation of features such as enharmony, which was not
present in the corpus, and weak final cadences was attributed
mainly to the use of low order models.
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The research most closely related to the present work is
that of Darrell Conklin (Conklin, 1990; Conklin & Witten,
1995) who used PPM to model the soprano lines of 100 of
the chorales harmonised by J. S. Bach. The escape method
used was B and both long- and short-term models were
employed. The global order bounds of the LTM and STM
were set at 3 and 2, respectively, and the predictions com-
bined using a Dempster–Shafer scheme (see §2.4). One of
the central features of this work was the representation of
multiple attributes, or viewpoints, of a melodic sequence. The
event space consisted of a cross-product of basic viewpoints
such as chromatic pitch, onset time, duration and so forth.
Viewpoints such as chromatic pitch interval, pitch contour
and inter-onset interval were derived from these basic attrib-
utes (derived viewpoints) and could be combined into linked
viewpoints which consist of elements of the cross product of
the constituent (basic and derived) viewpoints. Finally, this
work also introduced threaded viewpoints which represent
events across larger intervals such as bars and phrases delim-
ited by fermata.2

Conklin and Witten (1995) describe a number of multiple
viewpoint systems consisting of several PPM models trained
on different viewpoints whose predictions were combined in
the same manner as described in §2.4. Several evaluation
techniques were employed. First, split-sample validation (see
§4.3) with a training set of 95 compositions and a test set of
five compositions was used to compare the performance 
of different multiple viewpoint systems. The performance
measure was the cross entropy (see Equation (5)) of the test
set given the model. While a system consisting solely of a
viewpoint for chromatic pitch yielded a cross entropy of 2.05
bits per event, more complex multiple-viewpoint systems
yielded cross entropy measures as low as 1.87 bits per event.
The second means of evaluation was a generate-and-test
approach similar to that used by Ponsford et al. (1999) from
which Conklin and Witten concluded that the generated com-
positions seemed to be “reasonable” if somewhat normative.
Finally, Witten et al. (1994) conducted an empirical study of
the sequential chromatic pitch predictions made by human
listeners on the same test set of compositions. The entropy
profiles derived from the experimental results for each com-
position were strikingly similar in form to those generated 
by the model described by Conklin and Witten (1995) – the
events about which the model was uncertain also proved dif-
ficult for humans to predict.

Hall and Smith (1996) have extended the approach used
by Conklin and Witten (1995) to a corpus of 58 twelve-bar
blues compositions. The aim was to develop a compositional
tool that would automatically generate a blues melody when
supplied with a twelve-bar blues harmonic structure. In order
to model pitch, zero, first and second order models were
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derived from 48 compositions in the corpus. Separate first-
and second-order models were derived for each individual
chord occurring in the corpus. Rhythm was represented using
an alphabet of short rhythmic patterns (e.g., two semiquavers
followed by a quaver) and zero, first and second order models
were derived from the training set over this alphabet. When
generating rhythms, each generated pattern was screened by
a set of symbolic constraints for stylistic suitability. The
model was evaluated by asking 198 human subjects to judge
which of a pair of compositions (of which one was human-
and the other machine-composed) was machine-generated.
The data consisted of the ten remaining compositions in the
corpus and ten compositions randomly selected from the
model’s output all of which were played to the subjects over
a standard harmonic background. Statistical analysis of the
results demonstrated that the subjects were unable to distin-
guish reliably between the human and machine generated
compositions.

Reis (1999a) has extended the work of Conklin and Witten
(1995) in a different direction through the incorporation of
psychological constraints in n-gram models. In particular, 
he argues that storing all n-grams (with order less than the
global bound) which occur in the data is highly inefficient
and unlikely to accurately depict the manner in which
humans represent melodies. Reis describes a model which
segments the data according to perceptual cues such as
contour changes or unusually large pitch or duration inter-
vals. The order of the n-grams stored by the model is then
determined by the sequence of events back to the previous
segmentation point. In the case of ambiguity (e.g., the
various segmentation cues do not converge to a single point),
all suggested segmentation possibilities are stored. If a novel
n-gram is encountered during prediction, the distribution
delivered by the variable order model is smoothed with a
uniform distribution over the alphabet. The model also incor-
porates perceptually guided predictions for more than one
step ahead.

The performance of the model was evaluated on the
chorale dataset used by Conklin and Witten (1995) and
German folk melodies from the Essen Folk Song Collection
(Schaffrath, 1992, 1994) using entropy as the performance
metric with a split sample experimental design. The results
demonstrated that the model failed to outperform that of
Conklin and Witten (1995). In spite of this, Reis’s work is
useful since it addresses the question of which segmentation
and modelling strategies work best when model-size is
limited. In particular, he reports the results of an investiga-
tion of the predictions of the model when the (perceptually
inspired) contexts were shifted. On a set of 205 German folk
songs he found that while shifts of between one and ten notes
always reduced performance relative to non-shifted contexts,
shifts of one note and shifts greater than six produced better
prediction than other shifts. Reis suggests that the relatively
good performance using single note shifts may be explained
by a degree of uncertainty as to exactly where a grouping
boundary occurs (i.e., is a large melodic interval included in

the preceding group or at the beginning of the following
group). The improved performance with longer shifts was
attributed to the fact that the average length of the suggested
segments was 6.7 notes.

We turn now to more distantly related approaches which
we include because they have been used to tackle the same
basic task – prediction of an event given a context of imme-
diately preceding events. Assayag, Dubnov and their col-
leagues (Assayag et al., 1999; Dubnov et al., 1998; Lartillot
et al., 2001) have experimented with using an incremental
parsing algorithm based on the Lempel–Ziv dictionary com-
pression algorithm (Ziv & Lempel, 1978) in the modelling
of musical style. The incremental parsing algorithm adap-
tively builds a dictionary of sequences as follows. For each
new event, it appends the event to the current contender for
addition to the dictionary (initially the empty sequence e). If
the resulting sequence occurs in the dictionary, the count
associated with that dictionary entry is incremented; other-
wise the sequence is added to the dictionary and the current
contender is reset to e. The algorithm then progresses to the
next input event. During prediction, an order bound is spec-
ified and ML estimated probabilities are used to predict
events in a context. When the context does not appear in the
dictionary the longest suffix of that context is tried. The IP
algorithm has been used successfully, with certain improve-
ments, for the classification of polyphonic music by stylistic
genre (Dubnov et al., 1998) and for polyphonic improvisa-
tion and composition (Assayag et al., 1999; Lartillot et al.,
2001).

Lartillot et al. (2001) have also experimented with another
technique for constructing variable length Markov models
called Prediction Suffix Trees (PST). The algorithm for con-
structing a PST described by Ron et al. (1996) and used by
Lartillot et al. (2001) is offline and operates in two stages:
first, a suffix tree is constructed from all subsequences of the
input sequence less than a global order bound. Each node in
the tree is examined and pruned unless for some symbol in
the alphabet, the estimated probability of observing that
symbol at the node exceeds a threshold value and is signifi-
cantly different from the estimated probability of encounter-
ing that symbol after the longest suffix of the sequence
represented by that state. Lartillot et al. (2001) have derived
PSTs from music in a range of different styles and generated
new pieces with some success. Triviño-Rodriguez and
Morales-Bueno (2001) have derived PSTs to model multiple
attributes of the chorale melodies used by Conklin and
Witten (1995). They used their models to generate new
melodic sequences which have similar statistical properties
to the original chorales and which human listeners cannot
reliably distinguish from the original chorales.

Mozer (1994) argues that transition table approaches
(such as the use of n-grams and other Markov models) suffer
from two fundamental problems in terms of modelling
musical composition: first, an event cannot predict a note that
is not its immediate successor without knowledge of the
intervening notes; and second, the symbolic representation
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used does not facilitate generalisation from one musical
context to perceptually similar contexts. In order to overcome
these problems, he developed a model based on a recurrent
artificial neural network (RANN) and used psychoacoustic
constraints in the representation of pitch and duration. When
trained and tested on sets of simple artificial pitch sequences
with a splitsample experimental paradigm, the RANN model
outperformed digram models. However, the results were less
than satisfactory when the model was trained on a set of
melodic lines from ten compositions by J. S. Bach and used
for generation: “While the local contours made sense, the
pieces were not musically coherent, lacking thematic 
structure and having minimal phrase structure and thematic
organisation” (Mozer, 1994, p. 273). The neural network
architecture appeared unable to capture the higher level
structure in these longer pieces of music.

4 Experimental methodology

4.1 Model parameters

A PPM model has been implemented in Common Lisp such
that each of the variant features described in §2.3 may be
independently selected as parameters to the top-level call. We
shall use the following shorthand to refer to each of the
model parameters:

Model type: indicated by “LTM” and “STM” for the long-
and short-term models respectively while “LTM+” indi-
cates a long-term model in which new data is added to the
LTM online as each new event is predicted;3

Escape method: indicated explicitly by “A”, “B”, “C”, “D”
or “X” (the latter as a shorthand for method AX);

Order bound: indicated by an integer or “*” if unbounded;
Update exclusion: the use of update excluded counts is indi-

cated by “U” – the default does not use update excluded
counts;

Interpolated smoothing: PPM’s blending is the default
while the use of interpolated smoothing is indicated by an
“I”.

Thus, for example, a PPM long-term model with escape
method C, unbounded order, update exclusion enabled and
interpolated smoothing is denoted by “LTMC*UI”. When it
is clear which model is being referred to, we shall, for the
sake of readability, drop the model type. When combined
with a short-term model with the same parameters, the model
would be denoted by “LTMC*UI – STMC*UI” (for read-
ability the two models are separated by a dash). It will be
clear that the space of possible parameterisations of the
model is very large indeed (even when we limit the range of
possible order bounds). As a consequence of this large para-

meter space, we have applied our techniques incrementally,
typically taking the best performing model in one experiment
as the starting point for the next.

4.2 Data

The aim of this research was to assess the performance of
PPM variants over a range of different musical styles. The
datasets used were all obtained in the **kern format (Huron,
1997) from the Centre for Computer Assisted Research in the
Humanities (CCARH) at Stanford University, California (see
http://www.ccarh.org) and the Music Cognition Laboratory
at Ohio State University (see http://kern.humdrum.net).
During preprocessing, tied notes were collapsed together and
the chromatic pitch of each event was converted into a MIDI
note number where 60 represents middle C. Each composi-
tion therefore consists of a sequence of integers each of
which represents a chromatic pitch.

The datasets themselves contain purely melodic music.
The first is a collection of 152 folk songs and ballads from
Nova Scotia, Canada collected by Helen Creighton between
1928 and 1932 (Creighton, 1966). The dataset was encoded
in the **kern format by Craig Sapp and is freely available
from the Music Cognition Laboratory at Ohio State Univer-
sity. The second dataset used is a subset of the chorale
melodies harmonised by J. S Bach (Riemenschneider, 1941).
A set of 185 chorales (BWV 253 to BWV 438) has been
encoded by Steven Rasmussen and is freely available in the
**kern format from CCARH. The remaining datasets come
from the Essen Folk Song Collection (EFSC – Schaffrath,
1992, 1994). The collection comprises 6252 (mostly) 
European folk melodies collected and encoded under the
supervision of Helmut Schaffrath at the University of Essen
in Germany between 1982 and 1994. A dataset containing all
the compositions in the collection encoded in the **kern
format is published and distributed by CCRAH (Schaffrath,
1995). An additional dataset of 2580 Chinese folk melodies
is available on request. The six datasets from the EFSC used
in this research contained respectively 91 Alsatian folk
melodies, 119 Yugoslavian folk melodies, 93 Swiss folk
melodies, 104 Austrian folk melodies, 213 German 
folk melodies (from dataset kinder) and 237 Chinese folk
melodies (from dataset shanxi).

Each dataset is assigned a natural ID as shown in Table 1
and will be referred to henceforth by this ID. Table 1 also
contains more detailed information about each dataset,
including the number of compositions and events contained
in the dataset and the number of chromatic pitches from
which the dataset is composed.

4.3 Performance evaluation

Many methods have been used to evaluate the performance
of statistical models of music, some of which have been
described in §3: the analysis-by-synthesis method used 
by Hall and Smith (1996) and Triviño-Rodriguez and
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Morales-Bueno (2001); comparison of human and machine
prediction performance (Witten et al., 1994); single-sample
Bayesian methods such as Minimum Description Length
(Conklin, 1990); and the resampling approach using entropy
as a measure of performance as used by Conklin and Witten
(1995) and Reis (1999a). We follow the latter approach for
two reasons: first, entropy has an unambiguous interpretation
in terms of model uncertainty on unseen data (see §2.2); and
second, entropy bears a direct relationship with performance
in compression and indirectly correlates with the perfor-
mance of n-gram models on practical natural language tasks
and is widely used in both these fields (see §2.2). These
factors support its use in an application independent evalua-
tion such as this.

Conklin and Witten (1995) used a split-sample (or held-
out) experimental paradigm in which the data is divided ran-
domly into two disjoint sets, a training set and a test set; the
n-gram parameters are then 14 estimated on the training set
and the cross entropy of the test set given the resulting model
is computed using Equation 5. Conklin and Witten used a
training set of 95 melodies and a test set of 5 melodies.
Although commonly used, split-sample validation suffers
from two major disadvantages: first, it reduces the amount of
data available for both training and testing; and second, with
small datasets it provides a biased estimate of the true
entropy of the corpus. A simple way of addressing these 
limitations is to use k-fold cross-validation (Dietterich, 1998;

Mitchell, 1997) in which the data is divided into k disjoint
subsets of approximately equal size. The model is trained k
times each time leaving out a different subset to be used for
testing and an average of the k cross entropy values thus
obtained is then computed.

Since the datasets used are quite small and initial experi-
ments demonstrated a fairly large variance in the entropies
computed from different validation sets, we have used 10-
fold cross-validation for each dataset in all experiments. The
average sizes of these sets are shown in Table 2. In machine
learning, differences in model performance as assessed by
resampling techniques, such as cross-validation, are often
analysed for significance using statistical tests such as the t-
test (Dietterich, 1998; Mitchell, 1997). We have followed this
approach by comparing the performance of some of our
improved models with our emulation of the model developed
by Conklin and Witten (1995) as reported in §5.4.

5 Results

5.1 Global order bound and escape method

Our first experiments address the question of how the per-
formance of PPM models is affected by changes in the global
order bound. We have tested both the LTM and STM inde-
pendently with all five escape methods with global order
bounds ranging from zero to 14. The results for the LTM and
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Table 1. Melodic datasets used in this research.

ID Description No. compositions No. events Mean events/composition |X|

0 Canadian folk songs/ballads 152 8553 56.270 25
1 Chorale melodies 185 9227 49.876 21
2 Alsatian folk songs (EFSC) 91 4496 49.407 32
3 Yugoslavian folk songs (EFSC) 119 2691 22.613 25
4 Swiss folk songs (EFSC) 93 4586 49.312 34
5 Austrian folk songs (EFSC) 104 5306 51.019 35
6 German folk songs (EFSC) 213 8393 39.403 27
7 Chinese folk songs (EFSC) 237 11056 46.650 41

Table 2. The average sizes of the resampling sets used for each dataset.

ID Training set Test set

Mean no. compositions Mean no. events Mean no. compositions Mean no. events

0 136.8 7697.7 15.2 855.3
1 166.5 8304.3 18.5 922.7
2 81.9 4046.4 9.1 449.6
3 107.1 2421.9 11.9 269.1
4 83.7 4127.4 9.3 458.6
5 93.6 4775.4 10.4 530.6
6 191.7 7553.7 21.3 839.3
7 213.3 9950.4 23.7 1105.6
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STM are shown in Figures 1 and 2, respectively. The general
U-shape of the curves is quite typical; while increasing the
global order bound provides the model with more specific
contextual information with which to make its predictions,
the higher order contexts are also more likely to fail to
produce a prediction. Therefore, the model will escape down
to lower order models more frequently, thereby wasting more
of the probability mass available on apportioning escape
probabilities. As the global order bound is increased beyond
a certain point this negative influence tends to dominate and
performance decreases (Teahan, 1998). Note, however, the
relatively shallow worsening of performance of the STM 
(as compared with the LTM) as the global order bound is
increased beyond its optimal value. It seems likely that due
to the short length of most of the compositions in the datasets
(see Table 1), the models rarely encounter matching contexts
longer than about five events and, as a consequence, increas-
ing the global order bound beyond this value has little effect
on model performance.

Note from the graphs that, for both the LTM and STM,
escape methods A and B perform relatively poorly and
escape method C outperforms the others. Methods A and B
tended to perform relatively poorly in all the experiments
performed, as they have in data compression experiments
(Bunton, 1997). As a consequence, they are not considered
further in this paper. The optimal global order bound to use
is highly dependent on the amount and character of the data

being used (Bunton, 1997). As Figures 1 and 2, respectively,
demonstrate, the LTM operates best with a global order
bound of two, regardless of the escape method used, while
the STM performs best with a global order bound of five with
escape methods D and C and a global order bound of four
with escape method AX.

5.2 Interpolated smoothing and update exclusion

In our next experiments, we investigated the effects that using
update excluded counts and interpolated smoothing have on
the performance of PPM models with optimal global order
bounds as derived in the previous experiment. Thus we have
tested the STM and LTM with escape methods C, D and AX
with global order bounds of two for the LTM and five (escape
methods C and D) or four (escape method AX) for the STM.
We have applied the use of update excluded counts and inter-
polated smoothing to these models both individually and in
combination. The results for the LTM and STM are shown
in Tables 3 and 4, respectively.

Consider first the results for the LTM shown in Table 3.
Perhaps the most striking result is that interpolated smooth-
ing applied in isolation improves performance for all datasets
and escape methods. The best performing models on any
given dataset use interpolated smoothing in isolation and, 
as in the previous experiment, escape method C tends on
average to outperform methods D and AX. The results for
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Fig. 1. The performance of the LTM with varying escape method and global order bound.



12 Marcus T. Pearce and Geraint A. Wiggins

update exclusion are, in general, less clear cut. The use of
update exclusion alone improves average model performance
for escape methods D and AX but not for C (although the
margin is small and performance is improved for datasets 2
and 4). The combination of update exclusion and interpolated
smoothing tends to impair performance, compared with the
performance of models using either technique in isolation,
for escape methods C and D; the slight average performance
improvement with escape method AX derives from the
improved performance on datasets 2, 4 and 5.

Turning now to the results for the STM shown in Table 4,
we note that interpolated smoothing applied in isolation
tends to improve performance though with less consistency

across datasets and escape methods than it does with the
LTM. By contrast, update exclusion (applied in isolation)
improves average performance when used with escape
methods D and AX but impairs performance with escape
method C. Even more striking is the finding that the best
average performance for each of the three escape methods is
obtained using a combination of interpolated smoothing and
update exclusion. However, the improvement over models
using interpolated smoothing in isolation is much more pro-
nounced for escape methods D and AX than for C where
improvement is obtained for datasets 2, 3, 5 and 7 only. The
model with best average performance uses escape method
AX with update exclusion and interpolated smoothing.
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Fig. 2. The performance of the STM with varying escape method and global order bound.

Table 3. Performance of the LTM with a global order bound of two.

Dataset C2 C2U C2I C2UI D2 D2U D2I D2UI X2 X2U X2I X2UI

0 2.933 2.959 2.904 3.127 2.935 2.951 2.885 2.967 2.913 2.928 2.887 2.908
1 2.585 2.595 2.563 2.748 2.577 2.581 2.547 2.608 2.557 2.562 2.544 2.554
2 3.216 3.204 3.110 3.417 3.252 3.208 3.142 3.220 3.207 3.161 3.166 3.129
3 2.882 2.890 2.804 3.179 2.892 2.881 2.791 2.954 2.880 2.870 2.824 2.829
4 3.276 3.248 3.192 3.483 3.315 3.250 3.220 3.278 3.312 3.231 3.277 3.201
5 3.470 3.480 3.385 3.708 3.526 3.485 3.431 3.509 3.518 3.455 3.485 3.429
6 2.620 2.665 2.613 2.897 2.622 2.654 2.599 2.731 2.608 2.642 2.596 2.633
7 3.123 3.157 3.083 3.423 3.137 3.145 3.094 3.203 3.121 3.123 3.111 3.111

Average 3.013 3.025 2.957 3.248 3.032 3.019 2.964 3.059 3.014 2.997 2.986 2.974
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5.3 Comparing PPM and PPM* models

In the next set of experiments, we investigated the effect that
the use of update excluded counts and interpolated smooth-
ing have on (unbounded order) PPM* models with a view to
comparing the unbounded models with their order-bounded
counterparts. As in the previous experiments, we have tested
the STM and LTM with escape methods C, D and AX and
applied the use of update excluded counts and interpolated
smoothing to these models both individually and in combina-
tion. The results for the LTM and STM are shown in Tables 5
and 6, respectively, and exhibit broadly similar patterns to the
corresponding order bounded results shown in Tables 3 and 4.

Considering first the results for the LTM shown in Table
5, we note that as in the order bounded experiment, interpo-
lated smoothing (applied in isolation) universally improves
performance. The use of update exclusion (applied in isola-
tion) universally impairs performance except in combination
with escape methods D and AX on datasets 2, 4 and 5. In
combination with interpolated smoothing, update exclusion
also universally impairs performance except in combination
with escape method AX on datasets 2, 4 and 5. The trend 
for escape method C to outperform the other methods was
stronger here than in the order bounded experiment and the
best performing model on all datasets used interpolated
smoothing and escape method C. Although the use of
unbounded orders fails to consistently improve performance

when the default blending scheme is used, the combination
with interpolated smoothing does lead to consistent perfor-
mance improvements over the corresponding order bounded
models.

Turning now to the results for the STM shown in Table 6,
we note that, as in the case of the order bounded STM results,
interpolated smoothing applied in isolation tends to improve
performance. The effect of update exclusion, both in isola-
tion and in combination with interpolated smoothing, tends
to be highly dependent both on the dataset and the escape
method used. As in the order bounded experiment, escape
methods D and AX tend to combine more fruitfully with
update exclusion than method C. The models with best
average performance for the former escape methods are
obtained with a combination of update exclusion and inter-
polated smoothing. As in the order bounded experiment, the
model with best average performance uses escape method
AX with update exclusion and interpolated smoothing and
this model outperforms its order-bounded counterpart.

5.4 Combining the long- and short-term models

We now turn to the combined performance of the LTM and
STM whose predictions are combined as described in §2.4.
In general we have followed an approach in which the best
performing models at any given stage are selected for further
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Table 4. Performance of the STM with a global order bound of five (escape methods C and D) or four (escape method AX).

Dataset C5 C5U C5I C5UI D5 D5U D5I D5UI X4 X4U X4I X4UI

0 3.017 3.046 2.988 2.993 3.068 3.048 3.049 2.995 3.081 3.070 3.029 2.983
1 3.170 3.209 3.138 3.149 3.218 3.214 3.194 3.153 3.198 3.204 3.162 3.121
2 3.120 3.141 3.106 3.104 3.175 3.140 3.171 3.107 3.197 3.178 3.156 3.106
3 3.463 3.488 3.466 3.463 3.498 3.491 3.516 3.470 3.440 3.467 3.432 3.411
4 3.146 3.178 3.134 3.142 3.196 3.176 3.194 3.147 3.214 3.207 3.175 3.139
5 3.264 3.281 3.255 3.252 3.316 3.280 3.317 3.257 3.343 3.317 3.303 3.255
6 2.735 2.759 2.701 2.706 2.780 2.755 2.755 2.704 2.841 2.856 2.755 2.742
7 3.434 3.437 3.426 3.406 3.504 3.446 3.504 3.417 3.511 3.466 3.485 3.402

Average 3.169 3.192 3.152 3.152 3.220 3.194 3.213 3.156 3.228 3.220 3.187 3.145

Table 5. Performance of the LTM with unbounded order.

Dataset C* C*U C*I C*UI D* D*U D*I D*UI X* X*U X*I X*UI

0 3.094 3.236 2.861 3.234 3.180 3.247 2.930 3.098 3.072 3.153 2.933 2.993
1 2.669 2.843 2.444 2.869 2.708 2.839 2.473 2.724 2.648 2.812 2.477 2.651
2 3.336 3.407 3.115 3.470 3.454 3.424 3.230 3.308 3.320 3.315 3.230 3.166
3 2.937 3.032 2.721 3.188 3.004 3.040 2.761 2.998 2.965 3.028 2.809 2.862
4 3.176 3.199 3.010 3.316 3.293 3.205 3.119 3.147 3.263 3.176 3.187 3.056
5 3.515 3.550 3.340 3.645 3.665 3.562 3.486 3.488 3.606 3.482 3.542 3.370
6 2.604 2.779 2.428 2.926 2.681 2.780 2.468 2.739 2.614 2.748 2.480 2.593
7 3.318 3.449 3.105 3.556 3.395 3.434 3.188 3.347 3.298 3.348 3.189 3.205

Average 3.081 3.187 2.878 3.275 3.172 3.191 2.957 3.106 3.098 3.133 2.981 2.987
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experimentation. Accordingly, we chose the LTMC*I model
for use in these experiments. However, it was found that
although an STMC*I model yielded better performance than
a STMX*UI model in combination with this LTM even
though the latter outperformed the former when used in iso-
lation. This finding in combination with the principle of
Occam’s razor led us to select an STMC*I model over an
STMX*UI model for use in these experiments.

The results of this experiment are shown in Table 7. The
first two columns respectively show the performance of the
STMC*I and LTMC*I models used in isolation. The third
column demonstrates the improved performance afforded by
an LTM + C*I model in which events are added online to 
the LTM as they are predicted (see §2.4). The remainder of
Table 7 shows the results obtained by combining the STMC*I
model with the LTM + C*I model with a range of different
values for the weighting bias b. As can be seen, a combined
LTM – STM model is capable of outperforming both of its
constituent models. The results also demonstrate that optimal
average performance is achieved with the bias set to two.

5.5 Overall performance improvements

To illustrate more clearly the performance improvements
obtained with the PPM variants discussed in this paper, 

we have successively applied escape method C, unbounded
orders and interpolated smoothing to an emulation of the
model used by Conklin and Witten (1995) which is described
in our framework as LTMB3 – STMB2 (see §2).4 The results
are shown in Table 8. Paired t-tests confirmed the signifi-
cance of the improvements afforded by incrementally apply-
ing escape method C [t = 31.128, df = 79, p < 0.001],
unbounded orders [t = 9.018, df = 79, p < 0.001] and inter-
polated smoothing [t = 18.281, df = 79, p < 0.001]. The tests
were performed over all 10 resampling sets of each dataset
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Table 7. Performance of the best performing LTM, STM and combined models with variable bias.

Dataset STMC*I LTMC*I LTM + C*I LTM + C*I – STMC*I

b = 0 b = 1 b = 2 b = 3 b = 4 b = 5 b = 6 b = 16 b = 32

0 2.983 2.861 2.655 2.495 2.475 2.468 2.469 2.474 2.482 2.491 2.564 2.608
1 3.139 2.444 2.375 2.396 2.363 2.347 2.342 2.342 2.346 2.352 2.412 2.455
2 3.097 3.115 2.712 2.554 2.541 2.540 2.548 2.559 2.571 2.584 2.677 2.730
3 3.463 2.721 2.602 2.619 2.597 2.588 2.589 2.595 2.604 2.614 2.714 2.791
4 3.126 3.010 2.621 2.484 2.461 2.454 2.457 2.465 2.474 2.485 2.560 2.610
5 3.248 3.340 2.833 2.659 2.649 2.651 2.661 2.675 2.690 2.706 2.816 2.880
6 2.693 2.428 2.237 2.153 2.120 2.106 2.102 2.104 2.109 2.116 2.176 2.212
7 3.426 3.105 2.881 2.694 2.680 2.681 2.691 2.705 2.720 2.735 2.841 2.902

Average 3.147 2.878 2.614 2.507 2.486 2.479 2.482 2.490 2.500 2.510 2.595 2.648

4 At the time of writing, there was insufficient information to enable
a precise replication of the experiments described by Conklin and
Witten (1995). Any discrepancy between the results reported here
for dataset 1 and those of Conklin and Witten (1995) may be attrib-
uted to several factors: first, Conklin & Witten used a different set
of 100 chorales which is partially disjoint from the set of 185 used
here; second, the larger alphabet resulting from the increased size
of the dataset; third, the use here of ten-fold cross-validation with
an average of 18.5 compositions in the test set compared with the
split sample paradigm employed by Conklin and Witten with a train-
ing set of 95 and test set of five compositions; and finally, the use
of a Dempster–Shafer scheme by Conklin and Witten for combin-
ing the predictions of the LTM and STM as compared with the
weighted average employed here.

Table 6. Performance of the STM with unbounded order.

Dataset C* C*U C*I C*UI D* D*U D*I D*UI X* X*U X*I X*UI

0 3.008 3.046 2.983 2.991 3.060 3.055 3.045 3.000 3.063 3.060 3.020 2.977
1 3.170 3.211 3.139 3.150 3.223 3.226 3.201 3.161 3.191 3.194 3.162 3.117
2 3.105 3.135 3.097 3.098 3.161 3.144 3.162 3.109 3.168 3.157 3.140 3.090
3 3.459 3.491 3.463 3.465 3.495 3.500 3.514 3.477 3.430 3.465 3.427 3.411
4 3.136 3.180 3.126 3.144 3.186 3.190 3.188 3.158 3.194 3.203 3.165 3.137
5 3.254 3.279 3.248 3.249 3.306 3.286 3.311 3.261 3.317 3.301 3.289 3.244
6 2.721 2.753 2.693 2.701 2.767 2.759 2.748 2.707 2.814 2.837 2.742 2.731
7 3.432 3.446 3.426 3.414 3.506 3.469 3.508 3.437 3.501 3.467 3.482 3.406

Average 3.161 3.192 3.147 3.152 3.213 3.203 3.210 3.164 3.210 3.211 3.179 3.139
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(n = 80) results for which are not shown in Table 8. The 
combined effect of the techniques applied in the LTMC*I –
STMC*I model is a 15% improvement in average model 
performance as measured by cross entropy.

6 Discussion

Before discussing the results presented in §5, some words on
the methodology employed are in order. Our goal was to
demonstrate that a number of techniques improve the pre-
diction performance of PPM models on monophonic music
data. We have approached this task by using cross entropy of
the models as our performance metric and applying ten-fold
cross validatory resampling on eight monophonic datasets.
Since we have been concerned with optimising average per-
formance over all eight datasets, the best performing models
selected in some experiments (e.g., the global order bound
experiments described in §5.1) will not necessarily corre-
spond to the best performing models on any single dataset.
However, these best performing models increase our confi-
dence that the model will perform well on a given dataset
without requiring further empirical investigation of that
dataset: i.e., we need less information about the dataset to be
confident of improved performance.

We have applied the variant techniques incrementally, typ-
ically taking the best performing model in a given experi-
ment as the starting point for the next experiment. For
example, in §5.4 we took the LTM and STM which yielded
best performance independently as the models to combine.
Although there is no guarantee that the resulting model
reflects the global optimum in the space of possible LTM and
STM parameterisations, our aim was to demonstrate that
some variant techniques can improve the performance of
PPM models and consequently our interest is in the relative,
rather than absolute, performance of the PPM variants. In this
regard, we have demonstrated that the combined use of three
variant techniques affords significant and consistent perfor-
mance improvements of 15% on average over the model used
by Conklin and Witten (1995). We shall now discuss in
further detail the implications of the experimental results for
each of the variant techniques in turn.

6.1 Escape method

As noted in §2.3.2, there is no principled a priori means of
selecting the escape method (the probability to assign to
events which have never arisen in a given context before) in
the absence of knowledge about the data. In our experiments,
escape methods A and B were consistently outperformed by
C, D and AX and C fairly consistently outperformed both D
and AX (although method AX performed well with the short-
term model). These results are broadly in agreement with
those obtained in data compression experiments (Bunton,
1996; Moffat et al., 1994; Witten & Bell, 1991). Escape
method C is the most commonly used method when Witten-
Bell smoothing is used in statistical language modelling
(Manning & Schütze, 1999).

6.2 Interpolated smoothing

The use of interpolated smoothing consistently improves
model performance (by comparison with PPM’s default
blending strategy) regardless of the dataset and combination
with other variant techniques. This is consistent with results
obtained in experiments in data compression (Bunton, 1997)
and on natural language corpora (Chen & Goodman, 1999).
The reason appears to derive from the fact that backoff
smoothing (of which blending is an example) consistently
underestimates the probabilities of non-novel events
(Bunton, 1997) for which the low order distributions provide
valuable information. For natural language corpora, this
effect is particularly strong for n-grams with low counts
(Chen & Goodman, 1999).

6.3 Update exclusion

While update exclusion generally improves the performance
of PPM models in data compression experiments (Bunton,
1997; Moffat, 1990), the results in our experiments were
more equivocal. In general, the effects of update exclusion
appeared to be highly sensitive to factors such as the dataset,
escape method and model type (LTM or STM). In particu-
lar, escape methods AX, D and C respectively benefited less
from the use of update excluded counts. Furthermore, the
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Table 8. Performance improvements to our emulation of the model used by Conklin and Witten (1995).

Dataset LTM + B3 – STMB2 LTM + C3 – STMC2 LTM + C* – STMC* LTM + C*I – STMC*I

0 2.905 2.613 2.562 2.468
1 2.676 2.488 2.460 2.347
2 2.997 2.689 2.616 2.540
3 2.934 2.698 2.665 2.588
4 2.974 2.640 2.495 2.454
5 3.233 2.819 2.698 2.651
6 2.555 2.270 2.158 2.106
7 3.111 2.796 2.793 2.681

Average 2.923 2.627 2.556 2.479
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LTM appeared to benefit rather less from update exclusion
than did the STM. Finally, when update exclusion did
improve average performance, it tended to be the result of
improvements on a restricted set of datasets. These findings
are not entirely without precedent. The results presented 
by Bunton (1997) demonstrate that, although it improves
average compression performance, update exclusion impairs
performance for some of the test files and that escape method
C benefits slightly less from the use of update excluded
counts than method D.

6.4 Unbounded orders

The use of unbounded orders, as described in §2.3.6, failed
to yield consistent improvements in performance for both the
LTM and STM except when used in combination with inter-
polated smoothing. This combination of unbounded orders
and interpolated smoothing consistently improves the per-
formance of the best performing order bounded models with
interpolated smoothing. These results agree with those
obtained in data compression experiments (Bunton, 1997).
This is likely to be due to the fact that the optimal order
bound varies between datasets. As noted by Bunton (1997,
p. 90), order bound experiments “provide more information
about the nature of the test data, rather than the universality
of the tested algorithms”. The advantage of PPM* is that it
requires fewer assumptions about the character of the data
used.

6.5 Combined LTM and STM

As expected from previous research (Conklin, 1990), 
combining the predictions of the LTM and STM improves
model performance by comparison to that of either model
used independently. Curiously, Conklin (1990) found that
performance continued improving when the bias b was 
set to values as high as 128 and greater. In our experi-
ments, the optimal bias setting ranged from one to four
depending on the dataset. Further experiments with the bias
set to values as high as 32 only yielded further reduction in
performance.

7 Summary and conclusions

7.1 Summary

Our goal in this research was to evaluate, in an application
independent manner, the performance improvements result-
ing from the application of a number of variant techniques
to a class of n-gram models. Some potential applications of
the statistical models we develop are cited in §1 while related
work that has been carried out recently with music has been
reviewed in §3; we have introduced n-gram modelling in
general (§2.1) as well as the information theoretic perfor-
mance measures that have been used (§2.2). Particular atten-
tion was given to PPM models in §2.3, where we described

in some detail a number of techniques that have been used
to improve the performance on PPM models. These tech-
niques include a range of different escape methods (§2.3.2),
the use of update excluded counts (§2.3.5), interpolated
smoothing (§2.3.4), unbounded orders (§2.3.6) and combin-
ing the predictions of a LTM and STM (§2.4). We have
applied these techniques incrementally to eight melodic
datasets using cross entropy computed by 10-fold cross-
validation on each dataset as our performance metric, as
described in §4. The results demonstrated the consistent and
significant performance improvements afforded by the use of
escape method C (although method AX also performed well
with the short-term model), unbounded orders, interpolated
smoothing and combining long- and short-term models (see
§5). Finally, in §6 we have discussed the results in terms of
previous research carried out in the field of data compression
and with natural language and music corpora.

7.2 Directions for future research

By way of conclusion, we would like to present some direc-
tions that we feel would be profitable to explore in future
research. The first set of suggestions concern model devel-
opment. First, an empirical comparison of the performance
of various different techniques for combining the predictions
of the LTMand STM, including the weighted average used
here and the Dempster–Shafer scheme used by Conklin and
Witten (1995), would be useful for future model developers.
Second, Bunton (1997) describes an information-theoretic
state selection mechanism which replaces the original state
selection used in PPM* (see §2.3.6) and which consistently
improves performance in data compression experiments. It
remains to be seen whether this mechanism can be fruitfully
applied with music data. Finally, the extension of the method-
ology used in this research to comparisons between different
modelling approaches could yield interesting results. It
would be useful, for example, to compare the performance
of the PPM variants analysed here with that of models using
other smoothing techniques commonly used in statistical 
language modelling, such as Katz backoff (Katz, 1987) and
Kneser–Ney smoothing (Kneser & Ney, 1995), and models
based on the Lempel–Ziv dictionary compression algorithm
as used by Dubnov, Assayag and their colleagues (Assayag
et al., 1999; Dubnov et al., 1998; Lartillot et al., 2001), the
prediction suffix automata used by Lartillot et al. (2001) and
Triviño-Rodriguez and Morales-Bueno (2001) and the neural
network models described by Mozer (1994).

Our second set of suggestions concern the data used. It
should be emphasised that we have restricted our attention to
a single attribute of musical sequences: chromatic pitch.
None of the conclusions reached in this research can be guar-
anteed to hold for other attribute domains and representa-
tions; we shall need similarly detailed experiments to assess
whether the performance improvements recorded here
remain valid with these new representations. Therefore, an
important consideration is the extension of the approach to
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other attributes of musical events and more sophisticated rep-
resentations of musical works. Conklin & Witten (1995), for
example, describe several means of deriving more abstract
representations of the musical surface as well as developing
methods for combining the predictions of n-gram models of
these representations (see §2). It is also important to empha-
sise that our corpora consisted exclusively of folk music;
further work is needed to examine the generality of our con-
clusions in a broader context of musical styles. In a similar
vein, we consider it important to extend the approach to
homophonic and polyphonic music. The issue of represent-
ing such music for training statistical models is discussed by,
for example, Assayag et al. (1999), Conklin (2002), Pickens
et al. (2003) and Ponsford et al. (1999). Since the results
obtained here are in broad agreement with those obtained in
data compression and statistical language modelling experi-
ments, we expect the performance improvements to hold
some degree of generality and to carry over to these more
sophisticated representations of music.

Our final suggestions are methodological. The first con-
cerns the fact that many of the directions cited above concern
comparisons between different models. Standard corpora
exist for comparing model performance in both the data com-
pression and statistical language modelling communities:
e.g., the Calgary corpus (Bell et al., 1990) and LOB corpus
(Johansson et al., 1986), respectively. Such standardisation
facilitates the objective and empirical comparison of differ-
ent models and would be highly beneficial to the music pro-
cessing community. Another methodological issue concerns
the validity of entropy as a measure of performance; in order
to address this question we need detailed empirical studies
of the relationship between entropy measures and model per-
formance on a range of musical tasks such as those outlined
in §1. In the meantime, we believe that the techniques
described in this paper can be profitably applied to practical
musical tasks and that the consequent reduction in cross
entropy will translate into actual performance improvement
on these tasks.
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