
Journal of New Music Research, 2017
Vol. 46, No. 2, 135–155, https://doi.org/10.1080/09298215.2017.1305419

Compression-based Modelling of Musical Similarity Perception

Marcus Pearce1 and Daniel Müllensiefen2

1Queen Mary University of London, UK; 2Goldsmiths University of London, UK
(Received 2 March 2017; accepted 3 March 2017)

Abstract
Similarity is an important concept in music cognition research
since the similarity between (parts of) musical pieces deter-
mines perception of stylistic categories and structural rela-
tionships between parts of musical works. The purpose of
the present research is to develop and test models of musical
similarity perception inspired by a transformational approach
which conceives of similarity between two perceptual objects
in terms of the complexity of the cognitive operations required
to transform the representation of the first object into that of the
second, a process which has been formulated in information-
theoretic terms. Specifically, computational simulations are
developed based on compression distance in which a prob-
abilistic model is trained on one piece of music and then
used to predict, or compress, the notes in a second piece. The
more predictable the second piece according to the model, the
more efficiently it can be encoded and the greater the simi-
larity between the two pieces. The present research extends
an existing information-theoretic model of auditory expecta-
tion (IDyOM) to compute compression distances varying in
symmetry and normalisation using high-level symbolic fea-
tures representing aspects of pitch and rhythmic structure.
Comparing these compression distances with listeners’ sim-
ilarity ratings between pairs of melodies collected in three
experiments demonstrates that the compression-based model
provides a good fit to the data and allows the identification
of representations, model parameters and compression-based
metrics that best account for musical similarity perception.
The compression-based model also shows comparable per-
formance to the best-performing algorithms on the MIREX
2005 melodic similarity task.
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1. Introduction
Similarity is fundamental to the perception and understanding
of musical works. It is necessary for identifying repeated
patterns within music, which in turn informs the perception of
motifs, grouping structure and form. Without some measure
of similarity we would be unable to make cultural or stylistic
judgements about music or to categorise musical works by
genre. Consequently, similarity also plays a fundamental role
in Music Information Retrieval (MIR) where content-based
retrieval of music requires a similarity measure to compute
the distance between the query and potential matches in the
datastore. Such methods have largely relied on the extraction
of acoustic feature vectors from audio (e.g. MFCCs, chroma-
grams) and using machine learning methods to classify audio
files into groups. Reviewing this research, Casey et al. (2008)
suggest that: ‘To improve the performance of MIR systems,
the findings and methods of music perception and cognition
could lead to better understanding of how humans interpret
music and what humans expect from music searches’ (p. 692).

In the present research, a cognitively motivated compu-
tational model of musical similarity is developed and tested.
The model is based on information-theoretic principles captur-
ing the simplicity of the transformation required to transform
one melody into another. Specifically two musical objects
are similar to the extent that a model of one can be used to
generate a compressed representation of the other. Previous
research in MIR has used compression distance to classify mu-
sic using symbolic representations such as MIDI (Hilleware,
Manderick, & Conklin, 2012; Cataltepe, Yaslan, & Sonmez,
2007; Li & Sleep, 2004; Cilibrasi, Vitányi, & de Wolf, 2004;
Meredith, 2014) and audio representations (Ahonen, 2010;
Cataltepe et al., 2007; Li & Sleep, 2005; Foster, Mauch, &
Dixon, 2014). Compression distance is applied to high-level
musical features known to be used in cognitive representations
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of musical melody and the resulting system is evaluated as
a cognitive model by comparing its similarity ratings with
human judgements of perceived musical similarity.

The paper is organised as follows. First, different
approaches to modelling similarity in psychology and cogni-
tive science (Section 1.1) and the application of these models
in research on the perception of musical similarity specifically
(Section 1.2) are reviewed. A formal introduction to compres-
sion distance is provided (Section 1.3) and discussed in terms
of its use in MIR research on music classification (Section 1.4).
Section 2 contains a formal introduction to the IDyOM model
of auditory expectation and its extension to modelling com-
pression distance. Section 3 contains a summary of the method
of three existing empirical studies of similarity perception
(Müllensiefen & Frieler, 2004; Müllensiefen, 2004) providing
perceptual similarity ratings for pairs of melodies that are used
to assess the compression-based model. Section 4 presents a
new analysis of the resulting data which assesses different
compression-based similarity measures (varying in symmetry
and normalisation), representational features concerning the
pitch and timing of notes and other model parameters in terms
of fit to the perceptual similarity ratings (including compar-
isons with other models not based on compression distance).
Finally, the resulting compression-based models are compared
to existing similarity algorithms in terms of performance on
the MIREX 2005 melodic similarity task. Section 5 contains
a discussion of the results, their relation to other work and
important directions for future research.

1.1 Similarity in psychology and cognitive science

Similarity is a fundamental concept in psychology and cogni-
tive science (Goldstone & Son, 2005); perceiving similarity
between stimuli is necessary for categorisation of perceptual
objects and generalisation of predictive inference across ob-
ject categories. Broadly speaking, four approaches have been
taken to building cognitive models of psychological similar-
ity. First, geometric models (Shepard, 1987) represent ob-
jects of interest as points in a dimensionally organised metric
space, often constructed using multi-dimensional scaling
(MDS) on an original set of dimensions corresponding to ob-
ject features. Second, set-theoretic models were introduced by
Tversky (1977) to address concerns that subjective perception
of similarity does not always satisfy the assumptions (e.g.
the triangle inequality and symmetry) of geometric models.
In Tversky’s approach, similarity between two objects is a
function of the number of categorical features that are common
and distinctive between them. The third approach, alignment-
based models (Markman & Gentner, 1993; Goldstone, 1996),
were partly motivated by difficulties encountered by geomet-
ric and featural models in handling complex, structured repre-
sentations. Inspired by research on analogical reasoning, these
models emphasise the importance of matching between fea-
tures that have some kind of structural correspondence within
the two stimuli, following principles such as one-to-one map-
ping. Finally, transformational models conceive of similarity

in terms of the number or complexity of operations needed
to transform one object into another (Hahn & Chater, 1998;
Hahn, Chater, & Richardson, 2003). Recent incarnations of
this approach have operationalised the theory in terms infor-
mation theory (Chater, 1996; Chater, 1999) and Kolmogorov
complexity (Chater and Vitányi, 2003b; Chater and Vitányi,
2003a) as discussed further in Section 1.3. While alignment-
based models have tended to be used to model high-level con-
ceptual relations, research with transformational models has
focused on issues of perception, such as those considered here
(Goldstone & Son, 2005). Furthermore, the two approaches
may be complementary if one views alignment as a process
of minimising transformational distance (Hodgetts, Hahn, &
Chater, 2009).

1.2 Modelling musical similarity perception

This section contains a review of computational models of
musical, and in particular melodic, similarity perception that
have been developed to date. Current approaches rely on two
components: first, the representation of the musical surface;
and second, the way in which similarity is computed. Musical
representations vary from representations of melodic structure
(e.g. pitch, melodic contour, pitch interval, inter-onset inter-
val) to complex representations derived from music theory
(e.g. features computed according to Narmour’s implication-
realization model, Graachten,Arcos, and de Mántaras (2005)).
Different approaches to modelling similarity have also been
used, as discussed below.

1.2.1 Geometric models
Geometric models simply compute the Euclidean distance
between two melodies represented as points in a geometrical
space. In a study of similarity perception of folk song phrases,
Eerola and Bregman (2007) analysed correlations between the
behavioural similarity data and various structural features of
the musical phrases representing contour (mean pitch, melodic
direction), pitch content (entropy, range, proportion of tonic
and dominant pitches), interval content (mean interval size,
stepwise motion and triadic movement) and contour peri-
odicity. MDS identified two dimensions: the first correlated
significantly with pitch direction; the second was strongly
correlated with pitch range. This featural approach towards
musical similarity has a long tradition in ethnomusicology
where, for example, it has been used to assist with the clas-
sification of folk songs (e.g. Bartók and Lord, 1951; Jesser,
1990).

1.2.2 Set-theoretic models
Set-theoretic models often use the original formulation of a
ratio model by Tversky (1977) in which two objects a and
b are considered similar to the extent that they share salient
categorical features:
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σ (a, b) = f (A ∩ B)

f (A ∩ B) + α f (A B) + β f (B A)
, α,β ≥ 0

where A and B are the set of features exhibited by a and b,
respectively. The salience function f may reflect any factors
that contribute to overall perceptual salience. In a study of
musical plagiarism, Müllensiefen & Pendzich (2009) tested a
salience function based on the inverted document frequency
(Manning & Schütze, 1999). However, the use of statistical
information in defining salience blurs the boundary between
this model and the transformational model described below.

1.2.3 Alignment-based models
Recent approaches have drawn on research in MIR (Gómez,
Abad-Mota, & Ruckhaus, 2007) which has adapted
the Needleman–Wunsch–Gotoh algorithm (Needleman &
Wunsch, 1970; Gotoh, 1982) to music. For example, van
Kranenburg, Volk, Wiering, and Veltkamp (2009) used this
similarity algorithm to test various scoring functions based
on pitch features, harmonic relations, melodic contour, rhythm
and metrical accent.

1.2.4 Transformational models
Edit distance (e.g. Levenshtein distance) may be viewed as
a simple transformational model. Edit distance is defined as
the minimum number of operation (insertions, deletions and
substitutions) necessary to transform one sequence of symbols
into another sequence of symbols. Edit distance has found
many applications in symbolic MIR and analysis (e.g. Mon-
geau & Sankoff, 1990; Cambouropoulos, Crawford, & Il-
iopoulos, 1999; Uitdenbogerd, 2002). Although it has been
considered a ‘crude’ measure in the psychological literature
(Hahn et al., 2003), the results of Müllensiefen and Frieler
(2004) suggest that edit distance can predict perception of
melodic similarity fairly well. Nonetheless, compression dis-
tance provides a potentially more general and powerful ap-
proach. Although it has been used in MIR research on music
classification by genre, composer and style (see Section 1.4),
we are not aware of any research that has applied compression
distance to modelling music similarity ratings. The present
research aims to address this situation. The remainder of the
introduction provides a formal introduction to compression
distance (Section 1.3) and a discussion of its use in MIR
research on music classification (Section 1.4).

1.3 Compression distance

Li,Chen, Li, Ma, and Vitányi (2004) introduce a compression-
based measure of similarity called information distance.
Given two sequences x and y, the conditional Kolmogorov
complexity K (x |y) is the length in bits of the shortest binary
program that can generate x as its only output from y, while
K (x) is the special case when y is the empty sequence. The
information distance between x and y can be defined as the

shortest binary program that computes x given y and also
computes y given x . Since the Kolmogorov complexity is
non-computable, however, a compression algorithm is typ-
ically used to estimate the length of compressed encodings
of x and y. Research has used dictionary compression soft-
ware such as gzip based on Lempel–Ziv compression (Ziv
& Lempel, 1977), block-sorting compression software such
as bzip2 based on Burrows–Wheeler compression (Burrows
and Wheeler, 1994; Seward, 2010) or statistical compression
algorithms such as Prediction by Partial Match (PPM, Cleary
& Witten, 1984; Cleary and Teahan, 1997). Given such an
algorithm, the Normalised Compression Distance (NCD) be-
tween x and y is given by:

DNC D(x, y) = max(C(x |y), C(y|x))

max(C(x), C(y))
(1)

where C(x) and C(y) are the length of compressed encodings
of x and y, respectively, C(x |y) is the length of a compressed
encoding of x given a model trained on y and C(x |y) is the
length of a compressed encoding of x given a model trained
on y. NCD satisfies the properties of a metric (Li et al., 2004):

DNC D(x, y) = 0 ⇐⇒ x = y (the identity axiom);
DNC D(x, y) + DNC D(y, z) ≥ D(x, z) (the triangle inequality);
DNC D(x, y) = D(y, x) (the symmetry axiom).

For reasons of practicality when using existing compression
software, C(x |y) is often computed as C(xy) − C(y) giving
the following expression for NCD (Li et al., 2004):

DNC D(x, y) = C(xy) − min(C(x), C(y))

max(C(x), C(y))
.

1.4 Compression distance in MIR

MIR research has used NCD for music classification tasks.
Cilibrasi et al. (2004) used NCD to cluster MIDI files by genre
(Rock, Jazz and Classical) and composer (Buxtehude, Bach,
Haydn, Mozart, Beethoven, Chopin, Debussy) with some suc-
cess. They used a standard lossless compression algorithm
(bzip2) and binary MIDI files, which contain performance
instructions for digital instruments and other formatting re-
quirements in addition to relevant information about the pitch
and timing of musical events. These representational issues
plausibly limit performance (Li & Sleep, 2004) and certainly
raise questions about cognitive plausibility. Furthermore, the
evaluation consisted only of intuitive judgements about the
trees returned by the system. Subsequent research has ad-
dressed these limitations to some extent.

Li and Sleep (2004) used NCD, operationalised using
the LZW variant of LZ78 dictionary compression (Ziv &
Lempel, 1978; Welch, 1984), in combination with a 1 Near-
est Neighbour (1-NN) classifier to classify a collection 771
MIDI files into 4 categories: Beethoven, Haydn, Chinese and
Jazz. They compare both relative and absolute pitch repre-
sentations of melodies extracted from MIDI files by taking
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the highest sounding pitch at any given time point. The re-
sults were promising, yielding classification accuracies up
to 92.4%, with NCD outperforming rival methods based on
bigrams and trigrams and pitch interval representations out-
performing absolute pitch representations. The authors note
that the size of the respective categories in their data-set was
not balanced and that future research should examine whether
duration features also improves performance. Li and Sleep
(2005) applied the same method to an audio data-set consisting
of 100 30s examples from 10 musical genres. They investi-
gated MFCC representations using various codebook sizes
and audio frame lengths. Again the results were promising,
yielding classification accuracies up to 80.72%.

Subsequent work failed to replicate such relatively good
performance. Cataltepe et al. (2007) used NCD and a 10-NN
classifier to classify a data-set of 225 MIDI files by genre using
absolute pitch representations of melody extracted from MIDI
in the same way as Li & Sleep (2004) and audio files generated
from the MIDI files. Classification accuracy (75, 86 and 93%
for MIDI, audio and a combined classifier, respectively) was
worse than the performance of 95% previously obtained on
the same data-set using a feature-based approach (McKay &
Fujinaga, 2004).Ahonen (2010) used NCD with bzip2 to clas-
sify 1000 30s audio excerpts by genre (10 genres, 100 pieces
each) using MFCC features. The results yielded precision and
recall scores between 40 and 50%.

Hilleware et al. (2012) compared the performance of a
range of different clustering methods, including NCD with
bzip2 and a 1-NN classifier, for classifying 2198 folk songs
according to the type of dance they represent. Pitch inter-
val and inter-onset interval (IOI) representations were used.
They also examine an n-gram method due to Conklin (2013b)
which, given a set of class labels c and event sequences e,
uses supervised learning and Bayesian inference to compute
the posterior probability of the class label given the sequence,
p(c|e). Unlike NCD, it does not explicitly compute similarity
between different sequences. The results revealed that the n-
gram method outperformed all others, that higher-order n-
gram models (n = 5 vs n = 3) produced better performance
and that rhythmic features yielded better classification than
pitch features. The n-gram method yielded classification ac-
curacies of 66.1% (pitch interval) and 76.1% (IOI) compared
to 48% and 68% for NCD. Using an expanded set of corpora
labelled by geographical region and genre, Conklin (2013b)
obtains further performance improvements using the n-gram
method with larger sets of multiple viewpoint systems. In the
present research, compression distance is implemented within
a multiple viewpoint framework and applied to modelling
musical similarity perception.

Meredith (2014) suggests that rather than using general
purpose compression algorithms such as gzip and bzip2, better
classification performance might be obtained with compres-
sion algorithms specifically designed for producing compact
structural analyses of symbolically encoded music, such as the
SIA family of algorithms (Meredith, Lemström, & Wiggins,
2002). The algorithms were applied to the task of classi-

fying 360 Dutch folk songs into tune families assigned by
expert musicologists. A 1-NN classifier and leave-one-out
cross-validation were used. The results showed that NCD
classification performance was much better for SIA-based
compression algorithms (COSIATEC in particular) yielding
accuracies of up to 84%, than for bzip2, yielding a classifica-
tion accuracy of 13%. Louboutin & Meredith (2016) further
examine the performance of LZ77 (Ziv & Lempel, 1977),
LZ78 (Ziv & Lempel, 1978), Burrows–Wheeler compression
(Burrows & Wheeler, 1994) and COSIATEC using different
viewpoint representations (see Section 2.2) in classifying the
Dutch folk songs. Using single viewpoint models, their own
implementation of Burrows–Wheeler compression showed
improved classification accuracy over bzip2 (73%), LZ77 per-
formed reasonably well (up to 82% accuracy) but was outper-
formed by COSIATEC (85%). Ensembles of classifiers im-
proved performance with the highest classification accuracy
of 94% resulting from a combination of eight models (seven of
which used LZ77). Performance is still lower than the method
of Conklin (2013b) (see above) which achieved a classifica-
tion accuracy of 97% on the same corpus. In a second task,
Louboutin and Meredith (2016) use LZ77 and COSIATEC to
identify subject and countersubject entries in fugues by J. S.
Bach. Although COSIATEC vastly outperformed LZ77 when
notes were ordered by onset time and pitch, LZ77 showed
a slight performance advantage over COSIATEC when the
input was ordered by voice.

The present research differs from this previous work using
NCD in two important respects. First, while previous work
focuses on classification, the present research is concerned
with compression distance as a model of similarity itself. This
is important because the classification task used in the studies
reviewed above plausibly has a sizeable impact on the results.
For example, the fact that temporal features outperformed
pitch features in results reported by Hilleware et al. (2012) may
be related to the fact that the classification task was specifically
related to varieties of dance. Second, the present research is
focused on understanding the perception of musical similarity
while the work reviewed above has focused on practical tasks
such as genre classification, composer identification or stylis-
tic judgement (or in some cases, combinations of these) rather
than perception.Although in some cases (e.g. Meredith, 2014),
the target categories are derived from human judgements, the
knowledge-driven analytical decisions of highly trained musi-
cologists with specialist expertise is somewhat removed from
the direct perception of musical similarity under investigation
in the present research.

2. A Compression-based similarity model
2.1 Compression-based similarity measures

As discussed in Section 1.3, the implementation of compres-
sion distance requires a compression algorithm. Rather than
using real-world compression software, a model is used to
estimate the compressed length of musical sequences. This
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relies on the insight that it often proves useful to separate
universal, lossless data compression algorithms into two parts
(Bell, Witten, & Cleary, 1989; Rissanen & Langdon, 1981;
Sayood, 2012): first, a model that describes any redundancy
within the data (e.g. characters in text, bytes in a binary file
or notes in a melody); second, an encoder that constructs
a compressed representation of the message with respect to
the information provided by the model. Under this interpre-
tation, computing the compression-based similarity between
two items only requires the model, it does not require the
items actually to be compressed using the encoder. In the
present research, a probabilistic model is used that estimates
the probability of each element in the data.

In more detail, given a sequence x of length k, a model
is required that returns the probability of each event in x ,
p(xi ),∀i ∈ {1 . . . k}. Various models are possible but the
focus here is on finite-context models (Bell, Cleary, & Witten,
1990; Bunton, 1997), which estimate the conditional probabil-
ity of an event, given a context consisting of the n immediately
preceding events:

p(xi |xi−1
1 ) ≈ p(ei |ei−1

(i−n)+1). (2)

The information content of an event xi given a model m, is:

hm(xi ) = − log2 p(xi |ei−1
(i−n)+1) (3)

and represents a lower bound on the number of bits required to
encode a compressed representation of xi (Bell et al., 1990).
Assuming that the model m is initially empty, C(x) in Equation
(1) can be estimated by summing the information content of
each event in x :

C(x) =
k∑

i=1

hm(xi ).

C(x |y), the compression distance between x and another se-
quence y, is obtained using a model my with prior train-
ing on y, yielding an unnormalised, asymmetric compression
distance:

D1(x |y) = C(x |y)

=
k∑

i=1

hmy (xi ). (4)

Since the two sequences being compared may be of differ-
ent lengths, NCD (Li et al., 2004) normalises the compression
distance between two sequences x and y with respect to the
largest of their individual compressed lengths (see Equation
(1)). It is also possible to normalise directly with respect to
length. Li et al. (2004) consider this possibility and note that
it raises the question of whether to normalise with respect to
the length of x or y (or the sum or maximum) and also that
the resulting measure does not satisfy the triangle inequality.
The first question may be addressed by dividing the sum
expressed in Equation (4) by k, yielding the average per-event
compression distance:

D2(x |y) = 1
k

k∑

i=1

hmy (xi ). (5)

This is equivalent to an estimate of cross entropy used in com-
putational linguistics to assess the accuracy of a model trained
on a corpus in predicting a test set (Manning & Schütze, 1999).
A symmetric version of this distance follows naturally:

D3(x |y) = max(D2(x |y), D2(y|x)). (6)

This has efficiency advantages since C(x) and C(y) need not
be computed. Furthermore, the failure to satisfy the triangle
inequality is not necessarily a concern here, given that the
present goal is to model psychological similarity which may
also violate the triangle inequality (see, e.g. Tverskey & Gati,
1982).

In the present research, D1 (unnormalised, asymmetric), D2
(normalised, asymmetric) and D3 (normalised, symmetric)
are assessed as models of human musical similarity percep-
tion and compared to DNC D (see Equation (1)) as a point
of reference. To estimate the conditional probability of each
note in a melody (see Equation (2)), an existing probabilistic
model of auditory expectation called IDyOM (Pearce, 2005)
is used.1 IDyOM generates conditional event probabilities
using a variable-order Markov model (Begleiter, El-Yaniv,
& Yona, 2004) implementing the PPM* (Prediction by Partial
Match) data compression scheme (Cleary & Witten, 1984;
Cleary and Teahan, 1997; Bunton, 1997) to smooth together
estimates from models of different order, thereby avoiding the
limitations of fixed-order Markov models (Bell et al., 1990).

IDyOM also makes use of multiple viewpoint representa-
tions to enable the generation of predictions using
different parallel representations of musical structure (Conklin
& Witten, 1995; Pearce, Conklin, & Wiggins, 2005). This
allows us to assess high-level symbolic representations of
musical structure and identify those representations providing
the best fit to human perception of musical similarity. Note
that the use of different viewpoint representations does not
supply IDyOM directly with information about the sequential
structure of music, merely an enlarged set of representations
for learning sequential structure from one of the stimulus pairs,
which it can use to predict the other.

IDyOM has been found to predict accurately listeners’
melodic pitch expectations in behavioural, physiological
and EEG studies (e.g. Pearce, 2005; Pearce, Ruiz, Kapasi,
Wiggins, & Bhattacharya, 2010; Omigie, Pearce, & Stewart,
2012; Omigie, Pearce, & Stewart, 2013; Egermann, Pearce,
Wiggins, & McAdams, 2013; Hansen & Pearce, 2014). In-
formation content and entropy provide more accurate models
of listeners’ pitch expectations and uncertainty, respectively,
than rule-based models (e.g. Narmour, 1990; Schellenberg,
1996; Schellenberg, 1997), suggesting that expectation re-
flects a process of statistical learning and probabilistic gen-
eration of predictions (Hansen & Pearce, 2014; Pearce, 2005;

1The software and documentation are available at: https://code.
soundsoftware.ac.uk/projects/idyom-project.

https://code.soundsoftware.ac.uk/projects/idyom-project
https://code.soundsoftware.ac.uk/projects/idyom-project
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Pearce et al., 2010). IDyOM has also been used to predict
perceived phrase endings at troughs in the information content
profile (Pearce & Wiggins, 2006; Pearce, Müllensiefen, &
Wiggins, 2010). The present work extends IDyOM to mod-
elling perceived similarity between musical sequences using
the compression distances defined above. IDyOM has been
presented in detail in previous research (Pearce, 2005) but the
key features used in the present research are introduced in
Section 2.2.

2.2 IDyOM

IDyOM (Pearce, 2005) predicts the likelihood of individual
events in sequences of sounding events, implementing Equa-
tion (2). The limitations of fixed-order Markov models (Witten
& Bell, 1991) are avoided using smoothing to combine the
distributions generated by an order-h model with distributions
less sparsely estimated from lower order models. This has two
consequences: first, the order h can vary for each sequential
context (i.e. by choosing the longest matching context) mak-
ing IDyOM a variable-order Markov model; second, IDyOM
benefits both from the structural specificity of high-order con-
texts and the statistical power and generalisation afforded by
low-order contexts. IDyOM uses an interpolated smoothing
strategy (Cleary & Witten, 1984; Moffat, 1990; Cleary and
Teahan, 1997; Bunton, 1997) in which probabilities are esti-
mated by a weighted linear combination of all models with
order lower than the maximum order h selected in a given
context.

Following Conklin & Witten (1995), IDyOM incorporates
a multiple viewpoint framework that allows for modelling and
combining different features present in and derived from the
events making up the musical surface. Melodies are repre-
sented as sequences of discrete events each composed of a
conjunction of basic features. In the present work, the musical
surface consists of the basic features onset and pitch: melodies
are composed of events that have an onset time and a pitch.
A viewpoint is a partial function mapping from sequences of
events to the domain (or alphabet of symbols) associated with
the viewpoint. Basic viewpoints are simply projection func-
tions returning the attribute of the final event in the melodic
sequence. Derived viewpoints are partial functions mapping
onto a feature that is not present in the basic musical sur-
face but can be derived from one or more basic features. In
the present research, the following viewpoints derived from
pitch are used: interval and contour which represent the pitch
interval in semitones between a note and the preceding note
in the melody and pitch contour (rising, falling, unison), re-
spectively. The following viewpoints derived from Onset are
also used: IOI and IOI contour which represent the inter-
onset interval between a note and the preceding note in the
melody and whether the IOI increases, decreases or remains
the same as the preceding IOI in the melody, respectively.
Since the function is partial, it may be undefined for some
events (e.g. Interval and Contour are undefined for the first
note in a melody).

Acollection of viewpoints used for modelling forms a multi-
ple viewpoint system. Prediction within a multiple viewpoint
system uses a set of models, one for each viewpoint in the
system. The models are trained on sequences of viewpoint
elements and return distributions over the alphabet of the
individual viewpoints. Therefore, the resulting distributions
for derived viewpoints are mapped into distributions over the
alphabet of the basic viewpoint from which the viewpoint is
derived (e.g. pitch in the case of interval and contour). The
resulting distributions can then be combined for each basic
viewpoint separately. In the present work, this is achieved
using a geometric mean, weighted by the entropy of the indi-
vidual distributions such that models making higher entropy
(i.e. more uncertain) predictions are associated with a lower
weight (Conklin, 1990; Pearce et al., 2005). This yields a
single distribution for each of the basic features of interest
(pitch and onset in the present research).

Finally, IDyOM combines these distributions by computing
the joint probability of the individual basic features. For an
event sequence e j

1 ∈ ξ∗ of length j , composed of events in
an event space ξ , which itself consists of m basic viewpoints
τ1, . . . , τm :

p(ei |ei−1
1 ) =

m∏

l=1

pτl (ei |ei−1
1 )

Full details of these steps and other aspects of multiple view-
point systems not used in the present research are available
elsewhere (Pearce, 2005; Conklin & Witten, 1995).

3. Method
The compression-based IDyOM model is evaluated by com-
parison with data from three experiments in which human par-
ticipants judged the similarity of pairs of melodies. The human
rating data and the corresponding performance of a range of
feature-based similarity measures have been published pre-
viously (Müllensiefen & Frieler, 2004; Müllensiefen, 2004)
which enables us to compare compression distance with exist-
ing similarity models. As summarised below, the three exper-
iments differ in terms of the reference melodies used, how
the variants were constructed, the number of levels in the
rating scale and the sample of participants. For full details
see Müllensiefen & Frieler (2004), for Experiments 1 and 2,
and Müllensiefen (2004), for Experiment 3.

The similarity models examined in this research are deter-
ministic and do not contain any principled way of accounting
for variability within or between participants. Therefore for
the purposes of evaluation, a single perceptual similarity rat-
ing is required for each pair of stimuli. To ensure that the
mean ratings thus obtained were coherent, Müllensiefen &
Frieler (2004) applied well-known psychometric principles of
criterion validity, test–retest reliability and inter-participant
agreement (Messick, 1995; Rust & Golombok, 2008). As a
measure of criterion validity, they required participants to
give high similarity ratings for pairs of identical stimuli. As
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a measure of reliability, they required participants to give
consistent similarity ratings when a stimulus pair was pre-
sented a second time. Data from participants who did not meet
these criteria was not retained for further analysis (see Section
3.1 for details). For consistency with previous research, we
apply the same validity and reliability criteria as Müllensiefen
& Frieler (2004). We also assess inter-participant reliability
before averaging similarity ratings across participants (see
Section 4.1). There is a potential danger in selecting data
by these validity and reliability criteria that the results of
our study might model an unrepresentative sample of the
population, so we also checked those results against the full
set of data, finding no indication of bias (see the Appendix).

3.1 Participants

3.1.1 Experiment 1
Eighty-two participants were recruited from an undergraduate
programme in Musicology to take part in the experiment.
Twenty-three participants gave similarity judgements that sat-
isfied both criteria of reliability (a value of Kendall’s τ of
at least 0.5 for test–retest ratings of the same stimuli) and
criterion validity (at least 85% of identical melody pairs rated
at least 6 on the seven-point rating scale). These 23 participants
had a mean age of 23.2 years (SD = 3.8) and 10 were
female. They reported having played a musical instrument for
an average of 12.5 years (SD = 5.5) and a mean of six years
(SD = 5.4) of paid instrumental lessons. Fifteen participants
had received formal ear training.

3.1.2 Experiment 2
Sixteen participants were recruited from an undergraduate
programme in Musicology. Twelve participants satisfied the
criteria of validity and reliability: they rated a pair of identical
melodies as highly similar (minimum of 6 on the seven-point
rating scale) and gave consistent ratings for stimulus pairs that
were repeated on a later trial in the same session (a maximum
difference of 1 between the ratings). The 12 participants had a
mean age of 24.5 years (SD = 3.4) and 6 were female. They
reported having played a musical instrument for an average of
14.6 years (SD = 3.5) and a mean of 10.2 years (SD = 4.3) of
paid instrumental lessons.All participants had received formal
ear training.

3.1.3 Experiment 3
Ten participants were recruited from an undergraduate pro-
gramme in Musicology. Five participants satisfied the two
criteria of validity and reliability: they rated a pair of identical
melodies as highly similar (minimum of 9 on the 10-point
rating scale) and gave consistent ratings for stimulus pairs that
were repeated on a later trial in the same session (a maximum
difference of 1 between the ratings). These participants had a
mean age of 29 years (SD = 6.4) and were all male. They

reported having played a musical instrument for an average of
16.2 years (SD = 10.1) and a mean of 6.3 years (SD = 6.8) of
paid instrumental lessons.All participants had received formal
ear training.

3.2 Stimuli

3.2.1 Experiment 1
Fourteen existing melodies from Western popular songs were
chosen as stimulus material.All melodies were between seven
and ten bars long (15–20 s) and were selected to contain at
least three different phrases and two thematically distinct mo-
tives. Melodies were generally unknown to the participants
as indicated in a post-test questionnaire, except in a very few
cases. However, the ratings in these few instances did not
differ systematically from the remainder of the ratings in any
respect and therefore they were included. For each melody,
six comparison variants with ‘errors’ were constructed by
changing individual notes, resulting in 84 variants of the 14
original melodies. The error types and their distribution were
created according to the literature on human memory errors
for melodies (Sloboda & Parker, 1985; Oura & Hatano, 1988;
Zielinska & Miklaszewski, 1992; McNab, Smith, Witten,
Henderson, & Cunningham, 1996; Meek & Birmingham, 2002;
Pauws, 2002). Five error types with their respective probabil-
ities were defined: (1) Rhythm errors with a probability of
p = 0.6 to occur in any given melody; (2) pitch errors not
changing pitch contour (p = 0.4); (3) pitch errors changing
the contour (p = 0.2); (4) errors in phrase order (p = 0.2);
(5) modulation errors (pitch errors that result in a transition
into a new key; p = 0.2). Every error type had three possible
degrees: 3, 6 and 9 errors per melody for rhythm, contour
and pitch errors, and 1, 2 and 3 errors per melody for errors
of phrase order and modulation. For the construction of the
individual variants, error types and degrees were randomly
combined, except for the two types of pitch errors (with and
without contour change) that were never combined within a
single variant. The number of errors ranged from 0 to 16 with
at least 50 of the variants having between 4 and 12 errors.

3.2.2 Experiment 2
Two of the reference melodies in Experiment 1 were chosen as
reference melodies for Experiment 2. The variants for compar-
ison consisted of the same six variants as in Experiment 1 aug-
mented by six new variants derived from different reference
melodies but where an alignment-based similarity algorithm
(Sailer, 2006) indicated a relatively high similarity with a
different reference melody. Thus, Experiment 2 contained 24
melody pairs in total. Unlike Experiment 1, every variant was
transposed to a different key from the reference melody and
therefore participants could not make use of absolute pitch in-
formation. Transpositions were made to maximise the overlap
in pitch range between the reference melody and variant while
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also avoiding any patterns in keys or transpositions across
subsequent trials.

3.2.3 Experiment 3
Four reference melodies from Experiment 1 were used as
reference melodies for Experiment 3 and for each of these,
8 variants were created which were always modifications of
the original reference melody. This yielded 32 melody pairs
in total. The error probabilities for the modifications were the
same as in Experiment 1 except for interval errors with and
without contour change, which were merged to a single error
type with a probability of p = 0.6. All possible combinations
of the different degrees of interval and contour errors (0,
3, 6, 9 possible errors per variant for interval and contour,
respectively) were created and distributed evenly across the 21
melody variants with interval errors. This amounted to 10 er-
rors per variant on average (range: 0 to 25 errors). All variants
were presented transposed relative to the key of the reference
melody following the same principles as in Experiment 2.

3.3 Procedure

The general procedure was the same for all three experiments.
Participants were instructed to rate the similarity of pairs
of melodies on a seven-point scale with seven representing
maximal similarity. A 10-point similarity rating scale was
used in Experiment 3. The first item in each comparison pair
was always the reference melody and the second item of
each pair was the variant. Participants were informed that
sometimes the variants would contain many errors, sometimes
only a few errors and that there could be variants with no
errors at all. They were instructed to judge the degree of the
overall deviation of the variant from the reference melody.
Participants were encouraged to make use of the whole range
of the rating scale. None of the participants in any of the three
experiments indicated that they were unable to perform the
task or had any difficulty understanding what was required of
them. Each trial started with a single exposure to the original
reference melody. After 4 s of silence, trials consisting of pairs
of reference melody and variant were played to the subjects.
On each trial, there was an interval of 2 s of silence between
reference and variant and adjacent trials were separated by
4 seconds of silence. Participants were tested in groups in
their normal teaching rooms. Stimuli were played from a
CD over loudspeakers using a piano sound at a comfortable
listening level (around 65 dB). At the end of the testing ses-
sions, participants completed a questionnaire asking about
their previous and current musical activities. The retest session
for Experiment 1 took place one week after the first session
and was identical to that session, but used pairs of reference
melodies, except for one reference melody which was repeated
including all its variants. This made it possible to compare
the judgments of the same six stimulus pairs from the two
sessions. Participants in Experiment 1 were informed of the
retest in the subsequent week but they were led to believe

that they would be re-tested with entirely different melodies.
Experiments 2 and 3 were conducted within a single session.

4. Results
4.1 Inter-participant agreement

The compression-based model (like all other similarity models
discussed in this paper) is deterministic and lacks any princi-
pled way of accounting for variability in similarity perception
between or within participants. Therefore, similarity ratings
must be averaged across participants to obtain a single ag-
gregate perceptual similarity rating for each stimulus pair.
However, there must be high inter-participant agreement for
such averaging to be warranted. As described above, partici-
pants’ responses were assessed for criterion validity (‘partici-
pants must rate identical melodies as highly similar’) and test–
retest reliability (‘participants must give consistent ratings to a
melody pair when it is presented on two different occasions’).
While criterion validity (as it is operationalised here) ensures
high inter-participant agreement for pairs of identical stimuli,
test–retest reliability does not ensure high inter-participant
agreement for the reference-variant pairs.

Therefore, we computed four measures of inter-participant
reliability: (1) the Kaiser–Meyer–Olkin measure (KMO) re-
flects the global coherence in a correlation matrix and is fre-
quently used to assess the suitability of correlation matrices for
subsequent factor analysis; (2) the Measure of Sampling Ade-
quacy (MSA) indicates for each variable (i.e. participant) the
appropriateness of a subsequent factor analysis; (3) Bartlett’s
Test of Sphericity tests the null hypothesis that there are no
correlations among the variables (i.e. participants) in the pop-
ulation; (4) Cronbach’s alpha is a coefficient that indicates the
internal reliability of participants’ judgements. Table 1 gives
the values of the four measures for all three experiments. All
measures indicate a very high inter-participant agreement for
the data from each of the three experiments. Thus, partici-
pants who adhered to the criteria of test–retest reliability and
criterion validity also judged the melody pairs in very similar
ways.

4.2 Modelling with Known stimulus characteristics

Experiment 1 comprised 84 reference-variant stimulus pairs
where variants were created systematically by introducing
errors of different types. Because the number (and position) of
the errors are known for each variant, this provides an oppor-
tunity to evaluate the relative influence of the different error
types on human similarity judgements. Note that in most stud-
ies of melodic similarity that investigate naturally occurring
variants of melodies this is usually not possible because it is
generally unknown how a variant was derived from a reference
melody. Using linear regression we modelled participants’
mean similarity ratings as the dependent variable and used the
number of errors for the five error types (interval error, contour
error, rhythm error, phrase-order error and modulation error)
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Table 1. Measures of inter-participant agreement (internal reliability) for those participants whose ratings met the criteria of test–retest reliability
and criterion validity. For the KMO, a value of at least .5 is usually required and values of >.8 are considered ‘meritorious’ (Kaiser, 1974). A
significant p-value on the Bartlett test indicates that correlations exist in the population and for Cronbach’s alpha values of >.7 are generally
considered ‘good’.

Measure Experiment 1 Experiment 2 Experiment 3

KMO .89 .811 .851
Minimum MSA .802 .696 .77
Bartlett’s (p-value) <.001 <.001 <.001
Cronbach’s alpha .962 .979 .948

as predictor variables. All predictors are highly significant
(p < .001) and the model accounts for 79% of the variance
in the data, r(82) = .893, R2 = .799, R2

ad j = .789, p < .01.
Table 2 gives the β weights for the five predictor variables
which suggest that rhythm errors seem to have a smaller
influence on similarity judgements than all other error types.
Because the probability of interval errors and their range (0
to 9) and variance was different for contour, modulation and
phrase errors the relative sizes of their standardised and non-
standardised beta weights differ. However, on both metrics
errors of phrase error have a stronger influence on similarity
judgements than modulation errors.

In a subsequent modelling step, we add information about
the position of errors to the model. This follows findings
by Dewar et al. (1977) and Cuddy & Lyons (1981) that the
position of differences between two melodic sequences can
have an impact on melodic memory performance, especially
with differences towards the beginning of sequences being
more impactful (a primacy effect). Therefore, as an additional
factor, we took error density into account implementing the
hypothesis that the accumulation of errors in a shorter amount
of musical time (measured in bars) would lead to a decrease in
similarity ratings. We computed an indicator that measures the
average error position weighted by error density. The creation
of the error position indicator variable was only meaningful for
contour, interval and rhythm errors because errors were not
independent for phrase order and modulation errors. When
entered into the regression model along with the five error
frequency variables, only the weighted position error for in-
terval proved to be a significant predictor. A model including
weighted interval error position and the five error frequency
variables accounted for 81% of the variance in the mean
ratings, r(82) = .907, R2 = .822, R2

ad j = .808, p < .01.

4.3 Testing the compression-based model

The compression-based IDyOM model is tested by correlating
its output with the mean similarity ratings from Experiments
1-3. A logarithmic relationship was observed between com-
pression distance and the mean similarity ratings, so the com-
pression distance was log-transformed prior to all analyses
reported below. Three variants of compression distance are as-
sessed: first, an unnormalised, asymmetric measure D1 given
in Equation (4); second, a normalised, asymmetric measure

D2 given in Equation (5); and third, a normalised, symmet-
ric measure given in Equation (6). These are compared to
Normalised Compression Distance (NCD) as defined by Li
et al. (2004) and given in Equation (1). We also compare
the results to a subset of the similarity algorithms reported
in Müllensiefen & Frieler (2004), including the best-fitting
hybrid algorithms achieved using multiple regression.

Using these distance measures, three pitch representations
and three corresponding temporal representations are eval-
uated using IDyOM’s multiple viewpoint framework. The
pitch viewpoints are: pitch, representing the chromatic pitch
of a note as a MIDI note number (60 = middle C); Inter-
val, representing the size in semitones of the pitch interval
between a note and its predecessor, with sign distinguishing
ascending and descending intervals; and contour, representing
pitch contour as 1 for rising intervals, 0 for unisons and -1
for descending intervals. The temporal viewpoints are: Onset,
representing onset time in basic time units (crotchet = 24
units); IOI, representing the inter-onset interval between a note
and its predecessor; and IOI-Contour representing whether an
IOI is greater (1), smaller (−1) or the same (0) as the preceding
IOI. Combinations of these viewpoints are also assessed using
the procedures presented in Section 2.2: First, distributions are
combined for viewpoints predicting each basic viewpoint us-
ing the weighted geometric mean; second, a joint distribution
is computed for onset and pitch. It is hypothesised, based on
the results presented in Section 4.2, that pitch viewpoints will
yield a better fit to the data than temporal viewpoints and that
relative pitch representations (Interval, Contour) will fit the
data better in Experiments 2 and 3 (which used transposed
variants) than in Experiment 1.

4.3.1 Pitch representations
The results for pitch representations are shown in the upper
panels of Tables 3–6 for D1, D2, D3 and DNC D , respectively.

For Experiment 1, pitch in general yields the best fit with
lower correlation coefficients resulting from the addition of
interval and contour. The only exception is for D1 where the
combination of pitch and interval provides the best fit to the
empirical data. Contour representations perform especially
poorly. Overall, D3 using a Pitch viewpoint yields the highest
correlation with the mean similarity ratings, accounting for
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Table 2. Regression coefficients for a linear model predicting mean similarity ratings by types and numbers of errors.

Predictor Unstandardised β SE Standardised β p-value

Intercept 6.126 .162 <.001
Rhythm errors −.132 .023 −.294 <.001
Interval errors −.283 .026 −.606 <.001
Contour errors −.263 .031 −.466 <.001
Phrase order errors −.821 .09 −.47 <.001
Modulation errors −.761 .095 −.414 <.001

Table 3. Pearson correlation coefficients between D1 (asymmetric, unnormalised) and listeners’ mean similarity ratings in Experiments 1–3.
The top section shows results for viewpoints predicting pitch, the middle section results for viewpoints predicting Onset and the bottom section
shows the best performing viewpoint systems for predicting both pitch and onset. The three rows in the bottom section indicate the viewpoint
systems yielding the highest correlation for Experiments 1, 2 and 3, respectively.

Viewpoints Experiment 1 Experiment 2 Experiment 3

Pitch −.793 −.378 .296
Interval −.735 −.841 −.400*
Contour −.006 −.696 .419
Pitch, Interval −.800* −.710 −.071
Interval, Contour −.668 −.828 −.271
Pitch, Contour −.747 −.531 .315
Pitch, Interval, Contour −.773 −.743 −.035

Onset −.316 −.609 .088
IOI −.242 −.787 .088
IOI Contour −.069 −.756 .291
Onset, IOI −.297 −.738 .003
Onset, IOI Contour −.270 −.708 .073
IOI, IOI Contour −.227 −.794 .043
Onset, IOI, IOI Contour −.279 −.760 −.019

Pitch, IOI, IOI Contour −.769 −.501 .320
Interval, IOI, IOI Contour −.689 −.870* −.285
Interval, Onset, IOI, IOI Contour −.711 −.860 −.314

Note: Bold font indicates correlations that are significantly different from zero (p < .01), while an asterisk indicates the best-performing model
in the table for each experiment.

approximately 80% of the variance, r(82) = −.892, R2 =
.80, p < .01.

For Experiment 2, pitch models do not correlate signifi-
cantly with the mean similarity ratings for any of the distance
measures, while of the two relative pitch viewpoints, inter-
val yields higher correlations than Contour for all distance
measures. For D2 and D3, combining interval with contour
and pitch, both individually and in isolation, yields higher
correlations, while for DNC D this is only true for the addition
of contour. Overall, DNC D using interval and contour view-
points yields the highest correlation with the mean similarity
ratings, accounting for approximately 76% of the variance,
r(22) = −.869, R2 = .76, p < .01.

For Experiment 3, the correlations are in general much
lower. D1 does not yield any significant correlations. D2 yields
significant correlations for interval, while D3 and DNC D yield
significant correlations for interval and contour. For D3, but
not DNC D , the addition of pitch and contour, both individually
and in combination, yields stronger correlations than interval

alone. Overall, D3 using pitch, interval and contour view-
points yields the highest correlation with the mean similarity
ratings, accounting for approximately 66% of the variance,
r(30) = −.811, R2 = .66, p < .01.

4.3.2 Temporal representations
The results for temporal representations are shown in the
middle panels of Tables 3–5 and 6 for D1, D2, D3 and DNC D ,
respectively.

In general, temporal representations give smaller corre-
lation coefficients than pitch representations, especially for
Experiments 1 and 3. For Experiment 1, Onset yields the
strongest correlation for all similarity measures, with D2 ac-
counting for the greatest proportion of variance, 15%, in the
mean similarity ratings, r(82) = −.386, R2 = .15, p < .01.

For Experiment 2, temporal representations yield reason-
ably strong negative correlations with the mean similarity
ratings. For D1, IOI yields the strongest correlation for sin-
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Table 4. Pearson correlation coefficients between D2 (asymmetric, normalised) and listeners’ mean similarity ratings in Experiments 1–3. The
top section shows results for viewpoints predicting Pitch, the middle section results for viewpoints predicting Onset and the bottom section
shows the best performing viewpoint systems for predicting both pitch and onset. The three rows in the bottom section indicate the viewpoint
systems yielding the highest correlation for Experiments 1, 2 and 3, respectively.

Viewpoints Experiment 1 Experiment 2 Experiment 3

Pitch −.888* −.209 −.219
Interval −.806 −.844 −.775
Contour −.227 −.759 −.393
Pitch, Interval −.871 −.857 −.762
Interval, Contour −.764 −.851 −.781
Pitch, Contour −.857 −.469 −.293
Pitch, Interval, Contour −.849 −.857 −.771

Onset −.386 −.680 −.323
IOI −.295 −.608 −.325
IOI Contour −.173 −.298 −.476
Onset, IOI −.343 −.664 −.375
Onset, IOI Contour −.337 −.607 −.464
IOI, IOI Contour −.275 −.556 −.384
Onset, IOI, IOI Contour −.322 −.627 −.413

Pitch, Onset −.831 −.535 −.363
Pitch, Interval, Onset −.801 −.937* −.769
Pitch, Interval, Onset, IOI Contour −.803 −.904 −.828*

Note: Bold font indicates correlations that are significantly different from zero (p < .01), while an asterisk indicates the best-performing model
in the table for each experiment.

Table 5. Pearson correlation coefficients between D3 (symmetric, normalised) and listeners’ mean similarity ratings in Experiments 1–3. The
top section shows results for viewpoints predicting pitch, the middle section results for viewpoints predicting Onset and the bottom section
shows the best performing viewpoint systems for predicting both pitch and onset. The three rows in the bottom section indicate the viewpoint
systems yielding the highest correlation for Experiments 1, 2 and 3, respectively.

Viewpoints Experiment 1 Experiment 2 Experiment 3

Pitch −.892*† −.267 −.123
Interval −.792 −.836 −.769
Contour −.249 −.729 −.569
Pitch, Interval −.866 −.860 −.794
Interval, Contour −.753 −.840 −.771
Pitch, Contour −.859 −.518 −.257
Pitch, Interval, Contour −.842 −.856 −.811

Onset −.383 −.664 −.321
IOI −.305 −.638 −.339
IOI Contour −.196 −.417 −.527
Onset, IOI −.349 −.680 −.378
Onset, IOI Contour −.339 −.585 −.481
IOI, IOI Contour −.288 −.607 −.406
Onset, IOI, IOI Contour −.327 −.644 −.430

Pitch, Onset −.859 −.571 −.267
Pitch, Interval, Onset −.801 −.940*† −.755
Pitch, Interval, Onset, IOI Contour −.804 −.881 −.867*†

Notes: Bold font indicates correlations that are significantly different from zero (p < .01), while an asterisk indicates the best performing model
in the table for each experiment. A dagger indicates the best performing model overall for each experiment.

gle viewpoint systems, while the addition of IOI Contour
improves the correlation slightly. For D2, Onset yields the
strongest correlation and this is not improved by adding fur-
ther temporal viewpoints. For D3 both Onset and IOI yield

significant correlations and the combination of both improves
the strength of the correlation further. For DNC D , IOI yields
the strongest correlation and this is not improved by addition
of further viewpoints. Overall, D1 using IOI and IOI Con-
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Table 6. Pearson correlation coefficients between DNC D (Li et al., 2004) and listeners’ mean similarity ratings in Experiments 1–3. The top
section shows results for viewpoints predicting pitch, the middle section results for viewpoints predicting Onset and the bottom section shows
the best performing viewpoint systems for predicting both pitch and onset. The three rows in the bottom section indicate the viewpoint systems
yielding the highest correlation for Experiments 1, 2 and 3, respectively.

Viewpoints Experiment 1 Experiment 2 Experiment 3

Pitch −.877* −.047 .246
Interval −.793 −.864 −.749
Contour −.387 −.855 −.595
Pitch, Interval −.856 −.789 −.503
Interval, Contour −.770 −.869 −.743
Pitch, Contour −.862 −.257 .197
Pitch, Interval, Contour −.842 −.834 −.569

Onset −.383 −.664 −.326
IOI −.295 −.707 −.180
IOI Contour −.196 −.662 −.377
Onset, IOI −.338 −.696 −.321
Onset, IOI Contour −.344 −.598 −.364
IOI, IOI Contour −.298 −.700 −.264
Onset, IOI, IOI Contour −.330 −.677 −.339

Pitch, Onset, IOI, IOI Contour −.860 −.320 −.149
Interval, Contour, IOI Contour −.783 −.924* −.745
Interval, Onset, IOI Contour −.812 −.904 −.771*

Note: Bold font indicates correlations that are significantly different from zero (p < .01), while an asterisk indicates the best-performing model
in the table for each experiment.

tour viewpoints yields the highest correlation with the mean
similarity ratings, accounting for approximately 63% of the
variance, r(22) = −.811, R2 = .66, p < .01.

For Experiment 3, there are no significant correlations for
D1 and DNC D , while for D2 and D3, IOI Contour gives the
highest correlation. Overall, D3 using the IOI Contour view-
point yields the highest correlation with the mean similarity
ratings, accounting for approximately 28% of the variance,
r(30) = −.527, R2 = .28, p < .01.

4.3.3 Combined representations
Can a combination of pitch and temporal viewpoints yield
compression distances that better account for listeners’ per-
ceptual similarity? To answer this question, IDyOM is config-
ured to predict both the onset and the pitch of each note. This
analysis considers all possible viewpoint systems (i.e. sets of
viewpoints) capable of predicting both Pitch and Onset, of
which there are 49 for each experiment (147 in total). The
results are shown in the lower panels of Tables 3–6 for D1,
D2, D3 and DNC D , respectively.

For Experiment 1, combining pitch and temporal represen-
tations does not yield a better fit to the data for any of the
similarity measures. For Experiment 2, however, combining
pitch and temporal representations yields stronger correlations
than those obtained with pitch or temporal representations
used in isolation for all similarity measures. For Experiment
3, the same is true for all but D1, where no combination of
viewpoints produces a significant correlation.

For Experiment 2, D3 using a set of viewpoints compris-
ing pitch, interval and onset yields the strongest correlation
with the mean similarity ratings, accounting for approximately
88% of the variance, r(22) = −.940, R2 = .88, p < .01,
very slightly ahead of D2 with the same set of viewpoints.
DNC D exhibits a slightly weaker correlation using a differ-
ent set of viewpoints comprising Interval, Contour and IOI
Contour.

For Experiment 3, D3 again yields the strongest correlation
using a set of viewpoints comprising pitch, interval, onset
and IOI Contour, accounting for approximately 75% of the
variance, r(30) = −.867, R2 = .75, p < .01, ahead of D2
with the same set of viewpoints, which in turn is ahead of
DNC D using a subset of these viewpoints: Interval, Onset and
IOI Contour.

Overall, the models accounting for the greatest proportion
of the variance are D3 with pitch for Experiment 1, D3 with
pitch, Interval and Onset for Experiment 2 and D3 with pitch,
interval, onset and IOI contour for Experiment 3 (see Table
5).

4.3.4 Context length
We turn now to the question of context length in listeners’
structural representations of the stimuli by varying the order
of the best-fitting IDyOM models for each similarity measure.
In the previous analyses, IDyOM was configured as a variable-
order model (Begleiter et al., 2004; Bunton, 1997; Cleary
and Teahan, 1997), choosing the longest matching context for
each note prediction. In the present simulations, the maximum
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order used in prediction is limited to values ranging from 0 to 8
(although note that the model still uses smoothing to combine
output from models of order lower than the specified order
bound). The viewpoint systems used correspond to those with
the best performance on each experiment for each similarity
measure, marked with an asterisk in Tables 3–5 and 6 for D1,
D2, D3 and DNC D , respectively.

The results are shown in Figure 1. In all cases, there is
tendency for correlations to become stronger with increasing
order bound, especially for orders up to up to 3. Performance
generally converges above orders 3, 4 or 5 depending on the
similarity measure and experiment. Nonetheless, the variable
order model yields a stronger correlation than any lower order
model in all but two cases where models with a fixed order
bound yield numerically slightly higher correlations than the
unbounded-order model: D3 for Experiment 2 with Order 4,
r(22) = −.941, R2 = .89, p < .01, and DNC D for Experi-
ment 3 with Order 6, r(30) = −.777, R2 = .60, p < .01 (cf.
the corresponding values in Tables 5 and 6, respectively). In
all other cases, the unbounded-order model gives the strongest
correlation with the perceptual similarity ratings.

4.3.5 Comparison with similarity algorithms reported in
Müllensiefen and Frieler (2004)

To assess the relative performance of the compression-based
IDyOM model, it is useful to compare it with previous model
performance on the same dataset. Müllensiefen and Frieler
(2004) compare 34 feature-based similarity measures and hy-
brid measures which combine individual feature-based mea-
sures with the mean similarity ratings from Experiments 1 and
2 while Müllensiefen (2004) does the same for Experiment
3. For comparison with the compression-based model, we
reproduce here the performance of a simple, commonly-used
distance measure: edit distance (see Section 1.2) operating on
pitch information only. Edit distance is implemented using a
well-known dynamic-programming algorithm (see Mongeau
& Sankoff, 1990, for further details).

We also reproduce, for comparison, results for the best
performing hybrid similarity measure reported by Müllen-
siefen & Frieler (2004) termed opti3. This model consists
of a weighted linear combination of feature-based predictors
selected from a set of 34 features with weights derived from
multiple regression on the mean similarity ratings from Ex-
periments 1–3. opti3 combines three component features:
first, the edit distance of the implied bar-wise tonality of the
two melodies (harmcore); second, a measure that sums
the differences of the frequencies of pitch sequences (3-8
notes) occurring in one but not both melodies (ngrukkon);
and third, edit distance based on note duration classes (very
short, short, normal, long, very long; rhythfuzz). See Mül-
lensiefen & Frieler (2004) for full details of the individual
predictors and regression weights for this hybrid similarity
measure.

Pearson correlation coefficients between mean participant
ratings, edit distance and the hybrid similarity measureopti3

are given in Table 7 together with 95% confidence intervals
computed via bootstrap sampling using 1000 samples each. A
comparison with results from the compression-based models
in Table 5 indicates that opti3 shows slightly higher cor-
relations with participant ratings than the compression-based
model (D3) for Experiments 1 and 2, while the converse is
true for Experiment 3. These models yield higher correlations
than the edit distance measure for all experiments. However,
the confidence intervals given in Table 7 suggest that the
performance of all three similarity measures is statistically
indistinguishable, with the exception of Experiment 1 where
edit distance performs slightly worse than opti3 and the
compression-based model.

We also computed the mean similarity ratings for all partic-
ipants and found them to be almost identical to those reported
by Müllensiefen & Frieler (2004) for the subsets of partici-
pants who met the criteria of criterion validity and test–retest
reliability. The results are summarised in the Appendix.

4.4 Validation with the MIREX 2005 dataset

A useful way of validating the compression-based IDyOM
model is to apply it (using the best-fitting parameters from
Experiments 1-3) to similarity data gathered in a very dif-
ferent way. The Music Information Retrieval Evaluation eX-
change (MIREX Downie, 2008; Downie, Ehmann, Bay, &
Jones, 2010) is a framework for the formal evaluation of
MIR systems, consisting of a number of tasks defined each
year by the MIR community. Tasks include artist identifi-
cation, mood/genre classification, beat tracking and melody
extraction. In 2005, MIREX included a melodic similarity
task for which algorithms had to compute the similarity of
558 melodic incipits (the candidates) to each of 11 melodic
incipits (the queries). The incipits were taken from the RISM
A/II bibliographic database of music manuscripts from 1600.2

Algorithms were evaluated by comparison with human per-
formance on a task that involved ranking a subset of about 50
incipits by similarity to each query. The task was completed
by 35 musical experts and both the score and a midi rendition
were provided for each incipit. For each query, Typke, den
Hoed, de Nooijer, Wiering, and Veltkamp (2005) ordered the
candidates by their median rank, then by their mean rank and
then aggregated candidates into groups whenever the median
rank did not differ significantly (according to a Wilcoxon rank
sum test) from that of the candidate ranked one place higher.
For each query, a subset of relevant candidates was defined by
removing those incipits that were ranked by less than 25% of
the participants who ranked a given query (participants were
not required to rank all candidates for all queries). The stimuli
and data are available online.3

In MIREX 2005, algorithms were evaluated using four vari-
ants of recall (the proportion of relevant documents present in

2Répertoire International des Sources Musicales (RISM). Serie A/II,
manuscrits musicaux après 1600. http://www.rism.info/.
3http://old.typke.org/mirex05.html.

http://www.rism.info/
http://old.typke.org/mirex05.html
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Fig. 1. Correlation between mean similarity ratings and compression distance from the best-fitting IDyOM model on each experiment for each
similarity measure (see models marked with an asterisk in Tables 3–6 for D1, D2, D3 and DNC D , respectively) using order bounds ranging
from 0 to 8. The variable-order model with unbounded order is indicated by ‘nil’.

Table 7. Coefficients for the Pearson correlation between the edit distance and opti3 similarity measures reported by Müllensiefen & Frieler
(2004) and listeners’ mean similarity ratings in Experiments 1–3. Figures in brackets indicate 95 confidence intervals. See main text for details
of the algorithms. In the lower panel, results for the best-fitting D3 models for each experiment are reproduced from Table 5 for comparison.

Algorithm Experiment 1 Experiment 2 Experiment 3

Edit distance .797 (.729, .855) .895 (.758, .967) .802 (.659, .905)
opti3 .911 (.872, .941) .960 (.916, .981) .859 (.732, .945)
D3 .892 .940 .867

the result list) and precision (the proportion of results that are
relevant).

Average dynamic recall (ADR) is the average recall
over the first N candidates, where N is the number
of relevant candidates for a given query (Typke, 2007;
Typke, Veltkamp, & Wiering, 2006).
Normalised recall at group boundaries (NRGB) com-
putes recall at the position of the first candidate in each
group and averages the resulting values, weighting by
group size.

Average precision (AP) computes precision at the po-
sition of each relevant document in the result list and
averages the resulting values.
Precision at N Documents (PND) computes the pre-
cision of the top N results, where N in this case
corresponds to the number of relevant candidates for
a given query.

Each measure was computed individually for each of the 11
queries and then averaged to yield an overall performance
score for each algorithm. See Typke, Wiering, and Veltkamp
(2005) for details.
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Table 8. Results for the MIREX 2005 melodic similarity task taken from Typke et al. (2005). Algorithms are ordered by performance in terms of
ADR. Results for the compression-based model are in italics and superscript numbers indicate the rank for the four best-performing algorithms
in terms of NRGB, AP and PND. ADR is ADR, NRGB is Normalised Recall at Group Boundaries, AP is Average Precision and PND is Precision
at N Documents. See text for further details.

Algorithm ADR NRGB AP PND

D3(Pitch, Interval, Onset) 67.95 52.444 45.832 40.704

Graachten et al. (2005) 65.98 55.241 51.721 44.331

Orio (2005) 64.96 53.353 42.964 39.86
D3(Pitch, Interval, Onset, IOI Contour) 64.34 54.592 45.123 43.862

Suyoto & Uitdenbogerd (2005) 63.18 51.79 40.42 41.723

D3(Pitch) 57.93 44.87 31.14 31.02
Typke et al. (2005) 57.09 48.17 35.64 33.46
Lemström, Mikkillä, Mäkinen, and Ukkonen (2005) P3 55.82 46.56 41.40 39.18
Lemström et al. (2005) DP 54.27 47.26 39.91 36.20
Frieler & Müllensiefen (2005) 51.81 45.10 33.93 33.71

Table 8 compares the performance of the best-fitting D3
compression-based models from Experiments 1–3 (i.e. those
shown in Table 7) along with the algorithms originally evalu-
ated in MIREX 2005. The results show that the compression-
based model performs comparatively well. The D3(pitch, in-
terval, onset) model from Experiment 2 achieves the highest
ADR of all algorithms, coming in second place by AP and
fourth place by NRGB and PND. The D3(pitch, interval, on-
set, IOI Contour) model from Experiment 3 comes in fourth
place by ADR, third place by AP and second place by NRGB
and PND. This suggests that the compression-based model
generalises naturally to a very different kind of similarity data
for rather different stimuli.

5. Discussion
This paper introduces and evaluates a compression-based model
of musical similarity, based on an existing computational model
of auditory expectation, IDyOM (Pearce, 2005), which con-
sists of a variable-order Markov model (Begleiter et al., 2004)
using PPM data compression techniques (Cleary & Witten,
1984; Cleary and Teahan, 1997; Bunton, 1997) and operat-
ing within a multiple viewpoint system (Conklin & Witten,
1995). In previous research, IDyOM has been found to account
accurately for listeners’ expectations and uncertainty while
listening to music (Pearce, 2005; Pearce et al., 2010; Omigie
et al., 2012; Omigie et al., 2013; Egermann et al., 2013; Hansen
& Pearce, 2014). The present research extends IDyOM to
modelling similarity perception. The results from all three
experiments show that the compression-based model accounts
for a large proportion of the variance in the participants’mean
similarity ratings equivalent to that explained by previous
models (see below for further discussion of the differences
between these models). Overall, pitch viewpoints provide a
better fit to the perceptual similarity data than temporal view-
points (cf. Conklin, 2013a). For Experiments 2 and 3, multi-
ple viewpoint combinations of pitch and temporal viewpoints
yielded the best models of similarity perception, accounting

for more variance than single viewpoint models. For all three
experiments, the normalised, symmetric similarity measure
D3 provided the best compression-based simulation of per-
ceptual similarity, accounting for more variance than NCD
(Li et al., 2004), which is normalised with respect to the over-
all complexity (i.e, the compressed length) of the sequences
rather than just their length (in terms of number of notes).
Overall, the variable-order model provided the most accurate
simulation of perceptual similarity, although in many cases,
models with a lower order bound approached the performance
of the variable-order model. This compression-based IDyOM
model, using viewpoints selected on the data from Exper-
iments 2 and 3, also performed well on the MIREX 2005
melodic similarity task, achieving comparable performance
to the best performing algorithms.

The compression-based model’s performance for Experi-
ment 1 is only slightly lower (R2

ad j : .800 vs .808) than that
of a multiple regression model with predictors based on prior
knowledge of the error types, counts and positions used to
construct the stimuli. Across all experiments, its fit to the
human perceptual similarity data is statistically indistinguish-
able from (though numerically slightly lower than) that of
the optimal hybrid similarity measures reported in Müllen-
siefen & Frieler (2004). As described in Section 4.3.5, these
measures consist of weighted linear combinations of feature-
based predictors where the features were selected (from a set
of 34) and the weights determined using multiple regression
on the mean similarity ratings in each experiment. In machine-
learning parlance, least-squared regression is a supervised
procedure and since these features and weights were estimated
using the same training and testing set, the hybrid measures
are likely to be overfitted to the data which would compromise
the degree to which they generalise to other stimuli. IDyOM
itself and the compression-based similarity models evaluated
here operate in an entirely unsupervised manner in that they
are not optimised to fit the similarity data (with the exception
of viewpoint selection, which is discussed further below).



150 M. Pearce and D. Müllensiefen

Another difference is that the hybrid similarity measure
from Müllensiefen & Frieler (2004) (opti3) includes a fea-
ture (harmcore) that assumes knowledge of the metrical
and tonal structure of the melodies that is not assumed by the
compression-based models reported here (though viewpoints
could be added to represent these aspects of musical structure,
see below). More generally, the features making upopti3 are
very specific to musical sequences. One potential advantage
of the compression-based approach is that it introduces a
clear distinction between the similarity measure itself and
the representation of the sequences to which it is applied.
The former is universal in the sense that it can be applied
to sequences of any type (e.g. music, text, images, DNA and
so on). This is appealing on the grounds of parsimony and
in terms of providing a principled and universal approach to
cognitive modelling of psychological similarity (Chater and
Vitányi, 2003b).

It is possible, of course, that performance would be affected
by the details of the underlying compression model (see, e.g.
Louboutin & Meredith, 2016). IDyOM uses a model based
on PPM* data compression techniques (Cleary & Witten,
1984; Bell et al., 1990; Moffat, 1990; Cleary and Teahan,
1997; Bunton, 1997) and, in fact, the results indicate that
varying the order-bound has a significant impact on fit to the
perceptual similarity data. Future research should examine the
impact of using different models including dictionary-based
compression (e.g. Ziv & Lempel, 1977; Ziv & Lempel, 1978;
Welch, 1984), block-sorting compression (e.g. Burrows and
Wheeler, 1994) and Dynamic Markov Compression (DMC,
Cormack & Horspool, 1987). From a psychological perspec-
tive, it is important to understand the implications of such
model comparisons for the cognitive processes involved in
musical similarity perception. In this respect, DMC is inter-
esting since it is more powerful than finite-context models
(Bunton, 1996) in the sense that it recognises a broader class of
formal languages, placing it higher in the Chomsky hierarchy
(Hopcroft & Ullman, 1979).

This of course leaves the question of how the represen-
tations for a particular similarity judgement are determined.
The present models and empirical results do not provide an
answer to this question. However, we hypothesise that given
several different cognitive representations of incoming sen-
sory information, listeners select those that allow more ef-
ficient encodings of the sensory stimulus (i.e. those yield-
ing greater predictive performance or, equivalently, greater
compression, indicated by reduced information content). This
would provide an objective, data-driven means for selecting
representations independently of prior assumptions about the
sensory stimuli. This proposal connects with more general
research in cognitive science and neuroscience which views
perception as a process of acquiring predictive, compressed
representations of the sensory environment (Barlow, 1959;
Chater, 1999; Chater and Vitányi, 2003b; Friston, 2005) but
remains to be tested in future research on perception of musical
similarity.

One goal of the present research was to investigate which
viewpoints increase the model’s fit to the mean similarity
ratings as a way of identifying the cognitive representations
of melody underlying similarity perception. As hypothesised,
pitch viewpoints accounted for greater proportions of the vari-
ance than temporal viewpoints and relative pitch viewpoints
(Interval, Contour) yielded a better fit than absolute pitch
viewpoints (Pitch) for the transposed variants used in Exper-
iments 2 and 3. In Experiment 1, a single viewpoint system
(Pitch) produced a higher correlation than any multiple view-
point system, probably because the variants were not trans-
posed, so absolute pitch differences outweighed all others. In
Experiments 2 and 3, however, we see that combining view-
points, especially those based on both pitch and rhythm, leads
to models that more accurately simulate perceptual similar-
ity. The notable influence of rhythmic structure in improving
the pitch models in Experiments 2 and 3 may be a result
of the transposition de-emphasising the importance of pitch
information. This suggests that listeners construct cognitive
representations of melody that combine pitch and rhythmic
structure but only when the stimulus makes this advantageous
in terms of identifying differences between stimuli. However,
the precise cognitive operations involved in such represen-
tational selection remain unclear. Future research should also
examine whether better fit to the data can be obtained by search
through a wider space of viewpoints, including linked view-
points which represent tuples of component features. It would
also be interesting to examine the effects on compression-
based similarity of more complex representations of musical
structure, including metre, grouping and tonality, within the
multiple viewpoints framework.

Although different sets of viewpoints were selected for each
experiment, note that they are related as subsets of each other:
pitch in Experiment 1; pitch, interval and onset in Experiment
2; pitch, interval, onset and IOI contour in Experiment 3. This
may reflect the increasingly complex comparisons being made
due to the construction of the stimuli. Another possibility is
that some nuanced aspects of individuals’ similarity percep-
tion were averaged out in Experiment 1, due to the greater
sample size. In this respect, evaluation on the MIREX 2005
data is ambiguous, with the model from Experiment 2 per-
forming better by some measures (ADR andAP) and that from
Experiment 3 performing better by other measures (NRGB
and PND). It is clear that the pitch model from Experiment
1 performs worse, however, reinforcing the conclusion that
perceptual similarity involves representations of both pitch
and rhythmic structure. Further research is required to identify
optimal sets of viewpoints and how these are affected by the
choice of stimuli, participants and experimental design.

The effects of varying model order (the length of context
taken into account in generating conditional probabilities)
were also examined. By default IDyOM operates as a variable-
order Markov model adaptively selecting the longest matching
context in estimating conditional event probabilities. How-
ever, a maximum order bound can be imposed, thereby limit-
ing the degree of context taken into account when estimating
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conditional event probabilities. The variable-order model was
compared to models with order-bounds of 0–8 notes for each
of the compression-based distance measures for each experi-
ment. Although the variable-order model generally provides
the best model of perceptual similarity, in many cases models
with orders above 3–5 notes are numerically very close. Given
that the actual point of convergence varies according to exper-
iment and similarity measure, it may be advantageous to use
a variable-order model in the absence of a priori information.
Overall, this suggests that reasonably high-orders are required
to provide an accurate compression-based simulation of mu-
sical similarity perception. However, this may depend on the
stimulus structure. For example, higher-orders are necessary
for the compression-based models to detect (dis)similarity
based on phrase reordering and the required order may de-
pend on the length of phrases in the stimuli. Again, it seems
likely that a variable-order model will be advantageous in the
absence of a priori information about the stimuli (which was
not available to the participants in the present experiments).
Further research with specially designed stimuli is required
to better understand context-length effects in modelling hu-
man perception of similarity and how these interact with the
representational viewpoints used.

A feature of the compression-based transformational ap-
proach to modelling similarity is that the similarity between
pairs of stimuli need not be symmetric. This is potentially
interesting given evidence of asymmetries in cognitive judge-
ments of similarity (e.g. Tversky, 1977) and in areas of mu-
sic perception (Bharucha and Krumhansl, 1983; Krumhansl,
1983; Bharucha and Pryor, 1986; Dalla Bella & Peretz, 2005).
It is not possible to address this question in any great depth
here, since the stimulus pairs were presented only in one order.
However, the fact that D3, a symmetric measure, provided a
better fit to the data than D2, the corresponding asymmetric
measure, is suggestive that listeners’ similarity perception is
symmetric. Further research using stimulus pairs presented in
both orders is required to address this question in further detail.
The results across all Experiments also show that D2 (and
D3) simulated perceptual similarity much more accurately
than D1. This provides strong evidence that musical similarity
perception is normalised with respect to the length of the
stimuli. Although D3 (like D2) is normalised with respect to
the length of the pairs of stimuli, it does not necessarily obey
the triangle inequality. While the same may be true of psy-
chological similarity (Tverskey & Gati, 1982), this requires
further investigation for the case of musical similarity percep-
tion specifically. While D3 normalises with respect to length,
DNC D normalises with respect to the internal predictability
of the individual stimuli. That D2 and D3 provide a closer fit
than DNC D suggests that musical similarity perception is not
normalised with respect to other aspects of stimulus complex-
ity than length. Again, this requires further investigation with
experiments using stimulus materials specially constructed
specifically to address the question.

The fact that compression-based IDyOM models, using
features optimised on Experiments 2 and 3, also account well

for the MIREX 2005 similarity rankings, suggests that the
model generalises well to similarity data collected in a very
different way. In the MIREX task, participants ranked can-
didates in terms of similarity to 11 queries, rather than pro-
viding similarity ratings between pairs of stimuli. In fact, the
compression-based model from Experiment 2 yields a higher
ADR performance than any other algorithm. ADR reflects
the average proportion of relevant candidates in the result
list as its length is extended from one to N (where N is the
total number of relevant candidates for each query). This is
the preferred performance measure for the task (Typke et al.,
2005). The only algorithm that consistently outperforms some
variant of the compression-based model on NRGB, AP and
PND is that of Graachten et al. (2005). However, it is worth
noting that the parameters of this algorithm were optimized
on training data for a distinct set of 11 queries provided in
advance of the MIREX 2005 evaluation. As a result, the algo-
rithm may be overfitted to the MIREX data. Although the
hybrid similarity measure used by Frieler & Müllensiefen
(2005) used the same statistical approach (fitting predictors
to participants’ similarity ratings using linear regression) as
the opti3 measure described above, the resulting predictors
and weights are rather different from those of opti3.

In an analysis of the MIREX 2005 ground truth data, Mars-
den (2012) finds evidence for wide variation between partic-
ipants in terms of their similarity judgements. By contrast,
inter-participant agreement in the three experiments reported
here was high. Measures of criterion validity and test–retest
reliability defined a priori by Müllensiefen & Frieler (2004)
were applied to screen out participants who gave low similar-
ity ratings to pairs of identical stimuli or who gave inconsistent
ratings for repeated presentations of stimuli. Using this data
follows sound experimental and statistical practice (Messick,
1995; Rust & Golombok, 2008) and facilitates comparison
of the models with previously published results. However,
it also results in significantly smaller sample sizes, so we
computed the mean similarity ratings for all participants in
Experiments 1–3 and found them to be almost identical to
those reported by Müllensiefen & Frieler (2004). This shows
that the criteria of criterion validity and test–retest reliability
applied by Müllensiefen & Frieler (2004) did not introduce
any bias and that the ratings of participants who did not meet
the criteria did not significantly influence the mean rating in
any systematic way.

The participants providing similarity ratings (Experiments
1–3) were undergraduate musicology students while those
providing data for the MIREX 2005 ground truth were also
trained musicians. This is not uncommon in research on mu-
sical similarity (e.g. Eerola & Bregman, 2007) and has been
motivated in terms of achieving stable, consistent similarity
ratings (Müllensiefen & Frieler, 2004; Typke et al., 2005).
However, it potentially limits the scope of the present re-
sults, as it remains unknown whether they would generalise to
non-musicians. Lamont & Dibben (2001) systematically com-
pared melodic similarity ratings between musicians and non-
musicians and found very little effect of musical training for
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complex stimuli (extracts from a Beethoven piano sonata and
Schoenberg’s Klavierstück, op. 33a). It seems likely, there-
fore, that musicians’ similarity ratings for the much simpler
stimuli used in the present research would also generalise to
non-musicians. Nonetheless, the results should be replicated
using larger samples of participants with a broader range of
levels of musical training than those examined here. The goal
of the present research was not to model variability within
and between participants because none of the models tested
include any systematic way of accounting for such effects.
However, it is possible that the training of the models could be
biased by prior effects of exposure or attentional bias towards
particular features or structural analyses as a way of simulating
differences between participants. This remains an important
topic to be addressed in future research which may partly
account for findings that similarity judgements can depend on
interpretation (Marsden, 2012).

In summary, the present findings lend support to a
compression-based transformational model of the cognitive
processes involved in human perception of musical similar-
ity. The model builds on existing information-theoretic un-
derstanding of human perception of music (Pearce, 2005;
Hansen & Pearce, 2014) which conceives of music perception
as process of creating efficient, compressed cognitive repre-
sentations of structural and statistical regularities present in
sequential auditory input.
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Appendix A.

The mean similarity ratings used in Section 4 were computed
from subsets of participants who met criteria of criterion va-
lidity and test–retest reliability specified by Müllensiefen &
Frieler (2004) prior to conducting their data analysis (see Sec-
tion 3). This resulted in the removal of 59 out of 82 participants
for Experiment 1, four out of 16 participants for Experiment
2 and five out of 10 participants for Experiment 3. After the
present analysis was conducted, mean similarity ratings were
computed for all participants in each experiment. The two sets
of similarity ratings were highly correlated: r(82) = .987, p <

.01 for Experiment 1; r(22) = .993, p < .01 for Experiment 2;
and r(30) = .981, p < .01 for Experiment 3.

Table A1. Coefficients for the Pearson correlation between three
similarity algorithms (edit distance, opti3 and D3) and mean
similarity ratings for all participants in Experiments 1-3. Figures in
brackets indicate 95% confidence intervals. See main text for details
of the algorithms. The parameters of the D3 models correspond
exactly to those shown in Table 7.

Algorithm Experiment 1 Experiment 2 Experiment 3

Edit distance .777 (.698, .844) .894 (.758, .959) .789 (.595, .937)
opti3 .896 (.871, .940) .959 (.918, .979) .865 (.713, .934)
D3 .895 .941 .860

This suggests that the removal of participants who failed to
meet the validity and reliability criteria had very little effect on
the mean similarity ratings. Consequently model comparisons
run on the mean similarity ratings from all participants yielded
an almost identical pattern of results with only small numerical
differences from the results of the primary analysis reported in
Section 4. The overall results of this analysis are summarised
in Table A1 which corresponds to Table 7 in the primary
analysis.


