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ABSTRACT

We introduce a new model for melodic segmentation based
on information-dynamic analysis of melodic structure. The
performance of the model is compared to several existing
algorithms in predicting the annotated phrase boundaries in
a large corpus of folk music.

1 INTRODUCTION

The segmentation of melodies into phrases is a fundamen-
tal (pre-)processing step for many MIR applications includ-
ing melodic feature computation, melody indexing, and re-
trieval of melodic excerpts. In fact, the melodic phrase is
often considered one of the most important basic units of
musical content [16] and many large electronic corpora of
music are structured or organised by phrases, for example,
the Dictionary of Musical Themes by Barlow and Morgen-
stern [2], the Essen Folksong Collection (EFSC) [33] or the
RISM collection [28].

At the same time, melodic grouping is thought to be an
important part of the perceptual processing of music [11,
14, 27]. It is also fundamental to the phrasing of a melody
when sung or played. Melodic segmentation is a task that
musicians and musical listeners perform regularly in their
everyday musical practice.

Several algorithms have been proposed for the auto-
mated segmentation of melodies. These algorithms differ
in their modelling approach (supervised learning, unsuper-
vised learning, music-theoretic rules), and in the type of in-
formation they use (global or local).

In this paper, we introduce a new statistical model of
melodic segmentation and compare its performance to sev-
eral existing algorithms on a melody segmentation task. The
motivation for this model comparison is two-fold: first, we
are interested in the performance differences between dif-
ferent types of model; and second, we aim to build a hy-
brid model that achieves superior performance by combin-
ing boundary predictions from different models.

2 BACKGROUND

2.1 Evaluation Measures

In modern information retrieval,Precision, Recall, andF1
have become standard measures for assessing model perfor-
mance. These measures are usually defined in terms ofTrue

Positives, TP (i.e. the number of times a model correctly
predicts a positive outcome),False Positives, FP (i.e., the
number of times a model incorrectly predicts a positive out-
come) andFalse Negatives, FN (i.e. the number of times a
model incorrectly predicts a negative outcome).

precision =
TP

TP + FP
recall = TP

TP+FN

F1 =
2 · precision · recall

precision + recall

2.2 Models of Melodic Segmentation

GTTM: Melodic grouping has traditionally been modelled
through the identification of local discontinuities or changes
between events in terms of temporal proximity, pitch, du-
ration and dynamics [6, 16, 36]. Perhaps the best known
examples are the Grouping Preference Rules (GPRs) of the
Generative Theory of Tonal Music (GTTM) [16]. The most
widely studied of these GPRs predict that phrase boundaries
will be perceived between two melodic events whose tem-
poral proximity is more than that of the immediately neigh-
bouring events due to a slur, a rest (GPR 2a) or a relatively
long inter-onset interval or IOI (GPR 2b) or when the transi-
tion between two events involves a greater change in regis-
ter (GPR 3a), dynamics (GPR 3b), articulation (GPR 3c) or
duration (GPR 3d) than the immediately neighbouring tran-
sitions. Some of these GPRs have been quantified [14] and
studied in psychological experiments [11, 14].
LBDM: Cambouropoulos [6] proposes a related model in
which boundaries are associated with any local change in
interval magnitudes. TheLocal Boundary Detection Model
(LBDM) consists of achange rule, which assigns bound-
ary strengths in proportion to the degree of change between
consecutive intervals, and aproximity rule, which scales the
boundary strength according to the size of the intervals in-
volved. The LBDM operates over several independent para-
metric melodic profilesPk = [x1, x2, . . . , xn] wherek ∈
{pitch, ioi, rest}, xi > 0, i ∈ {1, 2, . . . , n} and the bound-
ary strength at intervalxi is given by:

si = xi × (ri−1,i + ri,i+1)

where the degree of change between two successive inter-
vals:



ri,i+1 =

{

|xi−xi+1|
xi+xi+1

if xi + xi+1 6= 0 ∧ xi, xi+1 ≥ 0

0 if xi = xi+1 = 0.

For each parameterk, the boundary strength profileSk =
[s1, s2, . . . , sn] is calculated and normalised in the range
[0, 1]. A weighted sum of the boundary strength profiles
is computed using weights derived by trial and error (0.25
for pitch and rest, and 0.5 forioi), and boundaries are
predicted where the combined profile exceeds a predefined
threshold.
Grouper: Temperley [36] introduces a model called
Grouper which accepts a melody, in which each note is rep-
resented by its onset time, off time, chromatic pitch and
level in a metrical hierarchy, and returns a single, exhaus-
tive partitioning of the melody into non-overlapping groups.
The model operates through the application of threePhrase
Structure Preference Rules (PSPRs):

PSPR 1 (Gap Rule): prefer to locate phrase boundaries at
(a) large IOIs and (b) large offset-to-onset intervals
(OOI); PSPR 1 is calculated as the sum of the IOI and
OOI divided by the mean IOI of all previous notes;

PSPR 2 (Phrase Length Rule):prefer phrases with about
10 notes, achieved by penalising predicted phrases by
|(log2 N) − 3| whereN is the number of notes in the
predicted phrase;

PSPR 3 (Metrical Parallelism Rule): prefer to begin suc-
cessive groups at parallel points in the metrical hier-
archy.

The first rule is another example of the Gestalt principle of
temporal proximity (cf. GPR 2 above); the second was de-
termined through an empirical investigation of the typical
phrase lengths in a collection of folk songs. The best anal-
ysis of a given piece is computed offline using a dynamic
programming approach where candidate phrases are evalu-
ated according to a weighted combination of the three rules.
The weights were determined through trial and error. By
way of evaluation, Temperley used Grouper to predict the
phrase boundaries marked in 65 melodies from the EFSC
achieving a recall of0.76 and a precision0.74.
Other Models: Tenney and Polansky [37] were perhaps
the first to propose models of melodic segmentation based
on Gestalt-like rules. Other authors have combined Gestalt-
like rules with higher-level principles based on parallelism
and music structure [1, 7]. Ferrand et al. [13] introduce an
approach based on the idea of ’melodic density’ (i.e., seg-
ment at points of low cohesion between notes) and compare
the methods performance to the LBDM. In contrast, Bod
[3] argues for a supervised learning approach to modelling
melodic grouping structure. A model based on data-oriented
parsing (DOP) yieldedF1 = 0.81 in predicting unseen
phrase boundaries in the EFSC. A qualitative examination
of the data revealed that 15% of the phrase boundaries pre-
dicted by the Markov-DOP parser cannot be accounted for
by Gestalt principles. These models are mentioned for com-
pleteness, but are not included in our comparison.

2.3 The IDyOM Model

We present a new model of melodic grouping (the Infor-
mation Dynamics Of Music model) that is inspired by pre-
vious research in musicology, music perception, computa-
tional linguistics and machine learning.

From a musicological perspective, it has been proposed
that perceptual groups are associated with points of closure
where the ongoing cognitive process of expectation is dis-
rupted either because the context fails to stimulate strong
expectations for any particular continuation or because the
actual continuation is unexpected [21, 22]. These proposals
may be given precise definitions in an information-theoretic
framework which we define by reference to a model of un-
supervised inductive learning of melodic structure. Briefly,
the models we propose output conditional probabilities of
an evente, given a preceding sequential contextc. Given
such a model, the degree to which an event appearing in a
given context in a melody is unexpected can be defined as
the information content, h(e|c), of the event given the con-
text:

h(e|c) = log2

1

p(e|c)
.

The information content can be interpreted as the contextual
unexpectedness or surprisal associated with an event. Given
an alphabetE of events which have appeared in the prior
experience of the model, the uncertainty of the model’s ex-
pectations in a given melodic context can be defined as the
entropy or average information content of the events inE :

H(c) =
∑

e∈E

p(e|c)h(e|c).

We propose that boundaries will occur before events for
which unexpectedness (h) and uncertainty (H) are high.

In addition to the musicological basis, there is a prece-
dent for these ideas in experimental psychology. Empirical
research has demonstrated that infants and adults use the im-
plicitly learnt statistical properties of pitch [32], pitch inter-
val [30] and scale degree [29] sequences to identify segment
boundaries on the basis of higher digram (n = 2) transition
probabilities within than between groups.

There is also evidence that related information-theoretic
quantities are important in cognitive processing of language.
For example, it has recently been demonstrated that the diffi-
culty of processing words is related both to their information
content [17] and the induced changes in entropy of gram-
matical continuations [15]. More specifically, experimental
work has demonstrated that infants and adults reliably iden-
tify grouping boundaries in sequences of synthetic syllables
[31] on the basis of higher transition probabilities within
than between groups.

Furthermore, research in machine learning and compu-
tational linguistics has demonstrated that algorithms that
segment before unexpected events can successfully iden-
tify word boundaries in infant-directed speech [4]. Simi-
lar strategies for identifying word boundaries have been im-
plemented using recurrent neural networks [12]. Recently,
Cohen et al. [8] proposed a general method for segmenting



sequences based on two principles: first, so as to maximise
n-gram frequencies to the left and right of the boundary; and
second, so as to maximise the entropy of the conditional dis-
tribution across the boundary. The algorithm was able to
successfully identify word boundaries in text from four lan-
guages and episode boundaries in the activities of a mobile
robot.

IDyOM itself is based onn-gram models commonly used
in statistical language modelling [18]. Ann-gram is a se-
quence ofn symbols and ann-gram model is simply a
collection of such sequences each of which is associated
with a frequency count. During thetraining of the statis-
tical model, these counts are acquired through an analysis
of some corpus of sequences (the training set) in the target
domain. When the trained model is exposed to a sequence
drawn from the target domain, it uses the frequency counts
associated withn-grams to estimate a probability distribu-
tion governing the identity of the next symbol in the se-
quence given then − 1 preceding symbols. The quantity
n− 1 is known as theorder of the model and represents the
number of symbols making up the context within which a
prediction is made.

However,n-gram models suffer from several problems,
both in general and specifically when applied to music. The
first difficulties arise from the use of a fixed-order. Low-
order models fail to provide an adequate account of the
structural influence of the context. However, increasing the
order can prevent the model from capturing much of the
statistical regularity present in the training set (an extreme
case occurring when the model encounters ann-gram that
does not appear in the training set and returns an estimated
probability of zero). In order to address these problems,
the IDyOM model maintains frequency counts during train-
ing for n-grams of all possible values ofn in any given
context. During prediction, distributions are estimated us-
ing a weighted sum of all models below a variable order
bound. This bound is determined in each predictive con-
text using simple heuristics designed to minimise uncer-
tainty. The combination is designed such that higher-order
predictions (which are more specific to the context) receive
greater weighting than lower-order predictions (which are
more general).

Another problem withn-gram models is that a trained
model will fail to make use of local statistical structure of
the music it is currently analysing. To address this prob-
lem, IDyOM includes two kinds of model: first, thelong-
term model that was trained over the entire training set in
the previous step; and second, ashort-term model that is
trained incrementally for each individual melody being pre-
dicted. The distributions returned by these models are com-
bined using an entropy weighted multiplicative combination
scheme [26] in which greater weights are assigned to mod-
els whose predictions are associated with lower entropy (or
uncertainty) at that point in the melody.

A final issue regards the fact that music is an inherently
multi-dimensional phenomenon. Musical events have many
attributes including pitch, onset time, duration, timbre and
so on. In addition, sequences of these attributes may have
multiple relevant dimensions. For example, pitch interval,

pitch class, scale degree, contour and many other derived
features are important in the perception and analysis of pitch
structure. In order to accommodate these properties, the
modelling process begins by choosing a set of basic fea-
tures that we are interested in predicting. As these basic
features are treated as independent attributes, their proba-
bilities are computed separately and in turn, and the prob-
ability of a note is simply the product of the probabilities
of its attributes. Each basic feature (e.g., pitch) may thenbe
predicted by any number of models for different derived fea-
tures (e.g., pitch interval, scale degree) whose distributions
are combined using the same entropy-weighted scheme.

The use of long- and short-term models, incorporating
models of derived features, the entropy-based weighting
method and the use of a multiplicative as opposed to a
additive combination scheme all improve the performance
of IDyOM in predicting the pitches of unseen melodies
[24, 26]. Full details of the model and its evaluation can
be found elsewhere [9, 23, 24, 26].

The conditional probabilities output by IDyOM in a
given melodic context may be interpreted as contextual ex-
pectations about the nature of the forthcoming note. Pearce
and Wiggins [25] compare the melodic pitch expectations
of the model with those of listeners in the context of sin-
gle intervals [10], at particular points in British folk songs
[34] and throughout two chorale melodies [19]. The results
demonstrate that the statistical system predicts the expec-
tations of listeners as least as well as the two-factor model
of Schellenberg [35] and significantly better in the case of
more complex melodic contexts.

In this work, we use the model to predict the pitch, IOI
and OOI associated with melodic events, multiplying the
probabilities of these attributes together to yield the over-
all probability of the event. For simplicity, we don’t use
any derived features. We then focus on the unexpectedness
of events (information content,h) using this as a bound-
ary strength profile from which we compute boundary loca-
tions (as described below). The role of entropy (H) will be
considered in future work. The IDyOM model differs from
the GPRs, the LBDM and Grouper in that it is based on
statistical learning rather than symbolic rules and it differs
from DOP in that it uses unsupervised rather than supervised
learning.

2.4 Comparative evaluation of melody segmentation al-
gorithms

Most of the models described above were evaluated to some
extent by their authors and, in some cases, compared quan-
titatively to other models. In addition, however, there exist
a small number of studies that empirically compare the per-
formance of different models of melodic grouping. These
studies differ in the algorithms compared, the type of ground
truth data used, and the evaluation metrics applied. Melucci
and Orio [20], for example, collected the boundary indi-
cations of 17 music scholars on melodic excerpts from 20
works by Bach, Mozart, Beethoven and Chopin. Having
combined the boundary indications into a ground truth, they
evaluated the performance of the LBDM against three base-



line models that created groups containing fixed (8 and 15)
or random (between 10 and 20) numbers of notes. Melucci
and Orio report false positives, false negatives, and a mea-
sure of disagreement which show that the LBDM outper-
forms the other models.

Bruderer [5] presents a more comprehensive study of the
grouping structure of melodic excerpts from six Western
pop songs. The ground truth segmentation was obtained
from 21 adults with different degrees of musical training;
the boundary indications were summed within consecutive
time windows to yield a quasi-continuous boundary strength
profile for each melody. Bruderer examines the performance
of three algorithms: Grouper, LBDM and the summed GPRs
quantified in [14] (GPR 2a, 2b, 3a and 3d). The output of
each algorithm is convolved with a Gaussian window to pro-
duce a boundary strength profile that is then correlated with
the ground truth. Bruderer reports that the LBDM achieved
the best and the GPRs the worst performance.

Another study [38] compared the predictions of the
LBDM and Grouper to segmentations at the phrase and sub-
phrase level provided by 19 musical experts for 10 melodies
in a range of styles. The performance of each model on
each melody was estimated by averaging the F1 scores over
the 19 experts. Each model was examined with parame-
ters optimised for each individual melody. The results indi-
cated that Grouper tended to outperform the LBDM. Large
IOIs were an important factor in the success of both models.
In another experiment, the predictions of each model were
compared with the transcribed boundaries in several datasets
from the EFSC. The model parameters were optimised over
each dataset and the results indicated that Grouper (with
mean F1 between 0.6 and 0.7) outperformed the LBDM
(mean F1 between 0.49 and 0.56).

All these comparative studies used ground truth segmen-
tations derived from manual annotations by human judges.
However, only a limited number of melodies can be tested
in this way (ranging from 6 in the case of [5] to 20 by [20]).
Apart from Thom et al. [38], Experiment D, there has been
no thorough comparative evaluation over a large corpus of
melodies annotated with phrase boundaries.

3 METHOD

3.1 The Ground Truth Data

We concentrate here on the results obtained for a subset of
the EFSC, databaseErk, containing 1705 Germanic folk
melodies encoded in symbolic form with annotated phrase
boundaries which were inserted during the encoding process
by folk song experts. The dataset contains 78,995 sounding
events at an average of about 46 events per melody and over-
all about 12% of notes fall before boundaries. There is only
one hierarchical level of phrasing and the phrase structure
exhaustively subsumes all the events in a melody.

3.2 Making Model Outputs Comparable

The outputs of the algorithms tested vary considerably.
While Grouper marks each note with a binary indicator (1 =

boundary, 0 = no boundary), the other models output a pos-
itive real number for each note which can be interpreted as
a boundary strength. In contrast to Bruderer [5] we chose
to make all segmentation algorithms comparable by pick-
ing binary boundary indications from the boundary strength
profiles.

To do so, we devised a method calledSimple Picker that
uses three principles. First, the note following a boundary
should have a greater or equal boundary strength than the
note following it: Sn ≥ Sn+1. Second, the note following
a boundary should have a greater boundary strength than
the note preceding it:Sn > Sn−1. Whilst these principles,
simply ensure that a point is a local peak in the profile, the
third specifies how high the point must be, relative to ear-
lier points in the profile, to be considered a peak. Thus the
note following a boundary should have a boundary strength
greater than a threshold based on the linearly weighted mean
and standard deviation of all notes preceding it:

Sn > k

√

∑n−1

i=1
(wiSi − Sw,1...n−1)2

∑n−1

1
wi

+

∑n−1

i=1
wiSi

∑n−1

1
wi

The third principle makes use of the parameterk which
determines how many standard deviations higher than the
mean of the preceding values a peak must be to be picked.
In practice, the optimal value ofk varies between algorithms
depending on the nature of the boundary strength profiles
they produce.

In addition, we modified the output of all models to pre-
dict an implicit phrase boundary on the last note of a melody.

3.3 The Models

The models included in the comparison are as follows:

Grouper: as implemented by [36];1

LBDM: as specified by [6] withk = 0.5;

IDyOM: with k = 2;

GPR2a: as quantified by [14] withk = 0.5;

GPR2b: as quantified by [14] withk = 0.5;

GPR3a: as quantified by [14] withk = 0.5;

GPR3d: as quantified by [14] withk = 2.5;

Always: every note falls on a boundary;

Never: no note falls on a boundary.

Grouper outputs binary boundary predictions but the out-
put of every other model was processed by Simple
Picker using a value ofk was chosen from the set
{0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4} so as to maximise F1 (and sec-
ondarily Recall).

4 RESULTS

The results of the model comparison are shown in Table 1.
The four models achieving mean F1 values of over 0.5

1 Adapted for use with Melconv 2 by Klaus Frieler.



Model Precision Recall F1
Hybrid 0.87 0.56 0.66
Grouper 0.71 0.62 0.66
LBDM 0.70 0.60 0.63
GPR2a 0.99 0.45 0.58
IDyOM 0.76 0.50 0.58
GPR2b 0.47 0.42 0.39
GPR3a 0.29 0.46 0.35
GPR3d 0.66 0.22 0.31
Always 0.13 1.00 0.22
Never 0.00 0.00 0.00

Table 1. The model comparison results in order of mean F1
scores.

(Grouper, LBDM, GPR2a, IDyOM) were chosen for further
analysis. Sign tests between the F1 scores on each melody
indicate that all differences between these models are sig-
nificant at an alpha level of 0.01, with the exception of that
between GPR2a and LBDM. In order to see whether further
performance improvements could be achieved by a com-
bined model, we constructed a logistic regression model in-
cluding Grouper, LBDM, IDyOM and GPR2a as predictors.
Backwards stepwise elimination using the Bayes Informa-
tion Criterion (BIC) failed to remove any of the predictors
from the overall model. The performance of the resulting
model is shown in the top row of Table 1. Sign tests demon-
strated that the Hybrid model achieved better F1 scores on
significantly more melodies than each of the other models.

5 DISCUSSION

We would like to highlight four results of this evaluation
study. First, we were surprised by the strong performance
of one of the GTTM preference rule, GPR2a. This points to
the conclusion that rests, perhaps above all other melodic
parameters, have a large influence on boundaries in this
melodic style. Consequently, all of the high-performing
rule-based models (Grouper, LBDM, GPR2a) make use of a
rest or temporal gap rule while IDyOM includes rests in its
probability estimation. Future research should undertakea
more detailed qualitative comparison of the kinds of musi-
cal context in which each model succeeds or fails to predict
boundaries.

Second, it is interesting to compare the results to those
reported in other studies. In general, the performance of
Grouper and LBDM are comparable to their performance
on a different subset of the EFSC reported by Thom et al.
[38]. The performance of Grouper is somewhat lower than
that reported by Temperley [36] on 65 melodies from the
EFSC. The performance of all models is lower than that of
the supervised learning model reported by Bod [3].

Third, the hybrid model which combines Grouper,
LBDM, GPR2a and IDyOM generated better performance
values than any of its components. The fact that theF1
value seems to be only slightly better than Grouper is due to
the fact that logistic regression optimises the log-likelihood
function for whether or not a note is a boundary given the

boundary indications of the predictor variables (models).It
therefore uses information about positive boundary indica-
tions (P) and negative boundary indications (N) to an equal
degree, in contrast toF1. This suggests options, in future
research, for assigning different weights toP and N in-
stances or including the raw boundary profiles of LBDM
and IDyOM in the logistic regression procedure. Another
possibility is to use boosting to combine the different mod-
els which may lead to better performance enhancements
than logistic regression.

Finally, it is interesting to note that an unsupervised
learning model (IDyOM) that makes no use of music-
theoretic rules about melodic phrases performed as well as
it does, in comparison to sophisticated rule-based models.
In comparison to supervised learning methods such as DOP,
IDyOM does not require pre-segmented data as a training
corpus. This may not be an issue for folk-song data where
we have large corpora with annotated phrase boundaries but
is a significant factor for other musical styles such as pop.
IDyOM learns regularities in the melodic data it is trained on
and outputs probabilities of note events which are ultimately
used to derive an information content (unexpectedness) for
each note event in a melody. In turn, this information-
theoretic quantity (in comparison to that of previous notes)
is used to decide whether or not the note falls on a boundary.

We argue that the present results provide preliminary ev-
idence that the notion of expectedness is strongly related to
boundary detection in melodies. In future research, we hope
to achieve better segmentation performance by providing
the statistical model with more sophisticated melodic rep-
resentations and examining the role of entropy (uncertainty)
in melodic boundary detection.
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[11] I. Deliège. Grouping conditions in listening to mu-
sic: An approach to Lerdahl and Jackendoff’s group-
ing preference rules.Music Perception, 4(4):325–360,
1987.

[12] J. L. Elman. Finding structure in time.Cognitive Sci-
ence, 14:179–211, 1990.

[13] M. Ferrand, P. Nelson, and G. Wiggins. Memory and
melodic density: a model for melody segmentation. In
N. Giomi F. Bernardini and N. Giosmin, editors,Pro-
ceedings of the XIV Colloquium on Musical Informat-
ics, pages 95–98, Firenze, Italy, 2003.

[14] B. W. Frankland and A. J. Cohen. Parsing of melody:
Quantification and testing of the local grouping rules
of Lerdahl and Jackendoff’sA Generative Theory of
Tonal Music. Music Perception, 21(4):499–543, 2004.

[15] J. Hale. Uncertainty about the rest of the sentence.
Cognitive Science, 30(4):643–672, 2006.

[16] F. Lerdahl and R. Jackendoff.A Generative Theory of
Tonal Music. MIT Press, Cambridge, MA, 1983.

[17] R. Levy. Expectation-based syntactic comprehension.
Cognition, 16(3):1126–1177, 2008.

[18] C. D. Manning and H. Schütze.Foundations of Statis-
tical Natural Language Processing. MIT Press, Cam-
bridge, MA, 1999.

[19] L. C. Manzara, I. H. Witten, and M. James. On the
entropy of music: An experiment with Bach chorale
melodies.Leonardo, 2(1):81–88, 1992.

[20] M. Melucci and N. Orio. A comparison of manual
and automatic melody segmentation. InProceedings
of the International Conference on Music Information
Retrieval, pages 7–14, 2002.

[21] L. B. Meyer. Meaning in music and information the-
ory. Journal of Aesthetics and Art Criticism, 15(4):
412–424, 1957.

[22] E. Narmour. The Analysis and Cognition of Ba-
sic Melodic Structures: The Implication-realisation
Model. University of Chicago Press, Chicago, 1990.

[23] M. T. Pearce. The Construction and Evaluation of
Statistical Models of Melodic Structure in Music Per-
ception and Composition. PhD thesis, Department of

Computing, City University, London, UK, 2005.

[24] M. T. Pearce and G. A. Wiggins. Improved methods
for statistical modelling of monophonic music.Jour-
nal of New Music Research, 33(4):367–385, 2004.

[25] M. T. Pearce and G. A. Wiggins. Expectation in
melody: The influence of context and learning.Mu-
sic Perception, 23(5):377–405, 2006.

[26] M. T. Pearce, D. Conklin, and G. A. Wiggins. Meth-
ods for combining statistical models of music. In
U. K. Wiil, editor, Computer Music Modelling and Re-
trieval, pages 295–312. Springer Verlag, Heidelberg,
Germany, 2005.

[27] I. Peretz. Clustering in music: An appraisal of task
factors. International Journal of Psychology, 24(2):
157–178, 1989.

[28] RISM-ZENTRALREDAKTION. Répertoire in-
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