
Evaluating Cognitive Models of Musical Composition

Marcus T. Pearce and Geraint A. Wiggins

Centre for Cognition, Computation and Culture

Goldsmiths, University of London

New Cross, London SE14 5SG, UK

{m.pearce,g.wiggins}@gold.ac.uk

Abstract

We present a method for the evaluation of creative sys-

tems. We deploy a learning-based perceptual model

of musical melodic listening in the generation of tonal

melodies and evaluate its output quantitatively and objec-

tively, using human judges. Then we show how the sys-

tem can be enhanced by the application of mathematical

methods over data supplied by the judges. The outcome

to some extent addresses the criticisms of the experts. We

suggest that this is a first step on the road to autonomously

learning, introspective, creative systems.

1 Introduction

We examine, at the computational level, the demands

of the melodic composition task, focusing on constraints

placed on the representational primitives and the expres-

sive power of the composition system. We use three

multiple-feature Markov models trained on a corpus of

chorale melodies to generate novel pitch structures for

seven existing chorale melodies. We propose null hy-

potheses that each model is consistently capable of gen-

erating chorale melodies that are rated as equally success-

ful examples of the style as the original chorale melodies

in our dataset. To examine the hypotheses, experienced

judges rated the generated melodies together with the

original chorale melodies, using a variant of the Consen-

sual Assessment Technique (Amabile, 1996) for inves-

tigating psychological components of human creativity.

The results warrant rejection of the null hypothesis for all

three of the systems. Even so, further analysis identifies

some objective features of the chorale melodies that ex-

hibit significant relationships with the ratings of stylistic

success, suggesting how the computational models fail to

meet intrinsic stylistic constraints of the genre. Adding

new features to address these concerns significantly im-

proves our systems’ prediction performance.
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We present our experiment and the evaluation method,

which, we suggest, forms a basis for systems capable of

introspection based on feedback on their output.

2 Background

2.1 Music Generation from Statistical Models

Conklin (2003) examines four methods of generating

high-probability music according to a statistical model.

The simplest is sequential random sampling: an event is

sampled from the estimated event distribution at each se-

quential position up to a given length. Events are gener-

ated in a random walk, so there is a danger of straying into

local minima in the space of possible compositions. Even

so, most statistical generation of music uses this method.

The Hidden Markov Model (HMM) addresses these

problems; it generates observed events from hidden states

(Rabiner, 1989). An HMM is trained by adjusting the

probabilities conditioning the initial hidden state, the tran-

sitions between hidden states and the emission of ob-

served events from hidden states, so as to maximise the

probability of a training set of observed sequences. A

trained HMM can be used to estimate the probability of an

observed sequence of events and to find the most probable

sequence of hidden states given an observed sequence of

events. This can be achieved efficiently for a first-order

HMM using the Viterbi algorithm; a similar algorithm

exists for first-order (visible) Markov models. However,

Viterbi’s time complexity is exponential in the context

length of the underlying Markov model (Conklin, 2003).

Tractable methods for sampling from complex sta-

tistical models (such as those presented here) which ad-

dress the limitations of random sampling do exist, how-

ever (Conklin, 2003). The Metropolis-Hastings algo-

rithm is a Markov Chain Monte Carlo (MCMC) sampling

method (MacKay, 1998). The following description ap-

plies it within our generation framework. Given a trained

multiple-feature modelm for some basic feature τb, in or-

der to sample from the target distribution pm(s ∈ [τb]
∗),

the algorithm constructs a Markov chain in the space of

possible feature sequences [τb]
∗ as follows:

1. number of iterations N ← a large value; iteration

number k ← 0; initial state s0 ← some feature se-

quence tj1 ∈ [τb]
∗ of length j;

2. select event index 1 ≤ i ≤ j at random or based on
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some ordering of the indices;

3. let s�k be the sequence obtained by replacing event ti
at index i of sk with a new event t

�

i sampled from a

distribution q which may depend on the current state
sk – in the present context, an obvious choice for q
would be {pm(t|ti−1

1 )}t∈[τb];

4. accept the proposed sequence with probability

min

�

1,
pm(s�k ) · q(ti)

pm(sk) · q(t�i)

�

;

5. if accepted, sk+1 ← s�k, else sk+1 ← sk;

6. if k < N , k++ and iterate from 2, else return sk.

If N is large enough, the resulting event sequence

sN−1 is guaranteed to be an unbiased sample from the tar-

get distribution pm([τb]
∗). However, there is no method of

assessing the convergence of MCMCs nor of estimating

the number of iterations required to obtain an unbiased

sample (MacKay, 1998). Because these sampling algo-

rithms explore the state space using a random walk, they

can still be trapped in local minima.

Event-wise substitution is unlikely to provide a sat-

isfactory model of phrase- or motif-level structure. Our

model has a short-term component, to model intra-opus

structure, but generation still relies on single-event sub-

stitutions. Pattern-discovery algorithms may be used to

reveal phrase level structure, which may subsequently be

preserved during stochastic sampling (Conklin, 2003).

2.2 Evaluating Computer Models of Composition

Analysis by synthesis evaluates computational models of

composition by generating pieces and evaluating them

with respect to the objectives of the implemented model.

The method has a long history; Ames and Domino (1992)

argue that a primary advantage of computational analysis

of musical style is the ability to evaluate new pieces gen-

erated from an implemented theory. However, evaluation

of the generated music raises methodological issues which

have typically compromised the potential benefits thus af-

forded (Pearce et al., 2002). Often, compositions are eval-

uated with a single subjective comment, e.g.,: “[the com-

positions] are realistic enough that an unknowing listener

cannot discern their artificial origin” (Ames and Domino,

1992, p. 186). This lack of precision makes it hard to

compare theories intersubjectively.

Other research has used expert stylistic analyses to

evaluate computer compositions. This is possible when

a computational model is developed to account for some

reasonably well-defined stylistic competence or accord-

ing to critical criteria derived from music theory or music

psychology. For example, Ponsford et al. (1999) gave an

informal stylistic appraisal of the harmonic progressions

generated by their n-gram models.
However, even when stylistic analyses are under-

taken by groups of experts, the results obtained are typ-

ically still qualitative. For fully intersubjective analy-

sis by synthesis, the evaluation of the generated com-

positions must be empirical. One could use an adapta-

tion of the Turing test, where subjects are presented with

pairs of compositions (one computer-generated, the other

human-composed) and asked which they believe to be the

computer-generated one (Marsden, 2000). Musical Tur-

ing tests yield empirical, quantitative results which may

be appraised intersubjectively. They have demonstrated

the inability of subjects to distinguish reliably between

computer- and human-composed music. But the method

can be biased by preconceptions about computer music,

allows ill-informed judgements, and fails to examine the

criteria being used to judge the compositions.

2.3 Evaluating Human Composition

Amabile (1996) proposes a conceptual definition of cre-

ativity in terms of processes resulting in novel, appropri-

ate solutions to heuristic, open-ended or ill-defined tasks.

However, while agreeing that creativity can only be as-

sessed through subjective assessments of products, she

criticises the use of a priori theoretical definitions of cre-

ativity in rating schemes and failure to distinguish creativ-

ity from other constructs. While a conceptual definition

is important for guiding empirical research, a clear opera-

tional definition is necessary for the development of use-

ful empirical methods of assessment. Accordingly, she

presents a consensual definition of creativity in which a

product is deemed creative to the extent that observers

who are familiar with the relevant domain independently

agree that it is creative. To the extent that this construct

is internally consistent (independent judges agree in their

ratings of creativity), one can empirically examine the ob-

jective or subjective features of creative products which

contribute to their perceived creativity.

Amabile (1996) used this operational definition to de-

velop the consensual assessment technique (CAT), an em-

pirical method for evaluating creativity. Its requirements

are that the task be open-ended enough to permit consid-

erable flexibility and novelty in the response, which must

be an observable product which can be rated by judges.

Regarding the procedure, the judges must:

1. be experienced in the relevant domain;

2. make independent assessments;

3. assess other aspects of the products such as technical

accomplishment, aesthetic appeal or originality;

4. make relative judgements of each product in relation

to the rest of the stimuli;

5. be presented with stimuli and provide ratings in or-

ders randomised differently for each judge.

Most importantly, in analysing the collected data, the

inter-judge reliability of the subjective rating scales must

be determined. If—and only if—reliability is high, we

may correlate creativity ratings with other objective or

subjective features of creative products.

Numerous studies of verbal, artistic and problem solv-

ing creativity have demonstrated the ability of the CAT

to obtain reliable subjective assessments of creativity in a

range of domains (Amabile, 1996, ch. 3, gives a review).

The CAT overcomes the limitations of the Turing test

in evaluating computational models of musical composi-

tion. First, it requires the use of judges expert in the task
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System Features H
A Pitch 2.337
B Int1stInPiece, ScaleDegree

⊗DurRatio,
Thread1stInPhrase

2.163

C Interval⊗Duration, ScaleDegree
⊗Int1stInPiece,

Pitch⊗Duration,
ScaleDegree⊗1stInBar,
ThreadTactus,
ScaleDegree⊗Duration,
Interval⊗DurRatio,
Int1stInPiece,
Thread1stInPhrase

1.953

Table 1: The component features of Systems A, B and

C and their average information content computed by 10-

fold cross-validation over the dataset.

domain. Second, since it has been developed for research

on human creativity, no mention is made of the computa-

tional origins of the stimuli; this avoids bias due to pre-

conceptions. Third, and most importantly, the methodol-

ogy allows more detailed examination of the objective and

subjective dimensions of the creative products. Crucially,

the objective attributes of the products may include fea-

tures of the generative models (corresponding with cogni-

tive or stylistic hypotheses) which produced them. Thus,

we can empirically compare different musicological the-

ories of a given style or hypotheses about the cognitive

processes involved in composing in that style.

3 The Experiment

3.1 Introduction

Following Johnson-Laird (1991), we analyse the compu-

tational constraints of the melody composition task in two

ways: first, examining whether our learned finite context

grammars can compose stylistically-successful melodies

or whether more expressive grammars are needed; and

second, determining which representational structures are

needed for the composition of successful melodies.

Our experiment is designed to test the hypothesis that

our statistical models are capable of generating melodies

which are deemed stylistically successful in the context of

a specified tradition. Three multiple-feature Markov mod-

els (Pearce, 2005) trained on a dataset of chorale melodies

were used to generate melodies which were then empiri-

cally evaluated: System A is a single-feature system; Sys-

tem B is a multiple-feature system developed through for-

ward, stepwise feature selection to provide the closest fit

to the human expectancy judgements obtained by Man-

zara et al. (1992); and System C is a multiple-feature sys-

tem developed through forward, stepwise feature selection

to yield the best prediction performance over the chorale

dataset. The Systems were parameterised optimally and

differ only in the features they use (Table 1).

Our work differs in several ways from extant statisti-

cal modelling for music generation, in particular, in that

no symbolic constraints were imposed on the generation

process—it was based entirely on the learned models.

This focuses the analysis more sharply on the inherent ca-

pacities of statistical finite context grammars, since our

goal was to examine the synthetic capabilities of purely

statistical, data-driven models of melodic structure.

Our strategy improves on previous work in several

ways. The variable order selection policy of PPM*

(Cleary and Teahan, 1997) is used to address concerns

that low, fixed order models tend to generate features un-

characteristic of the target style (Ponsford et al., 1999).

Other model parameters are optimised to improve predic-

tion performance over a range of different melodic styles.

Systems B and C operate over rich representational spaces

supplied by the multiple-feature framework; their fea-

tures were selected on the basis of objective and empir-

ical criteria (cf. Conklin and Witten, 1995). Our Systems

use a novel model combination strategy, which improves

prediction performance over the chorale dataset (Pearce,

2005). While most previous approaches used sequential

random sampling to generate music from statistical mod-

els, in the present research melodies were generated using

Metropolis sampling. We expect that this method will be

capable of generating melodies which are more represen-

tative of the inherent capacities of the Systems. We do

not propose Metropolis sampling as a cognitive model of

melodic composition, but use it merely as a means of gen-

erating melodies which reflect the internal state of knowl-

edge and capacities of the trained models.

Finally, to evaluate the systems as computational mod-

els of melodic composition, we developed a method based

on the CAT. The method, described fully by Pearce

(2005), obtains ratings by expert judges of the stylistic

success of computer generated compositions and existing

compositions in the target genre. The empirical nature of

this method makes it preferable to the exclusively quali-

tative analyses typically adopted and we expect it to yield

more revealing results than the Turing test methodology.

3.2 Hypotheses

We use three different Systems to examine which repre-

sentational structures are needed for competent melody

generation. Our null hypotheses are that each System can

generate melodies rated as equally stylistically successful

in the target style as existing, human-composed melodies.

We expect the null hypothesis for the simplistic System A

to be refuted.

For System B, Baroni’s (1999) proposal that compo-

sition and listening involve equivalent grammatical struc-

tures is relevant. If the representational structures under-

lying perception and composition of music are similar,

we would expect grammars which model perceptual pro-

cesses well to generate satisfactory compositions. Since

System B represents a satisfactory model of the percep-

tion of pitch structure in the chorale genre, we may expect

to retain the null hypothesis for this system.

Pearce and Wiggins (2006) demonstrate a relation-

ship between prediction performance and fit to hu-

man expectancy data (Manzara et al., 1992), suggesting

that human perceptual systems base their predictions on

uncertainty-reducing representational features. In terms

of model selection for music generation, highly predictive

theories of a musical style, as measured by information

content, should generate original and acceptable works in

the style (Conklin and Witten, 1995). Systems A, B and C
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in turn exhibit decreasing uncertainty in predicting unseen

melodies from the dataset (Table 1). Therefore, we may

expect to retain the null hypothesis for System C.

3.3 Method

3.3.1 Judges

Our judges were 16 music researchers or students at City

University, London, Goldsmiths, University of London,

and the Royal College of Music. Five were male and

eleven female, and their age range was 20–46 years (mean

25.9, SD 6.5). They had been formally musically trained

for 2–40 years (mean 13.8, SD 9.4). Seven judges re-

ported high familiarity with the chorale genre and nine

were moderately familiar. All judges received a nominal

payment, and worked for approximately an hour.

3.3.2 Apparatus and Stimulus Materials

Our dataset is a subset of the chorale melodies placed in

the soprano voice and harmonised in four parts by J. S.

Bach. These melodies are characterised by stepwise pat-

terns of conjunct intervallic motion and simple, uniform

rhythmic and metric structure. Phrase structure is explic-

itly notated. Most phrases begin on the tonic, mediant

or dominant and end on the tonic or dominant; the final

phrase almost always ends with a cadence to the tonic.

Our stimuli were as follows. Seven existing base

melodies were randomly selected from the set of chorales

in the midrange of the distribution of average informa-

tion content (cross-entropy) values computed by System

A. All 7 were in common time; 6 were in major keys and

1 was minor; they were 8–14 bars (mean 11.14) and 33–

57 events (mean 43.43) long. The base melodies were

removed from the training dataset.

7 novel melodies were generated by each System, via

5000 iterations of Metropolis sampling using the 7 base

chorales as initial states. Only pitch was sampled: time

and key signatures and rhythmic and phrase structure were

left unchanged. Figure 1 shows one base chorale melody

and the three melodies generated using it; Pearce (2005)

gives further examples.

Each melody was stored as a quantised MIDI file. A

pattern of velocity accents was added to emphasise the

metrical structure and a one-beat rest was inserted after

each fermata to disambiguate the phrase structure. The

stimuli were recorded to CD-quality audio files on a PC

using the piano tone of a Roland XP10 synthesiser con-

nected via MIDI to a Terratec EWS88 MT soundcard, at

a uniform 90 beats per minute. They were presented over

Technics RP-F290 stereo headphones fed from a laptop

PC running a software media player. The judges recorded

their responses in writing in a response booklet.

3.3.3 Procedure

Our judges supplied their responses individually and re-

ceived instructions verbally and in writing. We told them

they would hear a series of chorale melodies in the style

of Lutheran hymns and asked them to listen to each entire

melody before answering two questions about it by plac-

ing circles on discrete scales in the response booklet. The

J. S. Bach: Jesu, meiner Seelen Wonne (BWV 359)

System A: Jesu, meiner Seelen Wonne

System B: Jesu, meiner Seelen Wonne

System C: Jesu, meiner Seelen Wonne

Figure 1: An example of one base chorale melody and the

three melodies generated using it.

first question1 was, “How successful is the composition

as a chorale melody?” Judges were advised that their an-

swers should reflect such factors as conformity to impor-

tant stylistic features, tonal organisation, melodic shape

and interval structure; and melodic form. Answers to this

question were given on a seven-point numerical scale, 1–

7, with anchors marked low (1), medium (4) and high (7).

To promote an analytic approach to the task, judges were

asked to briefly justify their responses to the first ques-

tion. The second question was, “Do you recognise the

melody?” Judges were advised to answer “yes” only if

they could specifically identify the composition as one

they were familiar with.

We explained to the judges that after both questions

had been answered for a melody, they could listen to the

next one by pressing a single key on the PC. We asked

them to bear in mind that their task was to rate the com-

position of each melody rather than the performance and

urged them to use the full range of the scales, reserving 1

and 7 for extreme cases. There were no constraints on the

time taken to answer the questions.

The experiment began with a practice session during

which judges heard two melodies from the same genre

(but not one of those in the test set). These practice trials

were intended to set a judgemental standard for the sub-

sequent test session. This departs from the CAT, which

encourages judges to rate each stimulus in relation to the

others by experiencing all stimuli before making their rat-

ings. However, here, we intended the judges to use their

expertise to rate the stimuli against an absolute standard:

the body of existing chorale melodies. Judges responded

1This is a variant on the original CAT, whose primary judge-
ment was about creativity. We justify this on the grounds that
stylistic success is a directly comparable kind of property.
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as described above for both of the items in the practice

block. The experimenter remained in the room for the du-

ration of the practice session after which the judges were

given an opportunity to ask any further questions; he then

left the room before the start of the test session.

In the test session, the 28 melodies were presented to

the judges, who responded to the questions. The melodies

were presented in random order subject to the constraints

that no melody generated by the same system nor based on

the same chorale were presented sequentially. A reverse

counterbalanced design was used, with eight of the judges

listening to the melodies in one such order and the other

eight listening to them in the reverse order.

After the test session, the judges filled out a question-

naire detailing their age, sex, number of years of music

training (instrument and theory) and familiarity with the

chorales harmonised by J. S. Bach (high/medium/low).

3.4 Results

3.4.1 Inter-judge Consistency

We report analyses of the 28 melodies from our test ses-

sion: we discarded the data from the practice block. First,

we examine the consistency of the judges’ ratings.

All but two of the 120 pairwise correlations between

judges were significant at p < 0.05 with a mean coeffi-
cient of r(26) = 0.65 (p < 0.01). Since there was no
apparent reason to reject the judges involved in the two

non-significant correlations, we did not do so. This high

consistency warrants averaging the ratings for each stim-

ulus across individual judges in subsequent analyses.

3.4.2 Presentation Order and Prior Familiarity

Two factors which might influence the judges’ ratings are

the order of presentation of the stimuli and prior familiar-

ity. The correlation between the mean success ratings for

judges in the two groups was r(26) = 0.91, p < 0.01 in-
dicating a high degree of consistency across the two orders

of presentation, and warranting the averaging of responses

across the two groups; and, although the mean success rat-

ings tended to be slightly higher when judges recognised

the stimulus, a paired t test revealed no significant differ-
ence: t(6) = 2.07, p = 0.08.

3.4.3 Influence of Generative System and Base Chorale

Now we examine the primary question: the influence of

generative system on the ratings of stylistic success. The

mean success ratings for each stimulus are shown in Ta-

ble 2. The mean ratings suggest that the original chorale

melodies were rated higher than the computer-generated

melodies while the ratings for the latter show an influ-

ence of base chorale but not of generative system. Melody

C249 is an exception, attracting high average ratings of

success. Our preferred analysis would have been a multi-

variate ANOVA using within-subjects factors for genera-

tive system with 4 levels (Original, System A, B, C) and

base chorale with 7 levels (249, 238, 365, 264, 44, 153

and 147) with the null hypotheses of no main or interac-

tion effects of generative system or base chorale. How-

ever, Levene’s test revealed significant non-homogeneity

of variance with respect to the factor for generative system

Base System A System B System C Original Mean

249 2.56 2.44 5.00 6.44 4.11

238 3.31 2.94 3.19 5.31 3.69

365 2.69 1.69 2.50 6.25 3.28

264 1.75 2.00 2.38 6.00 3.03

44 4.25 4.38 4.00 6.12 4.69

141 3.38 2.12 3.19 5.50 3.55

147 2.38 1.88 1.94 6.50 3.17

Mean 2.90 2.49 3.17 6.02 3.65

Table 2: The mean success ratings for each stimulus and

means aggregated by generative system and base chorale.

Statistic System A System B System C Original

Median 2.86 2.57 3.07 5.93

Q1 2.68 2.25 2.68 5.86

Q3 3.29 2.75 3.61 6.29

IQR 0.61 0.50 0.93 0.43

Table 3: The median, quartiles and inter-quartile range of

the mean success ratings for each generative system.

F (3) = 6.58, p < 0.01, so ANOVA was not applicable.
Therefore, we used Friedman’s rank sum tests, as a non-

parametric alternative; this does not allow examination of

interactions between the two factors.

We examined the influence of generative system in

an unreplicated complete blocked design using the mean

success ratings aggregated for each subject and genera-

tive system across the individual base chorales. Summary

statistics for this data are shown in Table 3. The Fried-

man test revealed a significant within-subject effect of

generative system on the mean success ratings: χ2(3) =
33.4, p < 0.01. We compared the factor levels pairwise
using Wilcoxon rank sum tests with Holm’s Bonferroni

correction for multiple comparisons: the ratings for the

original chorale melodies differ significantly from the rat-

ings of melodies generated by all three computational sys-

tems (p < 0.01). Furthermore, the mean success ratings
for the melodies generated by System B were found to be

significantly different from those of the melodies gener-

ated by Systems A and C (p < 0.03). These results sug-
gest that none of the systems is capable of consistently

generating chorale melodies which are rated as equally

stylistically successful as those in the dataset and that Sys-

tem B performed especially poorly.

4 Learning from Qualitative Feedback

4.1 Objective Features of the Chorales

Next, we aim to explain how the Systems lack composi-

tionally, by examining which objective musical features

of the stimuli the judges used in making their ratings of

stylistic success. This could explain how the systems are

lacking compositionally. To achieve this, we analysed the

stimuli qualitatively and developed a set of corresponding

objective descriptors, which we then applied in a series of

multiple regression analyses using the rating scheme, av-

eraged across stimuli, as a dependent variable. We now

present the descriptive variables, their quantitative coding

and the analysis results.

The chorales generated by our systems are mostly
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not very stylistically characteristic of the dataset, espe-

cially in higher-level form. From the judges’ qualitative

comments, we identified stylistic constraints describing

the stimuli and distinguishing the original melodies. We

grouped them into five categories—pitch range; melodic

structure; tonal structure; phrase structure; and rhythmic

structure—each covered by a predictor variable.

Pitch Range The dataset melodies span a pitch range

of about an octave above and below C5, favouring the

centre of this range. The generated melodies are con-

strained to this range, but some tend towards extreme tes-

situra. We developed a predictor variable pitch centre to

capture this difference, reflecting the absolute distance, in

semitones, of the mean pitch of a melody from the mean

pitch of the dataset (von Hippel, 2000). Another issue

is the overall pitch range of the generated chorales. The

dataset melodies span an average range of 11.8 semitones.

By contrast, several of the generated melodies span pitch

ranges of 16 or 17 semitones, with a mean pitch range of

13.9 semitones; others have a rather narrow pitch range.

We captured these qualitative considerations in a quantita-

tive predictor variable pitch range, representing the abso-

lute distance, in semitones, of the pitch range of a melody

from the mean pitch range of the dataset.

Melodic Structure There are several ways in which the

generated melodies do not consistently reproduce salient

melodic features of the original chorales. The most ob-

vious is a failure to maintain a stepwise pattern of move-

ment. While some generated melodies are relatively co-

herent, others contain stylistically uncharacteristic leaps

of an octave or more. Of 9042 intervals in the dataset

melodies, only 57 exceed a perfect fifth and none exceeds

an octave. To capture these deviations, we created a quan-

titative predictor variable called interval size, representing

the number of intervals greater than a perfect octave in a

melody. The generated chorales also contain uncharac-

teristic discords such as tritones or sevenths. Only 8 of

the 9042 intervals in the dataset are tritones or sevenths

(or their enharmonic equivalents). To capture these devia-

tions, we created a quantitative predictor variable interval

dissonance, representing the number of dissonant inter-

vals greater than a perfect fourth in a melody.

Tonal Structure Since System A operates exclusively

over representations of pitch, it is not surprising that most

of its melodies fail to establish a key note and exhibit lit-

tle tonal structure. However, we might expect Systems B

and C to do better. While the comments of the judges sug-

gest otherwsie, they may have arrived at a tonal interpreta-

tion at odds with the intended key of the base chorale. To

independently estimate the perceived tonality of the test

melodies, Krumhansl’s (1990) key-finding algorithm, us-

ing the revised key profiles of Temperley (1999) was ap-

plied to each of the stimuli. The algorithm assigns the

correct keys to all seven original chorale melodies. While

the suggested keys of the melodies generated by System

A confirm that it does not consider tonal constraints, the

melodies generated by Systems B and C retain the key of

their base chorale in two and five cases respectively. Fur-

thermore, especially in the case of System C, deviations

from the base chorale key tend to be to related keys (ei-

ther in the circle of fifths or through relative and parallel

major/minor relationships). This suggests some success

on the part of the more sophisticated systems in retaining

the tonal characteristics of the base chorales.

Nonetheless, the generated melodies are often unac-

ceptably chromatic, which obscures the tonality. There-

fore, we developed a quantitative predictor called chro-

maticism, representing the number of chromatic tones in

the algorithm’s suggested key.

Phrase Structure The generated chorales typically fail

to reproduce the implied harmonic rhythm of the origi-

nals and its characteristically strong relationship to phrase

structure. In particular, while some of the generated

melodies close on the tonic, many fail to imply stylis-

tically satisfactory harmonic closure. To capture such

effects, we created a variable called harmonic closure,

which is 0 if a melody closes on the tonic of the key as-

signed by the algorithm and 1 otherwise. Secondly, the

generated melodies frequently fail to respect thematic rep-

etition and development of melodic material embedded in

the phrase structure of the chorales. However, these kinds

of repetition and development of melodic material are not

represented in the present model. Instead, as a simple indi-

cator of complexity in phrase structure, we created a vari-

able phrase length, which is 0 if all phrases are of equal

length and 1 otherwise.

Rhythmic Structure Although the chorale melodies in

the dataset tend to be rhythmically simple, the judges’

comments revealed that they were taking account of rhyth-

mic structure. Therefore, we adapted three further quanti-

tative predictors modelling rhythmic features from Eerola

and North’s (2000) expectancy-based model of melodic

complexity. Rhythmic density is the mean number of

events per tactus beat. Rhythmic variability is the degree

of change in note duration (i.e., the standard deviation of

the log of the event durations) in a melody. Syncopation

estimates the degree of syncopation by assigning notes a

strength in a metric hierarchy and averaging the strengths

of all the notes in a melody; pulses are coded such that

lower values are assigned to tones on metrically stronger

beats. All three quantities increase the difficulty of per-

ceiving or producing melodies (Eerola and North, 2000).

The mean success ratings for each stimulus were re-

gressed on the predictor variables in a multiple regres-

sion analysis. The following pairwise correlations be-

tween the predictors were significant at p < 0.05: interval
size, positively with interval dissonance (r = 0.6) and
chromaticism (r = 0.39); harmonic closure, positively
with chromaticism (r = 0.49); rhythmic variation, pos-
itively with syncopation (r = 0.61) and phrase length
(r = 0.73); and rhythmic density, positively with syn-
copation (r = 0.62) and negatively with phrase length
(r = −0.54). Because of this collinearity, in each anal-
ysis, redundant predictors were removed through back-

wards stepwise elimination using the Akaike Information

Criterion: AIC = n log(RSS/n) + 2p + c, for a regres-
sion model with p predictors and n observations, where c
is a constant andRSS is the residual sum of squares of the
model (Venables and Ripley, 2002). Since larger models

����������	�
���
������������

��



Predictor β Std. Error t p
Pitch Range −0.29 0.08 −3.57 < 0.01
Pitch Centre −0.21 0.10 −2.01 < 0.1
Interval Dissonance −0.70 0.28 −2.54 < 0.05
Chromaticism −0.27 0.03 −8.09 < 0.01
Phrase Length −0.53 0.28 −1.91 < 0.1

Overall model: R = 0.92, R2

adj = 0.81,
F (5, 22) = 25.04, p < 0.01

Table 4: Multiple regression results for the mean success

ratings of each test melody.

Stage Feature Added H
1 Interval⊗Duration 2.214
2 ScaleDegree⊗Mode 2.006
3 ScaleDegree 1.961

⊗Int1stInPiece
4 Pitch⊗Duration 1.943
5 Thread1stInPhrase 1.933
6 ScaleDegree 1.925

⊗LastInPhrase
7 Interval⊗DurRatio 1.919
8 Interval⊗InScale 1.917
9 ScaleDegree⊗Duration 1.912
10 Int1stInPhrase 1.911

Table 5: Results of feature selection for reduced informa-

tion content over the dataset using an extended feature set.

provide better fits, this criterion balances model size, rep-

resented by p, with the fit of the model to the dependent
variable, RSS.
More positive values of the predictors indicate greater

deviation from the standards of the dataset (for pitch range

and centre) or increased melodic complexity (for the re-

maining predictors), so we expect each predictor to show a

negative relationship with the success ratings. The results

of the multiple regression analysis with the mean success

ratings as the dependent variable are shown in Table 4.

The overall model accounts for approximately 85% of the

variance in the mean success ratings. Apart from rhyth-

mic structure, at least one predictor from each category

made at least a marginally significant contribution to the

fit of the model. Coefficients of all the selected predictors

are negative as predicted. Overall, the model indicates

that the judged success of a stimulus decreases as its pitch

range and centre depart from the mean range and centre of

the dataset, with increasing numbers of dissonant intervals

and chromatic tones and if it has unequal phrase lengths.

4.2 Improving the Computational Systems

The constraints identified above mainly concern pitch

range, intervallic structure and tonal structure. It seems

likely that the confusion of relative minor and ma-

jor modes is due to the failure of any of the Sys-

tems to represent mode. To examine this hypothe-

sis, a linked feature ScaleDegree⊗Mode was added
to the feature space. Furthermore, we hypothesise

that the skewed distribution of pitch classes at phrase

beginnings and endings can be better modelled by

two linked features ScaleDegree⊗1stInPhrase
and ScaleDegree⊗LastInPhrase. On the hy-

pothesis that intervallic structure is constrained by

tonal structure, we included another linked feature

Interval⊗InScale.

System D: Jesu, meiner Seelen Wonne

Figure 2: Melody generated by System D, based on the

same chorale as Figure 1.

To examine whether the Systems can be improved

to respect such constraints, we added the four selected

features to the feature selection set used for System

C. We ran the same feature selection algorithm over

this extended feature space to select feature subsets

which improve prediction performance; the results are

shown in Table 5. In general, the resulting multiple-

feature System, D, shows a great deal of overlap with

System C. Just three of the nine features present in

System C were not selected for inclusion in System D:

ScaleDegree⊗1stInBar; ThreadTactus; and

Int1stInPiece. This is probably because three of

the four new features selected for inclusion in System

D, were strongly related: ScaleDegree⊗Mode;
ScaleDegree⊗LastInPhrase; and

Interval⊗InScale. The first two of these, in

particular, were selected early in the selection process;

the existing feature Int1stInPhrase was added in

the final stage. Ultimately, System D exhibits a lower

average information content (H = 1.91) than System
C (H = 1.95) in predicting unseen compositions in
the dataset. The significance of this difference was

confirmed by paired t tests over all 185 chorale melodies:
t(184) = 6.00, p < 0.01, and averaged for each 10-fold
partition of the dataset: t(9) = 12.00, p < 0.01.

4.3 A Melody Generated by System D

We now present preliminary results on System D’s capac-

ity to generate stylistically successful chorale melodies.

System D uses the features in Table 5; it exhibits signifi-

cantly lower entropy than System C in predicting unseen

melodies. We used it to generate several melodies, as de-

scribed above, with the same base melodies.

Figure 2 shows System D’s most successful melody,

based on Chorale 365. Its tonal and melodic structure are

much more coherent than System C’s melodies. Our mul-

tiple regression model, developed above to account for

the judges’ ratings of stylistic success, predicts that this

melody would receive a rating of 6.4 on a seven-point

scale of success as a chorale melody. While this result

is positive, other melodies were less successful; System D

must be analysed using our method to examine its ability

to consistently compose stylistically successful melodies.

5 Discussion and Conclusions

Our statistical finite context grammars did not meet

the computational demands of chorale melody composi-

tion, regardless of the representational primitives used.

Since we attempted to address the limitations of previous

context-modelling approaches to generating music, we
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might conclude that more powerful grammars are needed

for this task. However, other approaches are possible.

Further analysis of the capacities of finite context mod-

elling systems may prove fruitful: future research should

use the methodology developed here to analyse System D,

and identify and correct its weaknesses. The MCMC gen-

eration algorithm may be responsible for failure, rather

than the limitation of the models to finite context repre-

sentations of melodic structure: more structured genera-

tion strategies, such as pattern-based sampling techniques,

may be able to conserve phrase-level regularity and repe-

tition in ways that our Systems were not.

Our evaluation method also warrants discussion. The

adapted CAT yielded insightful results for ratings of

stylistic success even though the judges were encouraged

to rate the stimuli according to an absolute standard (cf.

Amabile, 1996). However, the results suggest possible

improvements: first, avoid any possibility of method arte-

facts by randomising the presentation order of both test

and practice items for each judge and also the order in

which rating scales are presented; second, the judges’

comments sometimes reflected aesthetic judgements, so

they should also give ratings of aesthetic appeal, to delin-

eate subjective dimensions of the product domain in the

assessment (Amabile, 1996); and third, though influence

of prior familiarity with the test items was ambiguous,

bias resulting from recognition should be avoided.

Our results suggest that the task of composing a stylis-

tically successful chorale melody presents significant

challenges as a first step in modelling cognitive processes

in composition. Nonetheless, our evaluation method

proved fruitful in examining the generated melodies in

the context of existing pieces in the style. It facilitated

empirical examination of specific hypotheses about the

models through detailed comparison of the generated and

original melodies on several dimensions. It also per-

mitted examination of objective features of the melodies

which influenced the ratings and subsequent identifica-

tion of weaknesses in the Systems and directions for im-

proving them. This practically demonstrates the utility of

analysis by synthesis for evaluating cognitive models of

composition—if it is combined with an empirical method-

ology for evaluation such as that developed here.
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