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Abstract

Following in a psychological and musicological tradition beginning with Leonard Meyer, and

continuing through David Huron, we present a functional, cognitive account of the phenomenon of

expectation in music, grounded in computational, probabilistic modeling. We summarize a range of

evidence for this approach, from psychology, neuroscience, musicology, linguistics, and creativity

studies, and argue that simulating expectation is an important part of understanding a broad range of

human faculties, in music and beyond.
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1. Introduction

Once a musical style has become part of the habit responses of composers, performers,

and practiced listeners, it may be regarded as a complex system of probabilities … Out of

such internalized probability systems arise the expectations—the tendencies—upon

which musical meaning is built. (Meyer, 1957, p. 414)

The ability to anticipate the future is a fundamental property of the human brain (Dennett,

1991). Expectations play a role in a multitude of cognitive processes from sensory percep-

tion, through learning and memory, to motor responses and emotion generation. Accurate

expectations allow organisms to respond to environmental events faster and more appropri-

ately and to identify incomplete or ambiguous perceptual input. To deal appropriately with
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changes in the environment, expectations must be grounded in processes of learning and

memory. Because of the important implications of accurate expectations for survival, expec-

tations are thought to be closely related to emotion and reward-related neural circuits. This

paper is about the role that cognitive processes of expectation play in music cognition.

In his seminal book, Emotion and Meaning in Music, Meyer (1956) aimed to link musical

structure with the communication of emotion and meaning without appealing to referential

semantics. The link Meyer identified was the way in which certain musical structures create

perceptual expectations for forthcoming musical structures. By manipulating these implica-

tions, a composer may communicate emotions ranging from pleasure when expectations are

satisfied, to disappointment when they are violated, frustration when they are delayed, or

tension when implications are ambiguous. Meyer (1957), quoted above, expressed the cog-

nitive process of musical expectation as a mechanism of learning and generating conditional

probabilities, linking musical meaning with information-theoretic processing of musical

structure.

Meyer’s approach has been developed in three ways: Musicologists like Narmour (1990,

1992) have elaborated its musical aspects; cognitive scientists have studied computational

models of perceptual expectations in music; and behavioral and neural processes involved

in musical expectation have been empirically investigated. From a psychological perspec-

tive, musical expectations have been found to influence recognition memory for music

(Schmuckler, 1997), the production of music (Carlsen, 1981; Schmuckler, 1990; Thompson,

Cuddy, & Plaus, l997), the perception of music (Cuddy & Lunny, 1995; Krumhansl, 1995;

Schellenberg, 1996; Schmuckler, 1989), the transcription of music (Unyk & Carlsen, 1987),

and emotional responses to music (Steinbeis, Koelsch, & Sloboda, 2006). While most

empirical research has examined the influence of melodic pitch structure, expectations in

music have also been examined in relation to rhythmic and metrical structure (Jones, 1987;

Jones & Boltz, 1989; Large & Jones, 1999) as well as harmonic structure (Bharucha, 1987;

Schmuckler, 1989; Steinbeis et al., 2006; Tillmann, Bharucha, & Bigand, 2000; Tillmann,

Bigand, & Pineau, l998). Many of Meyer’s proposals about the relationship between expec-

tation and emotion in music remain to be tested empirically (Juslin & Västfjäll, 2008) and it

is only recently that information theory has been used to investigate expectations in any of

these areas.

In this paper, we present our perspective on Meyer’s idea and its implications, aiming for

an over-arching theory, grounded in evolutionary process and contextualized within a larger,

explicitly layered model of cognition. The core idea is that of information transmission via

musical structure during the listening experience, in context of knowledge shared between

producer and listener. We explore the cognitive processes involved in this transmission and

their relationship with more general processes in human cognition. We focus on the cogni-

tive processes that generate expectations for how a musical sequence will continue in the

future: What will be the properties (pitch, timing, etc.) of the next musical event? (see also

Tillmann, 2011). To discuss the effect of context in music cognition, one needs also an

account of how that contextual knowledge is acquired: We use online implicit learning (see

Rohrmeier & Rebuschat, 2011, for a review) and place information theory at the core of

cognitive processing.
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Our approach is firmly based in computational modeling, and therefore we develop our

exposition around a successful model of musical pitch expectation, which simulates implicit

learning and generates predictions from what is learned. The information-dynamic proper-

ties of this model are then shown to predict structural segmentation of musical melody by

listeners. Thus, one theory is shown to predict two different aspects of a perceptual phenom-

enon. Further work demonstrates a relationship between information content, which can be

consciously reported, and neural behavior during listening, suggesting a direct link between

information dynamics, auditory expectation, and the experience of musical listening. We

conclude with several more speculative sections, which cover preliminary research on the

potential contribution of expectation to aesthetics and creativity; the aim here is to identify

fruitful research topics for the short- and medium-term future.

Overall, our aim is to argue for the paramount importance of auditory expectation in the

experience of music, and to propose credible cognitive mechanisms by which such experi-

ence may be generated, while also setting out the next steps in this research program. In

doing so, we summarize experimental results from existing published studies.

2. Learning, memory, and expectation for music

2.1. Evolutionary context

To begin, we ground our argument in an evolutionary context by asking what expecta-

tions are for. We avoid the debate about music’s evolutionary selection pressure (Cross,

2007; Fitch, 2006; Justus & Hutsler, 2005; McDermott & Hauser, 2005; Pinker, 1995;

Wallin, Merker, & Brown, l999), but the cognitive processes and models we propose should

at least be consistent with evolutionary theory. Whether these functions are adapted or exap-

ted does not matter to the current work.

We assume that cognitive mechanisms underlying musical expectation are specific

instances of those supporting general auditory expectation. Cognitive processes of top-down

expectation confer several potential advantages on an organism. By anticipating what is

likely to appear in a given context, an organism can reduce orienting responses (Zajonc,

1968; Huron, 2006), identify incomplete, noisy or ambiguous stimuli (Summerfield &

Egner, 2009), and prepare faster and more appropriate responses (Schultz, Dayan, &

Montague, l997).

Failures of expectation can be fatal, so organisms should be motivated to expect as accu-

rately as possible, with two consequences. First, the life-preserving advantage of avoiding

failure entails that successful organisms must pre-emptively experience non-fatal penalties

for predictive failures, and rewards for predictive successes, through negative and positive

emotions, respectively (Huron, 2006).

Second, in complex, changing auditory environments, organisms that adapt their expecta-

tions to experience are favored. This is why our account is based on learning. Instead of

innate representational rules, we invoke innate, general-purpose learning mechanisms,

imposing architectural, not representational, constraints on cognitive development (Elman
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et al., 1996). Given exposure to appropriate stimuli, these learning mechanisms acquire

domain-specific representations and behavior. We regard these learning mechanisms as gen-

eral-purpose processes in auditory cognition, and not specific to music. Eight-month-old

infants (Saffran, Johnson, Aslin, & Newport 1999) and non-human primates (Hauser, Aslin,

& Newport, 2001) exhibit learning of statistical associations between auditory events. We

ask: What mechanism enables learning?

Therefore, we seek a mechanism for generating expectations, which learns through

experience with neither oracular top-down assistance nor prior music-theoretical knowl-

edge.

We also consider the evolutionary status of the auditory features over which musical

expectations operate. From our theoretical perspective, we need a perceptual dimension of

pitch, which behaves mathematically as a linearly ordered abelian (or commutative) group1

(Wiggins et al., 1989), and a time dimension, with the same basic mathematical behavior.

Fundamental pitch features in human music (e.g., octave equivalence: Greenwood, 1996)

are shared by non-human species, so can be assumed as pre-extant. Similarly, we assume

the ability to perceive repeating time periods as a given (Large, Almonte, & Velasco, 2010).

We believe that both these faculties are exapted for music, as organisms exhibiting them

evolved long before music was exhibited by humans, although the human capacity for con-

sistent, deliberate rhythmic entrainment does seem to be unique (Patel, Iversen, Bregman, &

Schulz, 2009; Schachner, Brady, Pepperberg, & Hauser, 2009). Other musical dimensions,

(e.g., timbre, dynamics) are compatible with our approach but remain to be investigated

within it.

2.2. Background: Information theory

Hartley (1928) began research in information theory, although the first significant devel-

opments arrived in Claude Shannon’s seminal mathematical theory of communication

(Shannon, 1948). This work inspired interest in information theory throughout the 1950s, in

fields ranging from psychology (e.g., Attneave, 1959) to linguistics (e.g., Shannon, 1951).

Particularly relevant here is the portion of Shannon’s theory capturing discrete noiseless sys-

tems and their representation as stochastic Markov sources, the use of n-grams to estimate

the statistical structure of the source and the development of entropy as a quantitative

measure of the predictability of the source.

An n-gram model (of order n ) 1) computes the conditional probability of an element ei

at index i 2 {n,…,j} in a sequence ej1 of length j, over an alphabet, E, given the preceding

n ) 1 elements, ei�1i�n:

pðeijei�1i�nÞ ¼
countðeii�nÞ
countðei�1i�nÞ

ð1Þ

where enm is the contiguous subsequence (substring) of sequence e between elements m and

n, em is the element at index m of the sequence e, and count(x) is the number of times that x
appears in some training corpus of sequences.

628 M.T. Pearce, G.A. Wiggins/Topics in Cognitive Science 4 (2012)



Given an n-gram model of order n ) 1, the degree to which an event appearing in a given

context in a melody is unexpected can be defined as the information content (MacKay,

2003), hðeijei�1i�nÞ, of the event given the context:

hðeijei�1i�nÞ ¼ log2
1

pðeijei�1i�nÞ
: ð2Þ

The information content can be interpreted as the contextual unexpectedness or surprisal

associated with an event. The contextual uncertainty of the model’s expectations in a given

melodic context can be defined as the entropy (or average information content) of the

predictive context itself (Shannon, 1948):

Hðei�1i�nÞ ¼
X

e2E
pðeijei�1i�nÞhðeijei�1i�nÞ: ð3Þ

More sophisticated information-theoretic measures (e.g., predictive information: Abdal-

lah & Plumbley, 2009) exist but are not considered here as they have yet to be applied to

music cognition.

2.3. Information-theoretic models of music

Information theory was applied to music in 1955 (Cohen, 1962) and used throughout the

1950s and 1960s to analyze music (Cohen, 1962; Hiller & Bean, 1966; Hiller & Fuller,

1967; Meyer, 1957; Youngblood, 1958) and to compose (e.g., Ames, 1987, 1989; Brooks

Jr., Hopkins, Neumann, & Wright, 1957; Hiller, 1970; Hiller & Isaacson, 1959; Pinkerton,

1956).

These early studies ran into difficulties (Cohen, 1962). The first is the estimation of prob-

abilities from the samples of music (Cohen, 1962). A distribution estimated from a sample

of music is supposed to accurately reflect a listener’s perception of that sample. However, a

listener’s perception (e.g., of the first note) cannot be influenced by music she has not yet

heard (e.g., the last note), so her knowledge and expectation changes with each new note

(Meyer, 1957). To address this, Coons and Kraehenbuehl calculated dynamic measures of

information (predictive failure) in a sequence (Coons & Kraehenbueh, l958; Kraehenbuehl

& Coons, 1959). However, it remains unclear whether the method could be implemented

and generalized beyond their simple examples. Furthermore, the method still fails to model

the listener’s prior experience of music (Cohen, 1962). Second, the early studies are gener-

ally limited to low, fixed-order probability estimates and therefore do not take full statistical

advantage of musical structure. Third, except for Hiller and Fuller (1967), the music repre-

sentations were exclusively simple representations of pitch (Cohen, 1962), ignoring other

musical dimensions. Even Hiller and Fuller (1967) considered each dimension separately,

as they had no way of combining the derived information.

Information-theory lost favor in psychology in the late 1950s and early 1960s during the

‘‘cognitive revolution’’ that ended behaviorism (Miller, 2003). This was because of
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objective inadequacies of basic Markov chains as models of psychological representations,

particularly for language (Chomsky, 1957); it may also have been due to limitations in

corpus size and the processing power of contemporaneous computers. The knowledge

engineering approach dominated cognitive science until the 1980s, when renewed interest

in connectionism (Rumelhart & McClelland, 1986) revitalized work on learning and

the statistical structure of the environment.

These trends in cognitive science affected research on music. Connectionist models

became popular in the late 1980s (Bharucha, 1987; Desain & Honing, 1989; Todd,

1988). However, with a few isolated exceptions (e.g., Baffioni, Guerra, & Lalli, 1984;

Coffman, 1992; Knopoff & Hutchinson, 1981, 1983; Snyder, 1990), it was not until the

mid-1990s that information theory and statistical methods were again applied to music

(Conklin & Witten, 1995; Dubnov, Assayag, & El-Yaniv, l998; Hall & Smith, 1996;

Ponsford, Wiggins, & Mellish, l999), as Darrell Conklin’s sophisticated statistical

models of musical structure (Conklin & Witten, 1995) addressed many of the early

limitations.

3. IDyOM: A cognitive model of musical expectation

3.1. Introduction: Locating the model

By way of explaining our approach to the study of information dynamics and the associ-

ated experience of expectation, we now present an overview of the Information Dynamics

of Music (IDyOM) model of musical melody processing. As a caveat: The use of the word

‘‘model’’ is problematic here, as it is the only appropriate term to use for the whole of

the IDyOM theory-and-system, which is a model of a process, but also for some of its

components, which are (Markov) models of data.

This work is motivated by empirical evidence of implicit learning of statistical regulari-

ties in musical melody (Oram & Cuddy, 1995; Saffran, Aslin, & Newport, l996; Saffran

et al., l999). In particular, Krumhansl, Louhivuori, Toiviainen, Järvinen, and Eerola (l999)

presented evidence for the influence of higher order distributions in melodic learning. Pons-

ford et al. (1999) used third- and fourth-order models to capture implicit learning of

harmony, and evaluated them against musicological judgements. So there is evidence that

broadly the same kind of model can capture at least two different aspects of music (melody

and harmony) but also that they predict the expectations of untrained listeners as well as

specialist theoreticians. The aim, then, was to construct a computational system embodying

these theories and to subject them to rigorous testing.

Fig. 1 locates the abstract architecture of our model in a bird’s eye view of music cogni-

tion. We have supplied a mechanism for learning enabling this overall structure (Pearce,

2005), and we hypothesize that it approximates the human mechanism at the level illus-

trated. We aim to understand the relationship between auditory stimuli (bottom of Fig. l)

and musical experience (top of Fig. 1). The results in the rest of this section are summarized

from other more detailed publications, citations of which are given throughout.
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For methodological clarity, we work strictly bottom-up, requiring that phenomena (e.g.,

segmentation) arise from learning alone, and that learning be unsupervised—that is, the

system is given no information about the outputs required. Learning also applies else-

where—for example, in the lower level process of pitch categorization underlying formation

of note-event percepts, which we presuppose here.

Learning system

Expectations

Segmentation

Pitch/time percepts
in sequence

.

.

.

Auditory stimulus

.

.

.

.

.

.

Conscious experience

Fig. 1. An abstract layered map, locating our model in a larger cognitive system. The various layers, which are

delineated by horizontal lines, and some of which are elided by …, contain processes (in squared boxes) and

phenomena (in rounded boxes). These are connected by information flow, denoted by arrows. Solid lines denote

processes, phenomena, and information flows that are explicitly represented in our model, while dotted ones

indicate those that we believe to exist but that are not modeled, either because they are outside of the scope of

the present work (such as emotional response to music) or because our strict bottom-up hypothesis forbids it for

the present (such as expectation feedback into basic audio perception). Below the bottom perceptual/cognitive

layer lies the physical auditory stimulus.
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3.2. Outline

The core of IDyOM is a model of human melodic pitch prediction (Pearce, 2005) that

builds on music informatics (Conklin & Witten, 1995), data compression (Bunton, 1997;

Cleary & Teahan, 1997), and statistical language modeling (Manning & Schütze, 1999). It

learns unsupervised, simulating implicit learning by exposure alone, without training, so it

is strongly bottom-up (Cairns, Shillcock, Chater, & Levy, 1997). It uses Markov models or

n-grams (Section 2.2; Manning & Schütze, 1999, ch. 9).

As IDyOM encounters the musical corpus from which it learns, it creates a compact rep-

resentation of the data (Pearce, 2005), facilitating matching of new note sequences against

previously encountered ones. Basic Markov modeling (Manning & Schütze, 1999, ch. 9) is

extended in two ways.

First, the model is of variable order, incorporating an interpolated smoothing strategy
to allow the predictions of n-gram models of all possible orders to contribute probability

mass to each predicted distribution (Cleary & Witten, 1984), and an escape strategy
admitting distributions including previously unseen symbols (Cleary & Witten, 1984;

Moffat, 1990). The combination of available methods used in IDyOM is the most effec-

tive for musical melody (Pearce & Wiggins, 2004). The back-off strategy, PPM* (Cleary

& Teahan, 1997), first tries the longest possible context and works down to nothing,

summing probabilities until the context is empty, each weighted proportionally to the

number of back-off steps required to reach it. IDyOM’s escape method is Method C of

Moffat (1990).

Second, the model is multidimensional, in two ways. First, following Conklin and Witten

(1995), the system is configured with two functionally identical models, one for long-term

(LTM), which is exposed to an entire corpus (modeling a listener’s learned experience and

supplying the context for information theoretic analysis) and the other for short-term

(STM), which is exposed only to the current melody (modeling current listening).2 Each

model produces a distribution predicting each note as the melody proceeds, and the two dis-

tributions may be combined to give a final output (Fig. 3), weighted by the Shannon (1948)

entropy of the distribution (more information weighs more heavily; Conklin & Witten,

1995; Pearce, Conklin, & Wiggins, 2005). There are five configurations: Each model alone

(STM, LTM), two models together (BOTH), where the LTM is fixed and does not learn

from the current stimulus data, and LTM+ and BOTH+, where the LTM does learn as the

stimulus proceeds. LTM+, BOTH, and BOTH+ are serious candidates as models of human

music cognition; STM and LTM alone are included for completeness, although both can tell

us about musical structure (Potter, Wiggins, & Pearce, 2007). The second multidimensional

aspect is within each model, where there are multiple distributions derived from multiple

features of the data, as detailed in Fig. 2 and the next section (Conklin & Witten, 1995).

These are combined using the same weighting strategy to give the overall output distribution

for each model (Pearce, 2005; Pearce et al., 2005).

It is crucial that the model is never given the answers that it is expected to produce, nor is

it optimized with reference to those answers. Thus, its predictions are in a sense epiphenom-

enal, and this is the strongest reason for proposing IDyOM, and the strong statistical view in
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general, as a veridical mechanistic model of music cognition at this level of abstraction: It

does what it is required to do without being told how.

3.3. Data representation

IDyOM operates at the level of abstraction described above: Its inputs are note percepts

described in terms of pitch and time. These dimensions, however, engender multiple fea-

tures of each note, derived from pitch or time or both. Added to these percept representa-

tions is an explicit representation of sequence in time: Sequence is the fundamental unit of

representation.

IDyOM uses a uniform view of these features of data sequences (Conklin & Witten,

1995). Given a sequence of percepts, we define functions, viewpoints, that accept initial sub-

sequences of a sequence and select a specific dimension of the percepts in that sequence.

For example, there is a viewpoint function that selects values of pitch from melodic data;

given a sequence of pitches, it returns the pitch of the final note. However, it is most often

convenient to think of viewpoints as sequences of these values.

The model starts from basic viewpoints, literal selections of note features as presented to

the system, including3 pitch, notestarttime, duration, and mode. Further viewpoints are

Viewpoint Model

Chromatic Pitch

Inter-Onset 
Interval

Duration

Chromatic Pitch 
Interval

Duration Ratio

Metrical level

Scale Degree 
Thread 1st in Bar

Scale Degree

Tonic pitch

Mode

x

D1

D2

D3

D4

D6

D7

D8

D9

D10

D11

 w1

 w3

 w4

 w6

 w7

 w8

 w9

 w5

w10

 w2

DVM

Mode Tonic pitch

Name

Name

Name

Basic viewpoint

Derived viewpoint

Threaded viewpoint

D6

Supplies thread trigger

Supplies distribution

Key

Name Linked viewpoint

Links to

D5

w11

Fig. 2. Schematic diagram of the viewpoint models, showing a subset of available viewpoints. Di are distribu-

tions across the alphabets of viewpoints, wi are the entropic weights introduced in Section 3.3, and DVM is the

overall distribution derived from the combined viewpoints.
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derived, such as pitch interval (the distance between two pitches). Two viewpoints may be

linked (A � B, where A and B are the source viewpoints), creating a compound whose

alphabet is the cross-product of those of the two extant viewpoints. Finally, threaded view-

points select elements of a sequence, depending on an external predicate: for example,

selecting the scale degree of the first note in each bar of a melody, if metrical information is

given (see Fig. 3).

Each of these data-feature models is carefully considered in music-perceptual, musico-

logical, and mathematical terms (Wiggins et al., l989), in some cases using feedback from

musical expert participants (Pearce & Wiggins, 2007). Each viewpoint models a percept,

which is expressed and used in music theory and hence there is clear, careful motivation for

each feature.4

Short Term Model

Chromatic Pitch

Inter-Onset 
Interval

Duration

Chromatic Pitch 
Interval

Duration Ratio

Metrical level

Scale Degree 
Thread 1st in Bar

Scale Degree

Tonic pitch

Mode

D1

D2

D3

D4

D6

D7

D8

D9

D10

D11

Mode Tonic pitch D5

Long Term Model

Chromatic Pitch

Inter-Onset 
Interval

Duration

Chromatic Pitch 
Interval

Duration Ratio

Metrical level

Scale Degree 
Thread 1st in Bar

Scale Degree

Tonic pitch

Mode

D1

D2

D3

D4

D6

D7

D8

D9

D10

D11

Mode Tonic pitch D5

x DLTM

x DSTM

x D 2 h

 wL

 wS

Corpus 
of music

Piece 
of music

 w1

 w3

 w4

 w6

 w7

 w8

 w9

 w5

w10

 w2

w11

 w1

 w3

 w4

 w6

 w7

 w8

 w9

 w5

w10

 w2

w11

Fig. 3. Schematic diagram of combined IDyOM short-term and long-term models.
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Having said this, it is important to understand that we are not predisposing the key feature

of the system, its operation over sequences of percept features, in any hard-coded or rule-

based way. These features are merely the properties of the data, psychologically grounded

at a level of abstraction below the level of interest of the current study, that are made avail-
able for prediction; thus, their use does not contradict our claims of domain-generality and

methodological neutrality at the level of interest of sequence processing. How those proper-

ties arise is not our focus of interest in the current presentation, but it will be the object of

future work. The system itself selects which of the available representations is actually used,

as described in the next section.

3.4. Viewpoint selection

The learning system is enhanced by an optimization step, based on the hypothesis

that brains compress information, and that they do so efficiently. The optimization

works by choosing the representation of the musical features from a pre-defined reper-

toire of music-theoretically valid representations, here defined by the set of viewpoints

used in a model. For example, imagine two pitch viewpoints (representations of pitch)

are available, one in absolute terms and the other in terms of the difference (interval, in

musical terms) between successive notes. The system chooses the relative representation

and discards the absolute one, because the relative representation allows the music to be

represented independently of musical key, and this requires fewer symbols (by a factor

of 12). There is evidence that humans may go through a similar process as exposure to

music increases: Infants demonstrate absolute pitch, but the vast majority quickly learn

relative pitch, and this becomes the dominant percept (Saffran & Griepentrog, 2001).

Nevertheless, there is also evidence that people who develop relative pitch retain their

absolute perception at a non-conscious level (Levitin, 1994; Schellenberg & Trehub,

2003).

Again, it is important to emphasize that no training, nor programmer intervention,

with respect to or in favor of the solutions being sought, is involved here: Using a hill-

climbing search method applied over the set of all viewpoints present (Pearce, 2005),

the system objectively picks the set of viewpoints that encodes the data in a model

with the lowest possible average information content5 (�h). Thus, the data itself deter-

mines the selection of the viewpoints best able to represent it efficiently; a level play-

ing field for prediction is provided by the fact that each viewpoint distribution is

converted into a basic one before comparison: Thus, �h is computed from the pitch dis-

tribution of each model. The selection approach is a brute force simulation of a more

subtle process proposed in cognitive theories such as that of Gärdenfors (2000), which

allow for the re-representation of conceptual spaces in response to newly learned data:

In Gärdenfors’ terms, viewpoints are quality dimensions, which can be rendered redun-

dant by new, alternative, learned additions to the representational ontology, and there-

fore forgotten, or at least de-emphasized. A general mechanism by which this may take

place in our statistical model is a focus of our current research, beyond the scope of

the current paper.
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3.5. Shortcomings of the model

This model is the first stage of an extended research program of cognitive modeling. In

this context, it is important that we note its shortcomings as well as its successes and

potentials. We do so at this point to make a clear distinction between the issues, which are

outstanding for IDyOM as a model, and those which are relevant to the discourse

on expectation presented in the next sections.

First, the model is currently limited to monodic melodic music, which is only one aspect

of the massively multidimensional range of music available; while our focus on melody is

perceptually, musicologically, and methodologically defensible, the other aspects need to be

considered in due course. Elsewhere, we have begun to study the modeling of musical har-

mony (Whorley, Pearce, & Wiggins, 2008; Whorley, Wiggins, Rhodes, & Pearce, 2010),

following on from the early efforts of Ponsford et al. (1999), and to extend IDyOM’s cover-

age beyond music, looking at the possibility of language processing using the same technol-

ogy (Wiggins, 2011b), given evidence of shared neural and cognitive mechanisms involved

in processing complex sequential regularities in both domains (Tillmann, 2011).

Second, and more fundamentally, the memory model used here is inadequate: The model

exhibits total recall and its memory never fails. This may be why it outperforms humans in

some implicit learning tasks (see Rohrmeier & Rebuschat, 2011). There is work to do on the

statistical memory mechanism (currently based on exact literal recording and matching by

identity) to model human associative memory more closely. Options include pruning the

leaves of the tree (e.g., Ron, Singer, & Tishby, 1996) or neural networks (e.g., Mozer,

1994), but we refer these possibilities to future work.

Third, as explained above, the viewpoints used in the system are chosen from music theory

and must be implemented by hand. This is useful for the purposes of research, because we are

able to interpret, to some extent, what the model is doing by looking at the viewpoints it

selects. For example, the viewpoint scaledegree � pitchinterval encodes aspects of tonal lis-

tening (Lerdahl, 2001), and this viewpoint consistently emerges from the compression of

tonal music databases. However, a purer system would be capable of constructing its own

viewpoints (based on established perceptual principles) and choosing new ones, which lead to

more compact models, akin to methods such as deep learning (Hinton & Salakhutdinov,

2006). This could be posited as a model of perceptual learning, in which new quality dimen-

sions (Gärdenfors, 2000) are created in the perceiver’s representation as they are required.

This would greatly increase the power of the system, because it would be able to determine its

own representation, by reflection.

4. Pitch expectation

Our approach invokes a cognitive learning process through which expectations contribute

to accurate predictions about the auditory environment. Here, we study pitch expectations in

melody, where evidence exists for learning. Melodic pitch expectations vary between musi-

cal styles (Krumhansl et al., 2000) and cultures (Carlsen, 1981; Castellano, Bharucha, &
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Krumhansl, 1984; Eerola, 2004; Kessler, Hansen, & Shepard, 1984; Krumhansl et al., l999),

throughout development (Schellenberg, Adachi, Purdy, & McKinnon, 2002) and across

degrees of musical training and familiarity (Krumhansl et al., 2000; Pearce, Herrojo Ruiz,

Kapasi, Wiggins, & Bhattacharya, 2010).

The most influential theory of melodic pitch expectation, the Implication Realization

(IR) theory (Narmour, 1990, 1992), proposes that expectations are governed in part by a

few innate rules as well as by top-down influences; Schellenberg (1997) provides cogni-

tive-scientific support. However, these rules would be unnecessary if the aspects of

expectation they cover can be learned through exposure to music. The original purpose

of the IDyOM model was to simulate human melodic pitch expectations and investigate

whether they can be accounted for entirely by statistical learning (Pearce, 2005; Pearce

& Wiggins, 2006).

Pearce and Wiggins (2006) tested this by exposing IDyOM’s LTM to a corpus of 903

tonal folk melodies and comparing the predictions made by the BOTH+ model during simu-

lated listening with the expectations of human listeners elicited in previous studies: using

single-interval contexts (Cuddy & Lunny, 1995); using longer contexts from British folk

songs (Schellenberg, 1996); and for each note in two chorale melodies (Manzara, Witten &

James, 1992). Table 1 shows the results and a comparison with the two-factor IR model of

Schellenberg (1997).6 IDyOM generates the most accurate predictions ofpitch expectation

in the literature to date, especially incomplex melodic contexts.

In these studies, melodies were paused to allow listeners to respond. However, this tends

to elicit expectations related to closure (Aarden, 2003; Toiviainen & Krumhansl, 2003).

Using a visual cue to elicit expectations without pausing the melody, Pearce et al. (2010) ver-

ified that IDyOM’s predictions correlate well with human pitch expectations to notes in Eng-

lish hymns as indicated both by ratings (r2 ¼ .78, p < .01) and response times (r2 ¼ .56,

p < .01). Again, the IDyOM model predicted the listeners’ expectations better than the two-

factor IR model.

Cognitive neuroscientific studies of musical expectations have tended to focus on EEG

and MEG, which have far superior temporal resolution to other methods such as fMRI. ERP

research has identified characteristic neural responses, in particular, an early anterior nega-

tivity peaking at around 180 ms post-stimulus, to violations of harmonic expectation in real

musical excerpts (Steinbeis et al., 2006). There is evidence that the amplitude of this

Table 1

Results from IDyOM prediction experiments (Pearce & Wiggins, 2006; Pearce et al., 2010)

Data From Stimuli Schellenberg’s (1997) Model (r2) IDyOM (r2)

Cuddy and Lunny (1995) Single intervals .68 .72

Schellenberg (1996) British folksongs .75 .83*

Manzara et al. (1992) German chorales .13 .63*

Pearce et al. (2010) English hymns .73 .78

Note. In cases indicated by *, IDyOM significantly outperforms its nearest competitor on this task (p < .01).

Data from Pearce and Wiggins (2006) � 2006 by the Regents of the University of California, published by Uni-

versity of California press; data reprinted from Pearce et al. (2010) � 2010, with permission from Elsevier.
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component is related to the long-term digram probability of the chord occuring (Kim, Kim,

& Chung, 2011; Loui, Wu, Wessel, & Knight, 2009). Violations of melodic expectation

appear to produce early anterior responses with a slightly earlier latency (Koelsch &

Jentschke, 2010) but only when they break tonal rules (Miranda & Ullman, 2007). In an

EEG study of listeners to hymn melodies, Pearce et al. (2010) examined oscillatory and

phase responses to notes with high information content as predicted by IDyOM. The results

indicated that violations of melodic expectation increase phase synchrony across a wide net-

work of sensor locations and generate characteristic patterns of beta-band activation in supe-

rior parietal lobule (see Fig. 4), which have previously been associated with tasks involving

auditory–motor interaction, suggesting that violations of expectation may stimulate

networks linking perception with action.

5. From expectation to structure

Grouping and boundary perception are core functions in many areas of cognitive science,

such as natural language processing (e.g., speech segmentation and word discovery, Brent,

1999a,b; Jusczyk, 1997), motor learning (e.g., identifying behavioral episodes, Reynolds,

Zacks, & Braver, 2007), memory storage and retrieval (e.g., chunking, Kurby, & Zacks,

2007), and visual perception (e.g., analyzing spatial organization, Marr, 1982). The segmen-
tation of a sequence of musical notes into contiguous groups occurring sequentially in time

(e.g., motifs, phrases etc.) is one of the central processes in music cognition (Lerdahl &

Jackendoff, 1983).

Narmour (1990) proposed that grouping boundaries are perceived where expectations are

weak: No particularly strong expectations are generated beyond the boundary. Saffran et al.

(1999) have demonstrated empirically that infants and adults spontaneously perceive group-

ing boundaries in tone and syllable sequences at points where first-order probabilities are

low (i.e., expectation is violated). Furthermore, word-boundaries in English text and infant-

directed speech can be identified with some success using algorithms that segment before

unexpected events (Brent, 1999b; Cohen, Adams, & Heeringa, 2007; Elman, 1990) and in

uncertain contexts (Cohen et al., 2007).

Therefore, we hypothesize that musical grouping boundaries are perceived before events

for which the unexpectedness of the outcome (h) and the uncertainty of the prediction (H)

are high. We tested this in two experiments using the IDyOM model (trained on 907

Western tonal melodies; Pearce, 2005) to predict perceived grouping boundaries at peaks in

the information content profile for a melody.

The first study (Pearce, Müllensiefen & Wiggins, 2010a) concerned phrase boundaries anno-

tated by a musicologist in 1,705 Germanic folk songs from the Essen Database (Schaffrath,

1995). IDyOM predicted the annotated boundaries with precision .76 and recall .50, so F1 ¼
.58. The second (Pearce, Müllensiefen & Wiggins, 2010b) examined the boundary perceptions

of 25 listeners to 15 unfamiliar popular melodies. Here, IDyOM predicted the listener’s bound-

aries with mean precision .57 and recall .73, so F1 ¼ .64. These results are summarized in

Table 2.
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Fig. 4. Summary of results of Pearce et al. (2010) showing the three-way connection between model prediction,

behavioral data, and neurophysiological responses. (A) The correlation between the mean expectedness ratings

of the listeners for each probed note (ordinate) and the information content of IDyOM (abscissa). The notes were

divided into two groups: high information content (black circles) and low information content (red squares).

(B) Spectrogram showing differences in spectral power between high and low-information content notes in the

beta band (14–30 Hz) over peristimulus time with regions of significant difference, indicated by the permutation

test, identified by the black contour. (C) Topography of the difference power at 18–23 Hz over the time window

500–550 ms. Reprinted from Pearce et al. (2010) � 2010, with permission from Elsevier.
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These results are better than simple first-order statistical models and broadly comparable

to those of hand-crafted rule-based grouping models. Although they fall short of the best

rule-based models, IDyOM does predict boundaries not captured by those models. Given

that the model learns unsupervised and was neither optimized for segmentation nor given

information about grouping, this constitutes a very pure test of the hypothesis that perceived

grouping structure arises from expectation violation.

We have also investigated whether IDyOM can segment speech signals (qua phoneme

sequences); preliminary evidence suggests that it can, and that the extensions to Markov

Modeling detailed above improve performance here too (Wiggins, 2011b). This adds further

evidence to our claim that we are modeling at a rather general level, and that the model is

consistent with evolutionary likelihood, because deployment of a mechanism in multiple

areas both simplifies the hypothetical system, thus making evolution more likely, and

increases the evolutionary advantage the mechanism conveys.

6. From expectation to experience

Looking now to the future, we consider how the current state of our research fulfils our

aim: Explicating the conscious experience of music. We have explained how expectation

can be simulated by the IDyOM model, using unsupervised analytical methods, and not as a

trained outcome (Pearce & Wiggins, 2006). Furthermore, the time-variant signal so pro-

duced can be analyzed to predict perceptual segmentation in both music and language

Table 2

Summary of results presented by Pearce et al. (2010a,b)

Model

1705 Folk Songs 15 Pop Songs

Precision Recall F1 Precision Recall F1

Grouper 0.71 0.62 0.66 0.86 0.82 0.83

LBDM 0.70 0.60 0.63 0.79 0.81 0.78

IDyOM 0.76 0.50 0.58 0.57 0.73 0.64

GPR2a 0.99 0.45 0.58 0.70 0.54 0.58

GPR2b 0.47 0.42 0.39 0.47 0.45 0.43

GPR3a 0.29 0.46 0.35 0.26 0.43 0.30

GPR3d 0.66 0.22 0.31 0.17 0.11 0.11

PMI 0.16 0.32 0.21 0.24 0.49 0.31

TP 0.17 0.19 0.17 0.25 0.45 0.31

Always 0.13 1.0 0.22 0.13 1.0 0.23

Never 0.0 0.0 0.0 0.0 0.0 0.0

Note. The segmentation models are Grouper (Temperley, 2001), Local Boundary Detection Model (Cam-

bouropoulos, 2001), the Grouping Preference Rules (GPRs) of GTTM (Lerdahl & Jackendoff, 1983), simple sta-

tistical models based on transition probabilities (TP) and pointwise mutual information (PMI) (Saffran et al.,

l999; Brent, 1999a) and two baseline models, which predict boundaries for every note (Always) and for no notes

(Never). Data from Pearce et al. (2010a) reproduced by permission of Pion Limited, London, UK; data from Pe-

arce et al. (2010a) reproduced with kind permission of Springer Science+Business Media � 2010.
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(Pearce et al., 2010b,a; Wiggins, 2011a). Also, the model reliably predicts specific neural

activity associated with unexpectedness (Pearce et al., 2010).

The key points are that IDyOM’s predictions correspond reliably with specific detectable

neural activity, and that experimental participants experience the corresponding effect as a

conscious feeling of expectedness. Therefore, we hypothesize that IDyOM is a veridical,

although approximate, abstract simulation of the actual cognitive processes involved in

these phenomena. Furthermore, we hypothesize that the neural activity predicted is either

the cause or the result (we aim to discover which) of the associated reported experience.

Thus, the model is directly predicting aspects of what is experienced. This strong claim

demands further verification, of course, and we are engaged on such a program.

7. From expectation to aesthetics

People value music primarily for the emotions it generates (Juslin & Laukka, 2004).

Meyer (1956) linked the emotional experience of music with musical structure via the lis-

tener’s expectations, which create patterns of tension and resolution that generate affective

states differing in arousal and valence. Thus, he viewed violated expectation as inherently

negatively valenced, indicating predictive failure:

if our expectations are continually mistaken or inhibited, then doubt and uncertainty …
will result. … the mind rejects and reacts against such uncomfortable states and … looks

forward to a return to the certainty of regularity and clarity. (Meyer, 1956, p. 27)

In an evolutionary framework (Section 2.1) of probabilistic modeling, expected events

should engender pleasure, as they indicate a successful domain model. Unexpected events,

however, indicate predictive failure, which should be penalized, affectively, to stimulate

further learning and improve the model. However, in music, this raises a conundrum: How

can unexpected events be pleasurable per se?

Huron (2006) examines the relationship between musical expectations and aesthetic plea-

sure, identifying several cognitive processes involved both in generating expectations about

a forthcoming event and generating response to it when it occurs. He identifies three kinds

of response to an event: A prediction response, evaluating the extent to which it conforms

to expectations; the reaction response, a fast, automatic, subcortical response to its nature;

and an appraisal response, a more leisurely, cortically mediated process of consideration

and assessment yielding positive and negative reinforcement associated with the outcome.

Huron describes the prediction effect whereby positive emotions resulting (via the predic-

tion response) from anticipatory success are misattributed to the stimulus itself, leading to a

preference for predictable events. Conversely, the stress resulting from surprising events,

indicating maladaptive anticipatory failure, has two main effects. First, it activates one of

three fast, conservative responses: fight, flight, or freeze (depending on the perceived sever-

ity of the threat and degree of control over the outcome). Second, it informs the cognitive

system about the predictive utility of competing potential representations of the
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environment. Just as we select viewpoints for IDyOM based on prediction performance (see

Section 3.4), Huron proposes that neural representations yielding accurate predictions are

strengthened and reused, while those that do not atrophy.

So how can surprise be enjoyable, even when associated with negative emotion, due to

the prediction effect? Huron’s answer invokes emotional contrastive valence between the

different expectation responses. An event that is welcome but unexpected induces a negative

prediction response that increases the positive limbic effect of the reaction or appraisal

responses. Thus, even events that are merely innocuous, but unexpected, can generate

positive emotions.

Expectation also engenders physiological effects. Unexpected chords produce greater

physiological arousal (skin conductance) than expected chords (Koelsch, Kilches, Steinbeis,

& Schelinski, 2008; Steinbeis et al., 2006). Huron (2006) suggests that contrastive valence

produces three kinds of pleasurable physiological response: awe, laughter, and frisson. Here

we focus on frisson (also called chills or shivers). Chills are a frequent response to music

(Panksepp, 13; Sloboda, 1991), usually experienced as pleasurable (Goldstein, 1980), involv-

ing increased subjective emotion and physiological arousal (Grewe, Kopiez, & Altenmüller,

2009). They tend to be associated with unexpected harmonies, sudden dynamic or textural

changes, or other new elements in the music (Grewe, Nagel, Kopiez, & Altenmüller,

2007; Sloboda, 1991). Familiarity is also a significant influence on chills (Grewe et al., 2009).

In a PET study, Blood and Zatorre (2001) found that the intensity of chills correlated posi-

tively with regional cerebral blood flow (rCBF) in brain regions related to reward (e.g., left

ventral striatum and orbito-frontal cortex) and negatively with rCBF in regions involved in

processing negative emotions (e.g., bilateral amygdale). Recently, Salimpoor, Benovoy,

Larcher, Dagher, and Zatorre (2011) have shown that chills are associated with striatal

dopamine relase and activation in the nucleus accumbens, while the caudate nucleus was acti-

vated during anticipation of a passage of music inducing chills. In another line of research,

Biederman and Vessel (2006) propose that aesthetic pleasure is bound to perceptual learning,

due to an increasing density of mu-opioid receptors in the ventral visual stream from primary

to association cortex. Consistent with this theory, the frequency of chills to music was

diminished in some participants treated with naloxone, a specific endomorphin antagonist

(Goldstein, 1980).

On a more (literally) anecdotal level, there is everyday evidence of the effects of expecta-

tion violation in jokes (Ritchie, 2003). The violation can be of various kinds, the most

obvious being semantic violations in puns, where an expectation is set up and then violated

by use of a double meaning. For example,

There are two fish in a tank. One says to the other, ‘‘How on earth do we drive this

thing?’’

Here, very strong expectation is set up that the tank in question is a fish tank, and so the

revelation that it is actually a (military) vehicle is highly unexpected, and, in some listeners,

causes laughter. The chain of events leading to that particular somatic reaction is discussed

by Huron (2006, Ch. 14) along with other more subtle, musical kinds of humor.
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Theoretical proposals in experimental aesthetics predict that subjective stimulus com-

plexity should show an inverted U-shaped relationship with liking (Berlyne, 1974). This

explicates both the mere exposure effect (Zajonc, 1968), where preference increases with

increasing exposure, and the boredom effect (Cantor, 1968), where preference decreases

with increasing exposure, by positing different initial levels of subjective stimulus complex-

ity. Indeed, an inverted U-shaped relationship exists between subjective complexity and lik-

ing in music perception (North & Hargreaves, 1995). We suggest that the relationship

between complexity and liking is very plausibly mediated by predictability, measurable by

mean information content. We suggest that intermediate degrees of predictability are pre-

ferred with very predictable and very unpredictable music (with respect to prior knowledge)

both being disliked. This is consistent with the proposals of Biederman and Vessel (2006) as

stimuli exhibiting these extremes of unpredictability afford reduced opportunities for learn-

ing. In this account, the learning stimulated by moderate degrees of expectation violation

would be pleasurable per se.

8. From expectation to creativity

Expectation and its cognitive mechanisms may also be important in understanding crea-

tivity. Here, we distinguish between the large-scale, conscious, planned creativity of the

orchestral arranger and the flash of inspiration, as, for example, a fragment of melody

appears in the mind of any musical person: We refer to the latter, which forms the seed of

musical creation. As our approach is partly derived from linguistics methods, and it has

shown basic capacity for linguistic prediction (Wiggins, 2011a), we hypothesize that a com-

mon mechanism like it may underpin both domains. Plotkin (1998) argues that creativity is

necessary in everyday language (and not only in creative writing), to construct sequences of

words. We suggest that a common method of generation, also, may relate the two domains.

Expectation-based models can generate structures in both domains, using common statis-

tical sampling-optimization methods (Conklin, 2003; Conklin & Witten, 1995). Acceptable

musical structures can be found, given a good enough representation (Pearce & Wiggins,

2007; Ponsford et al., l999). In the context of the literature on creativity, the IDyOM model

may be thought of as supplying an implicit definition of a conceptual space (Boden, 2004;

Wiggins, 2006a), while the sampling method used for generating from it constitutes the tra-
versal strategy in the Creative Systems Framework of Wiggins (2006a,b). What is missing

is the corresponding evaluation function that chooses high-quality artistic structures, and

this is an open research topic, partly because current models tend to be incomplete represen-

tations of the phenomena they capture but also because quality criteria are subjective and

context-dependent. What is more, following Berlyne (Section 7) generation using naı̈ve

objective functions (e.g., maximum likelihood) is unlikely to be aesthetically successful

unless models include self-description: The ‘‘ebb and flow’’ of musical expectation is aes-

thetically important, and not just any will do. One approach might include the expectation

generated by the music as part of the learned model, introducing reflection—a primary

component of consciousness (Shanahan, 2010).
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Most important, from the current perspective, is a common mechanism underlying per-

ception and generation, and happening more or less continuously, in the ways implied by

Plotkin (1998) and explicitly suggested by Shanahan (2010), albeit with different ancillary

cognition. The alternative, complex paired mechanisms admitting two tightly coupled phe-

nomena such as generation and perception of perceptual sequences, is much less convincing,

in evolutionary terms. The point, then, is that the mechanism needed to manage expectation

in a perceptual domain may also serve as a mechanism underpinning (but not completely

accounting for) creativity in that domain; these modeling attempts demonstrate how this can

happen. Fig. 5 shows a hymn tune harmonized by a system, which has learned to harmonize

by mere exposure, based on the methods used by IDyOM (Whorley, Wiggins, Rhodes, &

Pearce, 2010; Whorley et al., 2008).

9. Expectations for the future

Quantifying aspects of musical experiences (e.g., expectation and segmentation) in infor-

mation-theoretic terms yields a formal mathematical model of the cognitive processes gen-

erating these experiences. A computational approach ensures that all design assumptions are

explicit (Johnson-Laird, 1983; Longuet-Higgins, 1981) and allows the responses of the

model to a stimulus set to be compared quantitatively to the empirically determined

5

9

Fig. 5. The score of a hymn tune/harmonization performed by Raymond Whorley’s creative system (Whorley

et al., 2008, 2010), which uses extended versions of the techniques presented here. The tune is a French church

melody, from Chants Ordinaires de l’Office Divin (Paris, 1881); it is reprinted as Hymn No. 33, Grafton, in the

1993 edition of the English Hymnal. The harmonization is produced by Whorley’s (unassisted) creative system.
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responses of human listeners to the same stimuli (Newell & Simon, 1976; Simon & Kaplan,

1989).

Our emphasis on probabilistic learning has three primary advantages over rule-based

models of music cognition. First, it provides an explicit account of acquisition of the cogni-

tive processes that we study, potentially allowing prediction of behavior change through

development (e.g., Schellenberg et al., 2002) and across cultures (e.g., Eerola, 2004). Sec-

ond, the models generalize naturally to cognitive processing in other sequential domains

such as language, visual sequencing, or motor planning, allowing us to posit a domain-gen-

eral learning mechanism, instances of which can become specialized to a particular domain

through exposure to examples from it (Elman et al., 1996). Finally, probabilistic models of

perceptual processes such as expectation and segmentation have a more natural neurobio-

logical interpretation than static domain-specific rules in terms of current theories of predic-

tive coding in neural processing of perceptual stimuli (Barlow, 1959; Friston, 2005; Smith

& Lewicki, 2006).

We believe that probabilistic processes underlie expectation, which, in turn underlies a

substantial proportion of human experience. The study of music in this context is extremely

valuable, because it is simultaneously intrinsically complex but almost free of extrinsic

reference. We believe that the study of music using the methods outlined here will produce

significant advances in cognitive science in the immediate future.

Notes

1. A mathematical construct that can be summarized as describing a line of discrete val-

ues, with an addition operation, an identity element (zero), an inverse function (nega-

tive), and an ordering relation £ which is antisymmetric, transitive, and total. The

integers with addition form such a group. This level of abstraction also admits non-

Western notions of pitch, so long as they are organized in a way corresponding

broadly with scales.

2. The distinction between our LTM and STM is related to the distinction made by

Bharucha (1987) between schematic and veridical expectations—although the STM

generates expectations from the structure of the current piece, as opposed to predict-

ing from a memory of its literal structure.

3. Some viewpoints are named differently here from the actual implementation and from

previous presentations. They are in 1-to-1 correspondence, and the names here are

more musically informative.

4. Music theory is arguably the most formally developed example of a folk psychology

currently extant, being based on extensive and careful study of the aural constructs

used in a particular musical culture (Western art music), and their associated semiotic

connotations, in terms of their usage in that culture. A point sometimes missed in the

interdisciplinary music literature is that the constructs of music theory almost always

correspond with perceptual principles identifiable in general auditory psychology. For

example, the musical concept of melody relies on auditory streaming (Bregman,
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1990) of sequences of pitched events (Wiggins, Harris & Smaill, 1989), and artistic

attempts deliberately to create alternative notions of melody, which break these con-

straints, such as Schoenberg’s tonfarbenmelodie (Schoenberg, 1974), have met

with less than complete success. Western music notation often encodes these musical

properties (in particular, the overarching construct of tonality) implicitly.

5. Manning and Schütze (1999) and Conklin (1990) call this same quantity ‘‘cross-

entropy’’; we find the current terminology more accurately descriptive.

6. r2 estimates the proportion of variance in the participants’ responses accounted for by

the model.
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