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26. Musical Syntax II: Empirical Perspectives

Marcus Pearce, Martin Rohrmeier

Efforts to develop a formal characterization of mu-
sical structure are often framed in syntactic terms,
sometimes but not always with direct inspiration
from research on language. In Chap. 25, we present
syntactic approaches to characterizing musical
structure and survey a range of theoretical issues
involved in developing formal syntactic theories
of sequential structure in music. Such theories
are often computational in nature, lending them-
selves to implementation and our first goal here
is to review empirical research on computational
modeling of musical structure from a syntactic
point of view. We ask about the motivations for
implementing a model and assess the range of
approaches that have been taken to date. It is im-
portant to note that while a computational model
may be capable of deriving an optimal structural
description of a piece of music, human cognitive
processing may not achieve this optimal perfor-
mance, or may even process syntax in a different
way. Therefore we emphasize the difference be-
tween developing an optimal model of syntactic
processing and developing a model that simu-
lates human syntactic processing. Furthermore,
we argue that, while optimal models (e.g., op-
timal compression or prediction) can be useful
as a benchmark or yardstick for assessing human
performance, if we wish to understand human
cognition then simulating human performance
(including aspects that are nonoptimal or even
erroneous) should be the priority. Following this
principle, we survey research on processing of
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musical syntax from the perspective of compu-
tational modeling, experimental psychology and
cognitive neuroscience. There exists a large num-
ber of computationalmodels ofmusical syntax, but
we limit ourselves to those that are explicitly cog-
nitively motivated, assessing them in the context
of theoretical, psychological and neuroscientific
research.

26.1 Computational Research

26.1.1 Foundations

Different approaches to building computer models of
musical structure can be characterized, and distin-
guished, in terms of how expressive they are in terms
of the degree of structural complexity they are capable

of representing. Therefore, there is a direct link between
the theoretical characterization of musical syntax (dis-
cussed in Chap. 25) and the implementation and testing
of these theories as computational models of cogni-
tion, discussed here. Implementing a theory of musical
syntax and processing has several potential advantages,
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following well-known examples in cognitive science:

1. Implementing a theory as a computer program
(which must run, generating output from the data
and parameters supplied as input) ensures that it
takes as little as possible for granted and any as-
sumptions are explicitly stated [26.1–3].

2. Experiments can be run to evaluate the implemented
theory by comparison of its behavior with the output
expected from theoretical accounts or directly with
human behavior given the same inputs [26.3, 4].

It is important to distinguish between models whose
knowledge is provided to them by a human expert (in
the style of good, old-fashioned artificial intelligence,
GOFAI) and those that acquire knowledge about musi-
cal structure by learning (either supervised or unsuper-
vised) from experience of music, given some predefined
structural representation, the parameters of which are
learned (in the tradition of machine learning), be it
a neural network, a Markov model or grammatical in-
ference. The appropriate approach depends on the goal
of the modeling. However, in many cases the two ap-
proaches are complementary in that successfully learn-
ing complex representations (e.g., context-free rules) is
extremely challenging but the alternative approach can
result in models that do not generalize far beyond the
musical domain for which they were developed (e.g.,
Steedman’s [26.5, 6] grammars for blues harmony). In
the past, tasks that required context-free representa-
tions have usually been hand coded while tasks that
require simpler representational relationships have been
able to benefit from the flexibility of machine learning.
However, methods have now been developed in compu-
tational linguistics to learn certain kinds of context-free
representation [26.7]. Note that if we are interested in
cognitive representations of music, there is the addi-
tional issue of the extent to which the representations in
question are actually learned or inherited (i. e., innately
specified) by human beings ([26.8] as, e.g., discussed in
the poverty of the stimulus debate [26.9]).

As mentioned above, we must also emphasize the
distinction between finding an optimal structural de-
scription of a piece of music and modeling the cognitive
representation of that piece in the mind of a lis-
tener. The former bounds the latter but listeners are
likely to be subject to constraints of perception and
cognition (e.g., limitations of working memory load),
which would prevent them reaching an optimal struc-
tural description. Note also that it is problematic to
assume the existence of an average listener without
understanding all the factors (e.g., musical training,
environmental context, degree of attention etc.) that
could influence the structural descriptions that listen-

ers form. Nonetheless, it is often useful to identify
theoretical bounds on structural complexity using an
optimal model. Furthermore, theoretical models of mu-
sical structure can help us understand the hypothesis
space that human learners are faced with when they
acquire the syntactic structure of a musical style. In
artificial intelligence research, we distinguish between
the representation defining the search space and algo-
rithms for traversing the space. Similarly in machine
learning, we distinguish between the hypothesis space
and learning mechanisms for traversing the space. In
the case of musical syntax, the hypotheses correspond
to potential stylistic grammars generating structural de-
scriptions of music and we can think of the learning as
traversing the space of possible grammars, specifying
the parameters distinguishing those grammars along the
way.

The following sections illustrate these points, using
different kinds of computational models that have been
proposed for understanding musical syntax.

26.1.2 Early Approaches: Pattern Processing

We begin with a review of two early approaches that
are of historical importance because they laid the
foundations for symbolic models that subsequently be-
came influential. One early approach was based on
the assumption that listeners use pattern induction pro-
cesses to develop predictions for successive events in
melodies [26.10, 11]. These models attempt to define
formal languages for describing the patterns perceived
by humans in temporal sequences (such as music) and
use them to explain how these patterns are applied for
prediction. Simon and Sumner [26.11], for example, be-
gin with ordered alphabets for representing the range
of possible values for a particular musical dimension
(e.g., note names, note durations). Simon and Sum-
ner restrict their attention to the dimensions of melody,
harmony, rhythm and form and use alphabets for dia-
tonic notes, triads, duration, stress and formal structure.
The operations they consider are same (when the subse-
quent symbol is identical to the previous one) andNEXT
(the subsequent symbol is obtained by taking the next
symbol in the specified alphabet a specified number of
times). Sequences of symbols may then be described
more compactly as a sequence of these operations.

Deutsch and Feroe [26.10] extended the model of
Simon and Sumner in several ways, in particular defin-
ing structures as sequences of elementary operators and
sequence operators such as prime, retrograde, inver-
sion and alternation. They apply their pattern language
to various alphabets, corresponding to collections of
pitches, such as the major and (natural, harmonic and
melodic) minor scales, major, minor and diminished tri-
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ads, and seventh chords. They argue that the pattern
language facilitates processing in four ways:

1. Reduced redundancy of representation
2. Distinct alphabets may be invoked at different levels
3. Embedded sequence structures and their associated

alphabets may be encoded as chunks
4. The chunking of structures allows for the represen-

tation of configurations that satisfy proximity and
the differentiation of different members of the al-
phabet in terms of frequency.

Deutsch and Feroe propose that multiple representa-
tions may be formed by listeners who, according to the
model, will tend to choose the most parsimonious. The
acquisition of a representation is an ongoing process of
generation and testing of multiple hypothesized struc-
tural representations [26.12, 13].

26.1.3 Markov Modeling

Another early approach to modeling musical structure
was based on statistical learning and information the-
ory, in particular using information content and entropy
to measure the complexity of a musical style. It is in-
teresting to note that information theory was applied to
music as early as 1955 [26.14–17] just a few years af-
ter Shannon’s foundational work was published [26.18].
Typically, this approach involves representing a musical
work as a sequence of symbols drawn from an alphabet
(e.g., a melody might be represented as a sequence of
pitch symbols, harmonic movement as a sequence of
chord symbols). The learning task is to estimate a con-
ditional probability governing the next symbol in the
musical sequence, given the preceding symbols. Such
models (in various guises) have been highly influential
in terms of understanding predictive processing in hu-
man cognitive processing of music [26.19, 20].

It is possible to vary the length of the context
used in estimating the probability, known as the or-
der of the model (a zeroth-order model has no context,
a first-order model a context of one symbol and so
on). Usually the probabilities (i. e., the parameters of
the model) are estimated through statistical analysis
of a corpus of musical works. These models are also
known as Markov models because the probability of
an event is only dependent on the immediately previ-
ous context (the Markov property), or, in other words,
the model does not take into account any nonlocal de-
pendencies. Once a probability distribution has been
generated in a particular context, the entropy of that
distribution reflects the model’s uncertainty about the
following musical event before it arrives while the in-
formation content (the negative log probability) reflects

how unexpected the next note is, once it has arrived –
given a local model [26.21]. Note that the entropy and
information content of a musical event or sequence are
not properties of the music per se, but properties of the
music from the perspective of an underlying model.

It is interesting that one of the first nonmilitary
applications of early computers was software to gen-
erate music incorporating grammatical representations
of musical styles corresponding to probabilisticMarkov
models [26.22]. Early work using these models tended
to focus on fixed, low-order models with simple rep-
resentational building blocks (e.g., chromatic pitch) to
estimate and compare the average entropy of differ-
ent musical works and corpora [26.16, 23–26] rather
than dynamic prediction of ongoing sequential musical
structure.

More recent research addressed these limitations
by using variable-order Markov models, where the
order varies depending on the context to generate ac-
curate predictions dynamically throughout pieces of
music [26.27, 28]. Prediction performance may also be
improved by combining predictions from a long-term
model (trained on a large corpus of music in the style)
and a short-term model (which starts with an empty
model and learns incrementally from the current musi-
cal work) [26.27, 28]. The long-term model represents
the effects of long-term schematic exposure to a musi-
cal style while the short-term model reflects more local
learning of repeated structure within a musical work.
The probability distribution generated by the two mod-
els may be combined using arithmetic or geometric
averaging, weighted by the entropy of the distribu-
tions [26.29].

Improved prediction performance can also be
achieved by allowing the model to estimate and com-
bine probabilities based on multiple features of the
musical surface. Multiple viewpoint frameworks were
originally developed by Darrell Conklin [26.27, 30, 31]
to allow the integration of information from models of
different features (inspired in part by Ebcioğlu [26.32]).
The framework assumes a symbolic representation in
which music is represented as a sequence of discrete
events composed of a finite number of attributes each
of which may assume a value from a finite alphabet. For
example, a melody is often represented as a sequence of
notes, each of which is composed of a pitch, onset time,
duration and loudness.

A viewpoint is a mapping from a sequence of musi-
cal events to an element from the alphabet associated
with the viewpoint. Basic viewpoints are projection
functions associated with the attributes of the events
(i. e., pitch, onset, duration and loudness in the example
above). The framework also allows the specification of
derived viewpoints (e.g., pitch interval, contour, scale
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degree), which are derived from a basic viewpoint (e.g.,
pitch in this case). Note that some viewpoints may be
undefined at particular locations (e.g., pitch interval
for the first event in a melody). Test viewpoints are
viewpoints that return a Boolean value (e.g., whether
a note falls on a tactus beat or not) and threaded view-
points represent a base viewpoint (e.g., pitch interval)
at points where a test viewpoint is true (e.g., pitch in-
terval between notes falling on tactus beats) thereby
allowing for sequences of nonsequential events. Finally,
linked viewpoints represent the Cartesian product of
two or more primitive viewpoints – for example, a link
between pitch interval and scale degree will have an al-
phabet composed of pairs, whose first element is a pitch
interval and whose second is a scale degree.

When modeling music with a multiple viewpoint
system, separate models are constructed for each view-
point included in the system and the resulting distri-
butions are combined in much the same way as the
long-term and short-term model outputs are combined.
The distributions are first mapped back into distribu-
tions over the alphabet associated with the basic feature
from which they are derived (e.g., pitch in the above
examples) so that they can be combined. Typically,
the viewpoint models are combined in a first stage
separately for the long- and short-term models, which
are then combined [26.27, 28, 33]. Multiple-viewpoint
models have been developed for the domains of melody,
harmony and voice leading [26.28, 33, 34].

When configured appropriately and trained on rel-
evant corpora, these methods both improve prediction
performance of the models [26.27, 28] and also ac-
count accurately for listeners’ pitch expectations in
melody [26.28, 35–40]. In some cases, the model pa-
rameters that optimize prediction performance do not
improve fit to human perception and vice versa [26.28]
suggesting that human expectation may be subject to
constraints (such as memory or representational limita-
tions) that prevent optimal prediction.

26.1.4 Beyond Simple Markov Models:
Hidden Markov Models
and Dynamic Bayesian Networks

The models of the Markov and n-gram family discussed
in Sect. 26.1.3 are essentially equivalent to probabilistic
versions of strictly local grammars (Chap. 25). One im-
portant feature of Markov models is that they can only
model local sequential dependencies and do not assume
any underlying deep structure (hidden variables). Al-
though they operate directly on surface symbols, it is
possible to use multiple viewpoint frameworks to allow
such models to operate on nonsequential events (e.g.,
notes on tactus beats or phrase-final events, [26.27,

28]) and on representations of higher-order structure
(e.g., phrase classes). However, although some of these
formal limitations in expressive power may be ad-
dressed in part with the multiple-viewpoint approach,
more expressive models of sequential structure have
been developed in machine learning research, many of
which have been applied to music. In the Chomsky hi-
erarchy, the different model classes (from finite-state
to finite-context) assume an underlying deep structure
(represented using nonterminal symbols) that predicts
the surface terminal symbols (Chap. 25); in an analo-
gous way, many modeling approaches take advantage
of an explicit representation of deep structure in music.

One well-known example is hidden Markov mod-
els (HMMs, e.g., [26.41, 42]; for an introduction see the
comprehensive review by [26.43]), which correspond to
probabilistic extensions of finite-state automata. As an
extension of Markov models, the hidden Markov model
assumes the Markov transition matrix not as a model
characterizing transitions between surface symbols (as
in the visible Markov models described above), but as
transitions between deep structural (hidden) states that
themselves emit surface symbols from associated emis-
sion distributions over the terminal alphabet. In other
words, it assumes a Markov model as the underlying
deep structure of states that govern the symbol distribu-
tion over subsections of the sequence.

HMMs have been employed to model various as-
pects of music, including, for instance, melodic struc-
ture [26.44, 45], meter and rhythm [26.45, 46], text
setting [26.47] and harmonic structure [26.34, 48, 49].
Modeling harmony in a corpus of jazz standards,
Rohrmeier and Graepel [26.34] found that a sim-
ple HMM modeling chord sequences exhibited barely
any overfitting of its training data. Dynamic Bayesian
networks (DBNs, [26.50]) generalize HMMs and con-
stitute a family of graphical models that model the
dependency structure of different (temporal) deep-
structural features. DBNs were applied to modeling
music by Paiement et al. [26.51] as well as Raczynski
et al. [26.52] to model polyphonic pitch structure. Fur-
thermore, DBNs can be straightforwardly adapted to
modeling the interaction of different parallel feature-
streams in the framework of HMMs. Rohrmeier and
Graepel [26.34] implemented a DBN modeling Jazz
harmony using features of duration and mode to im-
prove predictive power though the approach does not
extend to derived viewpoints.

Most of the models of sequence processing dis-
cussed so far drew their motivation from the modeling
of musical expectation (see also [26.53], for an ex-
tensive account of the role of expectation in music
perception). Models with a rich deep structure, how-
ever, may be used to understand other aspects of music
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processing such as inferring information encoded in the
deep structure of the sequence. For instance Raphael
and Stoddard [26.48] used a type of DBN for the infer-
ence of harmonic structure from the surface sequence
of events.Mavromatis [26.45] employed a model selec-
tion procedure to find the optimal topology for a HMM,
using this to draw theoretical and cognitive conclusions
regarding representation of deep structure. He applied
the model to two cases, the statistical learning and seg-
mentation paradigm used by Saffran and colleagues
(e.g., [26.54]) and metrical induction from rhythmi-
cal patterns in a corpus of Palestrina’s vocal music.
Mavromatis [26.46] extended this approach and drew
computationally informed conclusions regarding a dis-
cussion surrounding Renaissance meter.

In summary, while the application of deep structure
models and DBNs in cognitive music research is grow-
ing, there is a great potential to employ these models
(in combinationwith model selection) to understand the
role of deep structure in the representation and process-
ing of musical syntax.

26.1.5 Hierarchical Models

While computational implementations of Markovian
approaches (and derived approaches such as HMMs and
DBNs) have largely addressed the problem of modeling
effects of expectancy and prediction, many computa-
tional approaches have sought explicitly to implement
hierarchical generative models of music. The motiva-
tion derives from theoretical insights that tonal music
is organized in a hierarchical fashion and, accordingly,
cognitive models of music processing should be able
to account for such structural complexity. Moreover,
theoretical hierarchical accounts of music stress that hu-
man music cognition involves substantially more than
computation of sequential predictions including, in par-
ticular, the perception of large-scale processes (e.g.,
musical form), reductive listening, experience of hierar-
chical tension and recognizing similarity (see Chap. 25
for a discussion of various ways to motivate and ex-
plore the understanding of musical syntax). Accord-
ingly, computational models of hierarchical structure
have been inspired by a diverse array of modeling goals.

The hierarchical and generative branches of music
theory mainly trace back to Schenkerian theory [26.55,
56]. Apart from Schenkerian theory itself, there have
been three major lines of hierarchical modeling re-
search: the generative theory of tonal music (GTTM)
and tonal pitch space [26.57, 58], which originated
from the goal of framing Schenkerian analysis in
terms of formal linguistic approaches; Narmour’s the-
ory of melodic expectancy and complexity [26.13,
59]; and approaches to tonal harmony that employ

methods from generative linguistics and formal lan-
guage theory [26.5, 6, 60, 61]. Each of these formal
approaches have inspired efforts to build computational
models.

Schenkerian Analysis and Derivative Models
Schenkerian theory constitutes one of the earliest and
most comprehensive formal approaches to syntax in
tonal music and remains dominant in music-theoretical
teaching. It has been the object of several computational
approaches from the early days of computing to the
present day.

Early work by Kassler focused on understanding
Schenkerian-like operations of analysis from the per-
spective of formal languages [26.62]. He formalized
a subset of Schenkerian derivations with primitive-
recursive functions [26.63] and described a basic im-
plementation of a (presumably two-voice) model of
Schenkerian analysis in terms of primitive operations
on a matrix representation of pitch sequence, such
as an Ursatz axiom, arpeggiation, neighbor note pro-
longation, simplified interruption (termed articulation),
octave adjustment, bass ascent, mixture, etc. [26.62, 64,
65]. In a separate modeling attempt based on functional
programming, Smoliar and colleagues used a recursive
list structure of musical events that encoded a set of
Schenkerian elaboration operations in terms of Lisp
function calls. Drawing a direct formal analogy be-
tween (generative) linguistic parse trees and musical
structure, they developed a tree-based structural repre-
sentation of a Schenkerian reductive analysis [26.66–
68]. In an approach similar to Schenkerian analysis
techniques,Baroni and colleagues applied formal gram-
mars to melodic structure [26.69, 70]. However, none
of these early approaches resulted in a complete, fully
automatic functioning model of Schenkerian analysis.
Marsden [26.71] suggested that this may be due to to
the massive explosion of combinatorial complexity that
arises when encoding a formal account of Schenkerian-
style reductive analysis at the level of notes.

With greater computational resources available,
a number of researchers have recently returned to
the problem of implementing Schenkerian analysis.
Mavromatis and Brown [26.72] proposed a theoreti-
cal approach to modeling Schenkerian analysis with
probabilistic context-free grammars. However, their
model did not reach the stage of a full implementa-
tion due to issues of complexity (see [26.71]). Mars-
den [26.73] proposed a graph-theoretical representation
of reductive structures (termed E-Graph) suitable for
computational implementation. Subsequently, Mars-
den [26.74] proposed an expanded representation of
Schenkerian reduction in a generative framework. Us-
ing the limited case of short musical phrases, Marsden
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developed a preliminary implementation of Schenke-
rian analysis [26.74] and building on this theoretical
framework, a first proof-of-concept prototype was de-
veloped [26.71].

Recent research on implementing Schenkerian the-
ory includes Yust [26.75], who proposed the structure
of maximal outerplanar graphs (MOP) as represen-
tations for the structure of Schenkerian prolongation,
and the work of Kirlin (e.g., [26.76]) who has de-
veloped a corpus of 41 pieces annotated with cor-
responding Schenkerian analyses in machine-readable
format [26.77]. Kirlin and Jensen [26.78] use super-
vised probabilistic learning to uncover deep hierar-
chical musical structure, including an algorithm for
deriving the most probable analysis for a given piece
of music.

The Implication-Realization Model
Breaking with Schenkerian tradition (see [26.79]), Eu-
gene Narmour developed a distinct theoretical ap-
proach to modeling melodic expectancy [26.13] as
well as melodic complexity and reduction [26.59]. The
implication-realisation model is based on the implica-
tions that a melodic interval (the implicative interval)
has for the following interval (the realized interval) and
presents a detailed classification of interval pairs based
on the size and direction of the component intervals.
The model consists of two independent perceptual sys-
tems – the bottom-up and top-down systems of melodic
implication. While the principles of the former are held
to be automatic, unconscious and universal, the prin-
ciples of the latter are held to be learned and hence
culture dependent. Although the model is presented
in a highly analytic manner, it has psychological rel-
evance because it proposes hypotheses about general
perceptual principles that are precisely and quantita-
tively specified and therefore amenable to empirical
investigation [26.80, 81]. Research has also compared
the implication-realization model with variable-order
Markov models in terms of how well they account
for listeners’ pitch expectations [26.28, 36, 37]. Further-
more, Grachten and colleagues have examined the use
of the implication-realization model in a computational
model of similarity for use in music information re-
trieval [26.82].

Furthermore, Narmour [26.59] presents detailed
proposals for the ways in which basic musical struc-
tures (pairs of intervals) may form larger sequential
units (chains) and larger hierarchical units (transforma-
tions) based on the idea of closure, which occurs when
a structure does not generate a strong implication. How-
ever, these hierarchical aspects of the theory have been
somewhat neglected in terms of computational model-
ing and empirical evaluation.

The Generative Theory of Tonal Music (GTTM)
The GTTM [26.57] constitutes probably the most influ-
ential model in empirical musicology to date. It models
the perception of musical structure in term of the in-
teraction of four levels of structure: grouping structure,
metrical structure, time-span reduction and prolonga-
tional reduction (see [26.58, Ch. 1] for a review); these
levels are defined in terms of well-formedness rules ex-
haustively defining the (very large) set of well-formed
candidate analyses and preference rules that define
rules to select the best analysis from the well-formed
candidates. Although it is partly inspired by genera-
tive grammars for language, it is important to note
that the GTTM is not a formal grammar because no
(tree-defining) context-free rules are specified, and it is
unclear whether it could be developed into one. Further-
more, the GTTM is a model of the final representation
of a piece of Western tonal music as it might appear in
the mind of an idealized listener, enculturated in West-
ern music. It does not account for any effects of stylistic
enculturation nor make any predictions about the dy-
namic nature of structure perception during listening
(this was later addressed by Jackendoff [26.83]).

While the GTTM is specified to a much higher de-
gree of detail and specificity than Schenkerian theory,
it is still highly imprecise from a computational point
of view. For instance, it does not specify a ranking for
the preference rules and in some cases assumes hu-
man musical intuition for making analytical decisions.
These factors pose challenges for computational imple-
mentations of the GTTM. Nonetheless, Lerdahl [26.58]
has devised a model of musical tension that is based
on a complete GTTM analysis and predicts musical
tension based on local and global factors [26.58]. The
model has been found to predict participants’ contin-
uous ratings of musical tension for a small number
of musical pieces [26.84]. To date, the most exten-
sive progress towards an implementation of the GTTM
has been made by Hamanaka and colleagues [26.85,
86].

Generative Grammars for Music
Many authors have proposed recursive generative gram-
mars for modeling the hierarchical organization of
harmonic sequences, an idea whose essence goes
back to Riemann [26.87]. Following the formaliza-
tion of context-free rewrite grammars and the Chom-
sky hierarchy, a number of earlier approaches applied
these techniques to music (e.g., [26.69, 70, 88, 89]).
More recent approaches include Steedman [26.5, 6] and
Rohrmeier [26.60, 61]. Based on Steedman’s categori-
cal grammar formalism [26.90], Granroth-Wilding and
Steedman [26.91] implemented a model of jazz har-
mony that extends Steedman’s earlier theoretical gram-
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mars for blues harmony [26.6]. Similarly,De Haas et al.
developed an implementation of Rohrmeier’s gram-
mar for the purposes of music information retrieval,
such as harmonic similarity and transcription [26.92–
94]. Tidhar [26.95] implemented adapted versions of
a context-free grammar formalism for the parsing of
Couperin’s unmeasured preludes.

Other approaches have attempted to combine
context-free grammars with probabilistic learning.
Gilbert and Conklin [26.96], for example, have em-
ployed a probabilistic context-free grammar for mod-
eling melodic reduction. Bod [26.97] argues for
a memory-based approach to modeling melodic group-
ing structure as an alternative to the Gestalt approach
based on rules. He used grammar learning techniques to
induce the annotated phrase structure of the Essen Folk
Song Collection [26.98, 99]. Three grammar induction
algorithms were examined: first, the treebank grammar
learning technique, which reads all possible context-
free rewrite rules from the training set and assigns each
a probability proportional to its relative frequency in the
training set; second, the Markov grammar technique,
which assigns probabilities to context-free rules by de-
composing the rule and its probability by an n-th-order
Markov process, allowing the model to estimate the
probability of rules that have not occurred in the train-
ing set; and third, a Markov grammar augmented with
a data-oriented parsing (DOP) method for conditioning
the probability of a rule over the rule occurring higher
in the parse tree. A best-first parsing algorithm based
on Viterbi optimization was used to generate the most
probable parse for each melody in the test set given each
of the three models. The results demonstrated that the
treebank technique yielded moderately high precision
but very low recall (F D 0:065), the Markov grammar
yielded slightly lower precision but much higher recall
(F D 0:706), while the Markov-DOP technique yielded
the highest precision and recall (F D 0:810). A qualita-
tive examination of the folk song data reveals a number
of cases (15% of the phrase boundaries in the test set)
where the annotated phrase boundary cannot be ac-
counted for by Gestalt principles but that are predicted
by the Markov-DOP parser.

26.1.6 Neural Networks

Neural networks represent a different class of models
that have been used to understand the representation
and processing of musical syntax. Rather than basing
the model on a specific representation of musical struc-
ture (e.g., n-grams, production rules, music-theoretic
principles), neural networks are biologically inspired
in the sense that they take their motivation from basic
properties of the brain (e.g., parallel processing across

simple units, distributed representations, synaptic con-
nectivity, graceful degradation and Hebbian learning).
Note, however, that while they are biologically inspired,
most neural network models (especially so-called con-
nectionist models) are not actually biologically plau-
sible models of neural processing. Thus they remain
at Marr’s [26.100] algorithmic/representational level
rather than at the implementational/physical level of
description. At this level, one practical difficulty with
neural networks as simulations of cognitive processing
is that the nature of the learned representations are often
not easily interpretable.

Mozer [26.101], for instance, developed a model
based on a recurrent artificial neural network (RANN,
[26.102]) and used psychoacoustic constraints in the
representation of pitch and duration. In particular, the
networks operated over predefined, theoretically moti-
vated multidimensional spatial representations of pitch
(which emphasized a number of pitch relations includ-
ing pitch height, pitch chroma and fifth relatedness,
[26.103]) and duration (emphasizing such relations as
relative duration and tuplet class). These neural net-
works are trained within a supervised regime in which
the discrepancy between the activation of the output
units (the expected next event) and the desired acti-
vation (the actual next event) is used to adjust the
network weights at each stage of training. When trained
and tested on sets of simple artificial pitch sequences
with a split-sample experimental paradigm, the RANN
model outperformed simple digram models. In particu-
lar, the use of cognitively motivated multidimensional
spatial representations led to significant benefits (over
a local pitch representation) in the training of the net-
works. However, the results were less than satisfactory
when the model was trained on a set of melodic lines
from ten compositions by J.S. Bach and used to gen-
erate new melodies; the neural network architecture
appeared unable to capture the higher-level structure in
these longer pieces of music.

The question arises of whether these neural network
models provide good simulations of human process-
ing. In an artificial grammar learning paradigm of
melodic structure [26.40, 104], a simple recurrent net-
work model [26.102] was compared with an n-gram
model [26.28] and a chunking model [26.105]. Results
indicate that the n-gram model achieved by far the best
performance, yet the simple recurrent network exhib-
ited characteristic patterns of performance (including
errors) that were closer to the human level [26.106,
107].

One approach to addressing the apparent inability
of RANNs to represent recursive constituent structure
in music involves what is called auto-association. An
auto-associative network is simply one that is trained
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to reproduce on its output layer a pattern presented
to its input layer, generally forming a compressed
representation of the input on its hidden layer. For ex-
ample, training a network with eight-unit input and
output layers separated by a three-unit hidden layer with
the eight one-bit-in-eight patterns typically results in
a three-bit binary code on the hidden units [26.108].
Pollack [26.109] introduced an extension of auto-
association called recursive auto-associative memory
(RAAM), which is capable of learning fixed-width rep-
resentations for compositional tree structures through
repeated compression. The RAAM architecture con-
sists of two separate networks: first, an encoder network
that constructs a fixed-dimensional code by recursively
processing the nodes of a symbolic tree from the bot-
tom up; and second, a decoder network that recursively
decompresses this code into its component parts until
it terminates in symbols, thus reconstructing the tree
from the top down. The two networks are trained in
tandem as a single auto-associator. Large et al. [26.110]
examined the ability of RAAM to acquire reduced rep-
resentations ofWestern children’s melodies represented
as tree structures according to music-theoretic predic-
tions [26.57]. It was found that the trained models
acquired compressed representations of the melodies in
which structurally salient events are represented more

efficiently (and reproduced more accurately) than other
events. Furthermore, the trained network showed some
ability to generalize beyond the training examples to
variant and novel melodies although, in general, per-
formance was affected by the depth of the tree structure
used to represent the input melodies with greater de-
grees of hierarchical nesting leading to impaired repro-
duction of input melodies. However, the certainty with
which the trained network reconstructed events corre-
lated well with music-theoretic predictions of structural
importance [26.57] and cognitive representations of
structural importance as assessed by empirical data on
the events retained by trained pianists across impro-
vised variations on the melodies.

Recent developments in neural networks have led
to successful modeling of musical structure using re-
stricted Boltzmann machines (RBMs) [26.111, 112].
RBMs appear to be approaching the prediction perfor-
mance of the best-performing variable-order Markov
models described in Sect. 26.1.3 [26.112]. However,
these neural network models are difficult to analyze
and it remains to be seen how successful they will be
in modeling cognitive processing of musical syntax.
Nonetheless, they do at least demonstrate that such pro-
cessing can be implemented using parallel distributed
(and potentially nonsymbolic) representations.

26.2 Psychological Research

Computational models shed light on the plausibility
of specific assumptions about, and constraints on, the
nature of the cognitive representations and algorithms
underlying music perception and serve as analytical
tools to explore the types of syntactic structures present
in music. However, to understand the kinds of syn-
tactic structures that are perceived and represented by
listeners, it is important to compare empirically the
output of a model with the responses of listeners. Em-
pirical research on musical listening can help identify
the power, the limits and constraints of human percep-
tion and cognition of musical syntax. In this context,
computational models are useful for generating hy-
potheses and selecting stimuli that differ quantitatively
in terms of their syntactic properties (e.g., grammat-
icality, uniformity, see Chap. 25). Although there are
notable differences between language and music (e.g.,
in terms of lexical categories and the nature of semantic
content), cognitive scientific research on music follows
an analogous approach, exploring processing via a com-
bination of theoretical inquiry, computational modeling
and psychological/neuroscientific testing [26.113]. Fur-
thermore it has been suggested that music and language,

which are both sequential auditory forms of human
communication, may share similarities at more abstract
levels of cognitive and neural representation [26.114–
116], a point to which we return below.

Psychological research has established that encul-
turated listeners are sensitive to sequential structure in
music; however, research paradigms have sometimes
been driven by (overly) simple representational as-
sumptions. We will examine the evidence relating to
harmonic movement, melody and high-level form. One
topic that continues to attract debate is the extent to
which listeners are capable of representing hierarchi-
cal, nonsequential relationships in music. We examine
research on this question below.

26.2.1 Perception of Local Dependencies

As discussed in Chap. 25, harmony constitutes one
of the core building blocks in Western tonal music
and it has been studied in the context of different
theories of syntax. Accordingly, a large number of
experimental studies have focused on the perception
of harmonic structure from a variety of perspectives.

http://dx.doi.org/10.1007/978-3-662-55004-5_25
http://dx.doi.org/10.1007/978-3-662-55004-5_25
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At a local level, listeners are able to detect harmonic
relations between successive chords as evidenced by
longer reaction times to in-key than out-of-key har-
monic transitions in the paradigm of musical priming
studies ([26.117, 118], see [26.119] for a review). These
findings have been replicated with longer sequences of
chords and more complex harmonic relations [26.120,
121]. Furthermore, there is evidence that these har-
monic priming effects are affected both by the global
context of the prevailing key (which determines the
overall stability of a chord), by the local harmonic
context and by the rhythmic organization of the pro-
gression [26.120]. Research has also examined whether
these effects are best explained by learned properties of
harmonic movement or by sensory properties of the tar-
get chords [26.121–123]. The results consistently show
that the structural properties of harmonic movement
have a stronger effect than sensory influences such as
repetition priming [26.124, 125], even when efforts are
made to make these sensory influences very strong. Fur-
thermore, Tillmann et al. [26.126] used self-organizing
maps (a variety of neural network) to argue that these
priming effects can be explained by learning of tonal
organization through musical exposure.

We can ask similar questions about the percep-
tion of structure in melody. Early work on predictive
processing of musical structure focused on rules of
melodic organization and how they influence pitch ex-
pectations [26.13, 80, 81]. Empirical studies of these
rules have found that listeners’ melodic expectations
do generally exhibit influences of pitch proximity
(smaller intervals are more expected) and pitch re-
versal (large pitch intervals are expected to be fol-
lowed by smaller ones in the opposite registral direc-
tion) [26.53, 127]. Actual melodies also exhibit these
properties [26.128], possibly reflecting physical con-
straints of performance – the difficulty of produc-
ing large intervals accurately and tessitura constraints
producing regression to the mean after large inter-
vals [26.129–131]. Therefore, it remains possible that
listeners learn these regularities (or variants of them,
subject to cognitive constraints, [26.53, 132]), which
are then reflected in their pitch expectations.

In fact, there is empirical evidence of implicit
learning of regularities in musical melody and other
sequences of pitched events ([26.40, 54, 104, 133];
see [26.8] for a review on implicit learning of music).
Consistent with an approach based on statistical learn-
ing, melodic pitch expectations vary between musical
styles [26.134] and cultures [26.135–140], throughout
development [26.141] and across degrees of musical
training and familiarity [26.36, 37, 134]. Furthermore,
pitch expectations appear to be informed both by long-
term exposure to music [26.142] and by the encoding of

regularities in the immediate context [26.133]. As with
harmonic expectations, computational models relying
on nonhierarchical statistical learning of regularities
have proved highly successful in predicting listeners’
melodic expectations [26.28, 37, 38].

All of these effects can be accounted for by lo-
cal models corresponding to strictly local grammars.
Therefore, it is crucial to ask which aspects of hierar-
chical and nonlocal structures affect music listening and
processing.

26.2.2 Perception of Nonlocal Dependencies

There are several ways in which nonlocal dependencies
can be expressed in music, ranging from short chord
sequences (such as “I IV V/ii ii V I”, in which the
IV chord implies the V chord and not V/ii, and the
second I chord prolongs the initial one, rendering the
whole sequence a constituent of a prolonged tonic) to
dependencies between (sub)phrases (e.g., antecedent-
consequent patterns) and between larger formal units
like the parts of a minuet or a sonata [26.143]. It may
even be possible to understand these dependencies at
different timescales (chords, parts of phrases, phrases,
movements) as recursive instantiations of similar struc-
tures [26.57, 143].

Deutsch [26.144] describes experiments in which
subjects were presented with sequences of 12 notes,
which they recalled in musical notation. Half the se-
quences were structured in accordance with the model
of Deutsch and Feroe [26.10], described above, such
that a higher-level subsequence of four elements acted
on a lower-level subsequence of three or four elements
while the remaining sequences were unstructured. Se-
quences were presented in one of three conditions:
first, with no temporal segmentation; second, tempo-
rally segmented in accordance with tonal structure; and
third, temporally segmented in violation of tonal struc-
ture. The results demonstrated that recall was high in
the first and second conditions and low in the third
condition and for unstructured sequences, suggesting
that hierarchically structured sequences are better en-
coded in memory. However, on a similar task, Boltz and
Jones [26.145] have found that rule recursion has only
a modest effect on memory for melodies and only in
certain conditions.

Regarding large-scale form, researchers have stud-
ied the aesthetic judgments of musicians and nonmu-
sicians for pieces of music in which the large-scale
tonal form has been disrupted by rearranging or rewrit-
ing certain parts. These studies have been conducted
by rearranging the various movements of Beethoven
sonatas and string quartets [26.146], reordering the vari-
ations making up Bach’s Goldberg variations [26.147],



Part
C
|26.3

496 Part C Music Psychology – Physiology

altering the endings of excerpts from Romantic and
Classical works (1�6min) such that they start and end
in a different key ([26.148]; methodologically criti-
cized by Gjerdingen [26.149]) and using rearranged
versions of the opening movement of Mozart’s Sym-
phony in G Minor [26.150]. The results consistently
suggest that listeners gain as much pleasure from the al-
tered versions as the unaltered versions and musicians
are no more affected than nonmusicians by these dis-
ruptions [26.148, 150]. In a study of musicians listening
to original and rearranged versions of six keyboard
works by Handel [26.151] found that both versions
were deemed equally conforming to stylistic expecta-
tions and accuracy in judging whether the starting and
ending key were the same was at chance. These findings
suggest that there are severe constraints on the ability to
build cognitive representations of large-scale formal re-
lationships in music, even for musicians (though none
of these studies examined professional musicians with
a very high level of expertise).

However, there is crucial evidence that listeners
are sensitive to long-distance hierarchical dependencies
at the phrase-level and midrange timescales. Koelsch
et al. [26.152], examined responses to the final chord

in a pair of chorale melodies composed of two sub-
phrases, together with modified versions in which the
first phrase was altered to break tonal closure with
the final phrase. The results showed strong characteris-
tic differences between the two versions in the neural
response (the early right anterior negativity (ERAN),
Sect. 26.3.2) to the final chord. In addition, behav-
ioral measures showed that there were no differences in
emotional response (valence and arousal) between the
versions, suggesting that nonlocal harmonic dependen-
cies are independent of emotional expression. Further
behavioral measures showed that the final chord of the
original version was judged to close the sequence bet-
ter than the final chord of the altered versions (although
the difference was relatively small, pointing towards the
use of implicit rather than explicit knowledge). Fun-
damentally, because the harmonic dependencies in this
study exceed ten chords, it is impossible that nonveridi-
cal n-gram or Markov models could explicitly represent
the difference. Accordingly, this evidence for nonlocal
dependencies affecting the perception of phrase clo-
sure falsifies the assumption that simple local models
of harmony can adequately model human perception of
musical syntax.

26.3 Neuroscientific Research

26.3.1 Introduction

It is pertinent to ask what cognitive neuroscience can
tell us over and above research in experimental psy-
chology and cognitive science [26.153–156]. Clearly,
it can tell us something about the neural basis of psy-
chological processes; less obviously, but perhaps more
importantly, it can also tell us something about those
psychological processes themselves. Once a neural re-
sponse has been linked to a specific psychological
process (and this itself may require great effort to es-
tablish), then we can use it as an additional measure
of that process, alongside behavioral measures. Such
neural responses have the potential advantages that they
may bemore sensitive and less prone to various kinds of
bias than behavioral measures. Potential disadvantages
include the difficulty of establishing direct, specific re-
lationships between features of the neural response and
particular psychological processes.

26.3.2 Neural Basis of Syntactic Processing
in Music

Neuroscientific research has used electroencephalogra-
phy (EEG) to investigate event-related-potential (ERP)

responses to violations of harmonic syntax [26.157–
164]. Two characteristic brain responses have been
reported: an early anterior negativity (EAN) with a la-
tency of 150�280ms (sometimes right lateralized and
referred to as the ERAN – early right anterior negativ-
ity), and a later bilateral or right-lateralized negativity
(N5) with a latency of 500ms [26.157, 161]. The EAN
is thought to reflect the violation of harmonic expecta-
tion, while the N5 is thought to reflect the higher pro-
cessing effort needed to integrate unexpected harmonies
into the ongoing context [26.163]. The amplitude of
the EAN is related to the long-term transition probabil-
ity of the chord [26.165, 166] suggesting that it reflects
implicit learning of harmonic movement through ex-
perience (see Sect. 26.1.3 above). Consistent with this
proposal are findings that the EAN is attenuated (though
still present) in five to six-year-old children compared
to adults and accentuated in adult musicians, relative to
adult nonmusicians [26.159].

To date, less is known about the neural correlates
of structural processing in other aspects of music such
as pitch, rhythm and timbre. Early studies [26.167–
171] identified a late positive component (LPC) peaking
between 300�600ms at central and posterior sites in
response to stylistically unexpected notes in a melody.
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The amplitude and latency of the LPC are sensitive to
musical expertise, the familiarity of the melody, the de-
gree of expectancy violation [26.167], and also to the
timing of the unexpected note [26.168].

There is an important distinction between schematic
representations of the syntactic rules governing a mu-
sical style and veridical memory for the structure of
a familiar piece of music [26.172]. Miranda and Ull-
man [26.173] describe a functional dissociation be-
tween two ERP components: an early (150�270ms)
anterior-central negativity (i. e., the EAN) associated
with out-of-key violations in both familiar and unfamil-
iar melodies, and a subsequent (220�380ms) posterior
negativity elicited by both in-key and out-of-key vio-
lations of familiar melodies only. They suggested that
these two components are driven by violations of musi-
cal rules (of tonality/harmony) and of veridical memory
representations of familiar melodies respectively. In or-
der to focus exclusively on schematic acquisition of
syntax, Loui et al. [26.166] examined neural responses
to deviant melodic endings in pitch sequences gener-
ated according to an artificial (strictly local) grammar,
using pitches taken from the unfamiliar Bohlen–Pierce
scale. They report an EAN, whose amplitude increased
with greater learning of the grammar (measured by
degree of exposure and performance in a grammat-
icality decision task). Again, this suggests that the
EAN reflects a process of implicit statistical learning
of sequential dependencies in the auditory environment
(Sect. 26.1.3).

The EAN to violations of melodic syntax tends
to occur earlier (around 100ms) than to violations of
harmonic syntax (circa 180ms) [26.37, 38, 174], per-
haps indicating that single notes are processed more
quickly than chords. Using a computational model of
auditory expectation [26.28], which makes probabilis-
tic pitch predictions based on statistical learning, to
identify notes in melodies that varied systematically in
information content (IC), Omigie et al. [26.39] showed
a linear relationship between the amplitude of the EAN
and IC. Pearce et al. [26.37] reported an increase in
the amplitude of beta oscillations for high information
content (low probability) notes at a latency of around
500ms in centroparietal regions and in phase locking
in the same time window between electrodes located
over centroparietal and occipital regions. Again these
results are consistent with the proposal that these neural
indicators of syntactic processing reflect probabilistic
inference based on implicit statistical learning.

26.3.3 Syntax in Music and Language

EEG research has also addressed the question of
whether there exists an overlap in neural processing of

musical and linguistic syntax. Violations of syntax in
language often generate two characteristic ERPs: a left
anterior negativity (LAN) peaking around 300�450ms
at frontal scalp locations, and a positive-going deflec-
tion termed the P600 at a latency of about 600ms with
a posterior distribution. An early study suggested that
violations of harmonic syntax generate an increased
P600, which is very similar to that induced by viola-
tions of linguistic syntax [26.162]. More recent research
has presented music synchronously with visually pre-
sented sentences where each word coincides temporally
with a note or chord in the music. Introducing syn-
tactic violations in the music and language allows the
investigation of conditions where the violations are
congruent or incongruent in the two domains. This re-
search suggests that the LAN to syntactic violations in
language is reduced by unusual harmonic movement
(e.g., a Neapolitan chord, [26.175]) and also by low-
probability notes in melodic phrases [26.176]. There is
also evidence that the ERAN is reduced when presented
concurrently with a linguistic violation [26.177]. Inter-
estingly, these interactive effects are not in evidence
when musical violations are paired with semantic in-
congruities in language [26.176, 177].

Analogies have been drawn between the ERAN and
the early left anterior negativity (ELAN) often observed
in response to violations of syntax in language [26.178].
Interestingly, children with specific language impair-
ment not only show characteristic changes in the ELAN
to language [26.179] but also a reduced ERAN to
harmonic violations [26.180]. Broca’s aphasics also
show reduced neural responses to harmonic violations
in music [26.181] and there is evidence from magne-
toencephalography (MEG) research that the ERAN to
violations of harmonic syntax originates in Broca’s area
and its right hemisphere homologue [26.182]. Further-
more, functional magnetic resonance imaging (fMRI)
studies [26.183–186] suggest that violations of har-
monic syntax induce activation in the inferior frontal
cortex, which is also suggestive of a relationship be-
tween the neural processing of syntax in music and
language [26.114].

26.3.4 Grouping Structure

One other aspect of musical structure that has been
studied from the perspective of cognitive neuroscience
is grouping structure. Using EEG and MEG, Knösche
et al. [26.187] found that phrase boundaries in melodies
generated a late (500�600ms for EEG, 400�700ms for
MEG) positive deflection, which they termed the clo-
sure positive shift (CPS). Source localization suggested
that the CPS was generated by structures in the limbic
system, including anterior/posterior cingulate and pos-
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terior mediotemporal cortex. Similar neural responses
have been observed at syntactic phrase boundaries in
language [26.188], which seem to be related to prosodic
cues [26.189, 190]. A subsequent study showed that the

CPS to musical phrase boundaries is stronger in mu-
sicians than in nonmusicians [26.191], suggesting that
strategies for segmenting music are influenced by mu-
sical training.

26.4 Implications and Issues

We have reviewed empirical research on musical syntax
from computational, psychological and neuroscientific
perspectives. We close with a discussion of two is-
sues that naturally arise during this discussion: first, the
extent to which the different perspectives on musical
syntax converge; and second, the relationship between
syntax and semantics in music, which naturally invokes
the question of affective responses to music.

26.4.1 Convergence Between Approaches

One of the key challenges facing future research is
to integrate insights from these different methodolog-
ical and epistemological approaches. Computational
modeling allows us to implement theories of musical
structure and syntax and examine the behavior of the
implemented algorithm when supplied with musical ex-
amples. This can provide insights into optimal syntactic
representations and absolute constraints on the syntac-
tic structure of a musical style [26.192]. Psychological
research, on the other hand, can indicate the kinds
of syntactic forms and relationships that listeners are
capable of perceiving, representing and learning. Im-
plementing a psychological theory as a computational
model requires the theory to be precisely expressed
and also allows the theory to be tested and refined
through quantitative comparison of human and model
responses. It also allows comparison of human perfor-
mance at different levels of experience and expertise
with optimal syntactic parsing. Finally, neuroscientific
research provides information about the neural basis of
syntactic processing, which can impose constraints on
human syntactic processing and also provide data that
is more sensitive to implicit knowledge than behavioral
methods (e.g., [26.193, 194]. Therefore, future research
should triangulate more explicitly between computa-
tional modeling, psychological experimentation and
cognitive-neuroscientific investigation in further devel-
oping our understanding of musical syntax [26.37, 195].

26.4.2 Syntax, Semantics and Emotion

Musical styles can be said to possess syntax in an
analogous way to that in which natural languages (or
programming languages) do. However, music is dif-

ferent from natural language in that musical elements
do not usually carry clear referential and propositional
semantics in the way that linguistic atoms do. It is
sometimes possible to establish indexical references for
appropriately enculturated listeners – the old castle, the
sea, a storm, the spring, love, James Bond’s theme or
Brunhilde’s leitmotif being good examples taken from
various pieces of music. However, it is impossible to
communicate complex statements like had he not gone
to sea last spring and then returned to the old cas-
tle, James Bond would not have fallen in love with
Brunhilde (see [26.113, 196, 197] for further discus-
sion). Therefore, meaning in musical communication
is borne to a large extent by syntactic structure and
the listener’s perception of structural relations between
musical elements [26.198]. In particular, the syntactic
structure of music affords the communication of pat-
terns of tension and resolution, through the systematic
manipulation of the listener’s structural expectations,
based in turn on their internalized syntactic represen-
tations of the style.

There is one prominent theoretical perspective on
affective responses to music that is relevant here since
it relates the expression and perception of meaning
to predictive processing of musical structure, using
information-theoretic principles [26.53]. Building on
arguments made by Hanslick [26.199], Meyer [26.198,
200] examines from a theoretical perspective the dy-
namic cognitive processes in operation when we listen
to music and how these processes not only underlie
the listener’s understanding of musical structure but
also give rise to the communication of affect and the
perception of meaning in music. Meyer proposes that
meaning arises through the manner in which musical
structures activate, inhibit and resolve expectations in
the listener about forthcoming musical structures. He
notes that these expectations may differ independently
in terms of the degree to which they are passive or ac-
tive, their strength and their specificity. He contends,
in particular, that affect is aroused when a passive ex-
pectation induced by antecedent musical structures is
made active by it being temporarily inhibited or per-
manently blocked by consequent musical structures.
Meyer discusses three ways in which the listener’s ex-
pectations may be violated. The first occurs when the
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expected consequent event is delayed, the second when
the antecedent context generates ambiguous expecta-
tions about consequent events, and the third when the
consequent is unexpected. While the particular effect of
music is clearly dependent on the strength of the expec-
tation, Meyer argues that it is also conditioned by the
specificity of the expectation.

Meyer [26.200] discusses the relationship between
his theory of musical expectancy and concepts in
information theory. He starts with the suggestion
that [26.200, p. 414]:

once a musical style has become part of the habit
responses of composers, performers and practiced
listeners it may be regarded as a complex system of
probabilities

and that expectations arise out of these internalized
probability systems. In particular, he suggests that
a musical style may be conceived as a Markov process
(Sect. 26.1.3) and that experienced listeners possess in-
ternalized models of that process. The degree to which
hypothetical meanings provide ambiguous expectations
about consequent structures can be measured by en-
tropy (or uncertainty) [26.200, p. 416]:

The lower the probability of a particular consequent
[. . . ] the greater the uncertainty (and information)
involved in the antecedent-consequent relation.

An unexpected consequent conveys a maximum of in-
formation. The process of revaluation corresponds to

the feedback of information such that future behavior
is conditioned by the results of past events.

Meyer notes that uncertainty may arise from dif-
ferent sources. Thus, systemic uncertainty decreases
throughout the experience of a piece of music as the
listener’s model develops and the composer may delib-
erately introduce designed uncertainty to combat this
effect. Furthermore, the redundancy (lack of uncer-
tainty) inherent in a style serves to combat noise, be
it cultural (resulting from discrepancies between the
habit responses of a given listener and those operating
in the style) or acoustical. Witten et al. [26.201, p.71]
make a similar distinction between perceptual uncer-
tainty (that which is relative to a particular listener’s
model) and stylistic uncertainty (that which is inherent
in the musical style).

As noted above, the most obvious emotional re-
sponse to expectancy violation and uncertainty in
music is tension but according to Meyer [26.198],
these processes may also give rise to a range of spe-
cific emotional experiences including apprehension/
anxiety (p.27), hope (p.29), and disappointment (p.182)
(see also [26.202]). Convergingly, empirical research
has found that stylistically unusual chord progressions
do stimulate increases in physiological arousal [26.177]
while notes that have a low probability of occurrence
in performed melodic music [26.28] have been found
to be associated with increased arousal, reduced va-
lence, increased skin conductance and reduction in
heart rate [26.35].
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