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Summary. *

Summary. We introduce the MIR task of segmenting melodies into pteasemmarise the
musicological and psychological background to the taskramgbw existing computational
methods before presenting a new model, IDyOM, for melodigreentation based on statisti-
cal learning and information-dynamic analysis. The pernfance of the model is compared to
several existing algorithms in predicting the annotatedgd boundaries in a large corpus of
folk music. The results indicate that four algorithms proglacceptable results: one of these is
the IDyOM model which performs much better than naive siaismodels and approaches
the performance of the best-performing rule-based moéelgher slight performance im-
provement can be obtained by combining the output of thedt@orithms in a hybrid model,
although the performance of this model is moderate at bestjrig a great deal of room for
improvement on this task.

1 Introduction

The segmentation of music into meaningful units is a fundaaigpre-)processing step for
many MIR applications including melodic feature compwutatimelody indexing, and retrieval
of melodic excerpts. Here, we focus on the grouping of mlislesnents into contiguous seg-
ments that occur sequentially in time or, to put it anothey, whe identification of boundaries
between the final element of one segment and the first eleniehé subsequent one. This
way of structuring a musical surface is usually referredstgrauping(Lerdahl & Jackendoff,
1983) orsegmentatio{Cambouropoulos, 2006) and is distinguished from the grmupf
musical elements that occur simultaneously in time, a m®asually referred to atreaming
(Bregman, 1990). In musical terms, the kinds of groups wd sbasider might correspond
with motifs, phrases, sections and other aspects of musical so the scope is rather general.
Just as speech is perceptually segmented into phonemetheandords which subsequently
provide the building blocks for the perception of phrased aomplete utterances (Brent,
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1999b; Jusczyk, 1997), motifs or phrases in music are ifiettby listeners, stored in mem-
ory and made available for inclusion in higher-level stauat groups (Lerdahl & Jackendoff,
1983; Peretz, 1989; Taet al, 1981). The low-level organisation of the musical surfate i
groups allows the use of these primitive perceptual unitadne complex structural process-
ing and may alleviate demands on memory.

We restrict ourselves primarily to research on symboliceepntations of musical struc-
ture that take discrete events (individual musical notehigwork) as their musical surface
(Jackendoff, 1987). Working at this level of abstractidrg task is to gather events (repre-
sented in metrical time as they might be in a musical scote)daquential groups. Research
on segmentation from sub-symbolic or acoustic representabf music is not discussed as it
generally operates either at the level of larger sectionausic differing in instrumentation
(e.g., Abdallatet al,, 2006) or at the lower level of separating a continuous asttEam into
individual note events (e.g., Gjerdingen, 1999; Todd, }984rthermore, the present work
emphasises melody (although not exclusively) reflectiegttedominant trends in theoretical
and computational treatments of perceived grouping strad¢h music.

Grouping structure is generally agreed to be logically pedelent of metrical structure
(Lerdahl & Jackendoff, 1983) and some evidence for a separadetween the psychologi-
cal processing of the two kinds of structure has been fourabgmitive neuropsychological
(Liegeoise-Chauvett al, 1998; Peretz, 1990) and neuroimaging research (Brocttaadl,
2000). In practice, however, metrical and grouping stmectre often intimately related and
both are likely to serve as inputs to the processing of mamgpbex musical structures (Lerdahl
& Jackendoff, 1983). Nonetheless, most theoretical, engliand computational research has
considered the perception of grouping structure indepahdef metrical structure (Stoffer,
1985, and Temperley, 2001, being notable exceptions).

Melodic segmentation is a key task in the storage and refrigivmusical information.
The melodic phrase is often considered one of the most impbbiasic units of musical con-
tent (Lerdahl & Jackendoff, 1983) and many large electraoipora of music are structured
or organised by phrases, for example, the Dictionary of BhlsThemes by Barlow & Mor-
genstern (1949), the Essen Folksong Collection (EFSC fi8atig 1995) or the RISM collec-
tion (RISM-ZENTRALREDAKTION, RISM-ZENTRALREDAKTION). A the same time,
melodic grouping is thought to be an important part of thecgptual processing of music
(Deliege, 1987; Frankland & Cohen, 2004; Peretz, 19893.dtso fundamental to the phras-
ing of a melody when sung or played: melodic segmentation task that musicians and
musical listeners perform regularly in their everyday roabpractice.

Several algorithms have been proposed for the automatedesegtion of melodies.
These algorithms differ in their modelling approach (sussd learning, unsupervised learn-
ing, music-theoretic rules), and in the type of informattbey use (global or local). In this
chapter, we review these approaches before introducingvastatistical model of melodic
segmentation and comparing its performance to severairexialgorithms on a melody seg-
mentation task. The motivation for this model comparisotwis-fold: first, we are interested
in the performance differences between different typesadeh and second, we aim to build
a hybrid model that achieves superior performance by camipimoundary predictions from
different models.

2 Background

The segmentation of melodies is a cognitive process peddrby the minds and brains of
listeners based on their musical and auditory dispositimusexperience. Therefore, an MIR
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system must segment melodies in a musically and psychalibgioformed way if it is to be
successful. Before reviewing computational models of aielsegmentation and their use in
MIR, we consider it appropriate to survey the musicologaradl psychological literature that
has informed the development of these models.

2.1 Music-theoretic Approaches
A Generative Theory of Tonal Music

Melodic grouping has traditionally been modelled throulgé identification of local discon-
tinuities or changes between events in terms of temporadiity, pitch, duration and dy-
namics (Cambouropoulos, 2001; Lerdahl & Jackendoff, 1988 perley, 2001). Perhaps the
best known examples are the Grouping Preference Rules (@PEe Generative Theory of
Tonal Music (GTTM, Lerdahl & Jackendoff, 1983). The most alidstudied of these GPRs
predict that phrase boundaries will be perceived betweemtelodic events whose temporal
proximity is less than that of the immediately neighbourawgnts due to a slur, a rest (GPR
2a) or arelatively long inter-onset interval or 101 (GPR 2bWhen the transition between two
events involves a greater change in register (GPR 3a), dged@PR 3b), articulation (GPR
3c) or duration (GPR 3d) than the immediately neighbounaggitions. Another rule, GPR 6,
predicts that grouping boundaries are perceived in acoomlaith musical parallelism (e.g.,
at parallel points in a metrical hierarchy or after a repgatwtif). The GPRs were directly
inspired by the principles of proximity (GPR 2) and simitar{GPR 3) developed to account
for figural grouping in visual perception by the Gestalt suhaf psychology (e.g., Koffka,
1935).

The Implication-Realisation Theory

Narmour (1990, 1992) presents thmaplication-Realisation(IR) theory of music cognition
which, like GTTM, is intended to be general (although théiahipresentation was restricted
to melody). However, while GTTM operates statically on atirenpiece of music, the IR
theory emphasises the dynamic processes involved in pargenusic as it occurs in time.
The theory posits two distinct perceptual systems:itbgtom-upsystem is held to be hard-
wired, innate and universal while thep-down systeris held to be learnt through musical
experience. The two systems may conflict and, in any giveratiin, one may over-ride the
implications generated by the other.

In the bottom-up system, sequences of melodic intervalg wathe degree otlosure
that they convey. An interval which is unclosed (i.e., onat thenerates expectations for a
subsequent interval) is said to be iamplicative intervaland generates expectations for the
following interval, termed theealised interval The expectations generated by implicative
intervals for realised intervals are described by Narm&@e0Q) in terms of several principles
of continuation which are, again, influenced by the Gestaliciples of proximity, similarity,
and good continuation. Strong closure, however, signifiegérmination of ongoing melodic
structure (i.e., a boundary) and the melodic groups fornitereside of the boundary thus
created can share different amounts of structure dependitige degree of closure conveyed.
Furthermore, structural notes marked by strong closureetevel cartransformto a higher
level, itself amenable to analysis as a musical surfacesiovitn right, thus allowing for the
emergence of hierarchical levels of structural descniptiba melody.
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2.2 Psychological Studies

Early studies of musical segmentation (Gregory, 1978; &lab& Gregory, 1980; Stoffer,
1985) provided basic evidence that listeners perceptuatipnise melodies into structural
groups using a click localisation paradigm adapted froraaesh on perceived phrase structure
in spoken language (Fodor & Bever, 1965; Ladefoged & Broaldi®60). More recently, two
kinds of experimental task have been used to study perdeptusing in music.

The first is a short-term memory recognition paradigm inticeti by Dowling (1973),
based on studies of phrase perception in language (Bowed; 18augh & Norman, 1965).
In a typical experiment listeners are first presented withusioal stimulus containing one
or more hypothesised boundaries before being presentadcwgitort excerpt (the probe) and
asked to indicate whether it appeared in the stimulus. Titiearprobes either border on or
straddle a hypothesised boundary and it is expected thabgiezceptual grouping, the former
will be recalled more accurately or efficiently than thedatDowling’s original experiment
demonstrated that silence contributes to the perceptiometddic segment boundaries. Using
the same paradigm, Taat al. (1981) demonstrated the influence of harmonic closure, @.g.
cadence to the tonic chord) with an effect of musical trajrénch that musicians were more
sensitive to this parameter than non-musicians.

In the second paradigm, subjects provide explicit judgamefboundary locations while
listening to the musical stimulus. The indicated boundasiee subsequently analysed to dis-
cover what principles guide perceptual segmentation. dJsiis approach with short musical
excerpts, Deliege (1987) found that musicians and (toselesxtent) non-musicians identify
segment boundaries in accordance with the GPRs of GTTM éteér&fl Jackendoff, 1983)
especially those relating to rests or long notes and changesbre or dynamics. These fac-
tors have also been found to be important in large-scale ee@tion by musically-trained
listeners of piano works composed by Stockhausen and M{2ktke & Krumhansl, 1990).
Frankland & Cohen (2004) collected explicit boundary jutigats from participants listening
to six melodies (nursery rhymes and classical themes) amgpaed these to the boundaries
predicted by quantitative implementations of GPRs 2a, 2bar®] 3d (see Table 1). The re-
sults indicated that GPR 2b (Attack-point) produced cdasity strong correlations with the
empirical boundary profiles, while GPR 2a (Rest) also remkaupport in the one case where
it applied. No empirical support was found for GPRs 3a (Regi€hange) and 3d (Length
change).

Given the differences between these two experimental jgared it is not certain that
they probe the same cognitive systems. Peretz (1989) addidisis question by comparing
both methods on one set of stimuli (French folk melodies)e Judgement paradigm (on-
line, explicit) showed that musicians and non-musiciarspoeded significantly more often
in accordance with GPR 3d (Length change) than they did wRiRBa (Register Change).
However, the recognition-memory paradigm (offline, impjishowed no effect of boundary
type for either group of participants. To test the posdipilhat this discrepancy is due to a
loss of information in the offline probe-recognition taskr&z carried out a third experiment
in which participants listened to a probe followed by the odgland were asked to indicate as
quickly and accurately as possible whether the probe oedimrthe melody. As predicted, the
results demonstrated an influence of GPR 3d, but not 3a, amdaoy perception. In contrast
to these results, however, Frankland & Cohen (2004) founchajor difference between the
results of their explicit judgement task and a retrospeatdcognition-memory task using the
same materials.
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Table 1. The quantification by Frankland & Cohen (2004) of GTTM's gog preference
rules which identify boundaries between notes based on pheperties (n) including local
proximity to other notes (GPR 2) or the extent to which thdilert local changes in pitch or
duration (GPR 3).L indicates that the result is undefined.

GPRDescription  |n Boundary Strength
2a |Rest absolute length of rest (semibreve = 1.0)
. 10— 2% jfny > ngAnp >n
2b |Attack-point  |length 2xmy 2- 82~
L otherwise

if np #nzA

1.0— Mmoteltine—nal py, ot s 0y —mp| A
3a |Register changepitch heigh 2x[ny —ng|
9 9e 9 [n2 —n3| > [Nz — ny|

L otherwise
ny/ng ifng>mn
nz/np ifng<mg

3d |Length changellength 10— {

Many questions remain open and further empirical study éessary to fully understand
perceptual grouping. Nonetheless, psychological rekdss guided the development of com-
putational models of melodic segmentation, which can béiegfo practical tasks in MIR.

2.3 Computational Models

Tenney & Polansky (1980) were perhaps the first to proposegbmodels of melodic seg-
mentation based on Gestalt-like rules, which became thdrdormparadigm in the years to
come. In this section,q we review three models developelimihis tradition: quantified ver-
sions of the GPRs from GTTM (Frankland & Cohen, 2004); thedldoundary Detection
Model (Cambouropoulos, 2001); and Grouper (TemperleylR00/e also summarise pre-
vious studies that have evaluated the comparative perfarenaf some of these models of
melodic segmentation. Recently, there has been increagirmgst in using machine learning
to build models that learn about grouping structure, inegith supervised or unsupervised
manner, through exposure to large bodies of data (Bod, 2Bfht, 1999a; Ferrandt al.,
2003; Saffraret al, 1999). The model we present follows this tradition and wélide some
related work in our review. In another direction, some rest®eers have combined Gestalt-like
rules with higher-level principles based on parallelismd anusic structure (Ahlback, 2004;
Cambouropoulos, 2006) in models which are mentioned fos#ke of completeness but not
reviewed in detail.

Grouping Preference Rules

Inspired by the GTTM, Frankland & Cohen (2004) quantified GRR, 2b, 3a and 3d as shown
in Table 1. Since a slur is a property of the 101 while a resnisbsence of sound following a
note, they argued that these two components of GPR 2a shewedarated and, in fact, only
guantified the rest aspect. Since GPRs 2a (Rest), 2b (Attaickt} and 3d (Length change)
concern perceived duration, they were based on linearlgddine in accordance with psy-
choacoustic research (Allan, 1979). Finally, a naturalltesf the individual quantifications
is that they can be combined using multiple regression (divatihte extension to linear cor-
relation, Howell, 2002) to quantify the implication comtad in GPR 4 (Intensification) that
co-occurrences of two or more aspects of GPRs 2 and 3 leabt@st boundaries.
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The Local Boundary Detection Model

Cambouropoulos (2001) proposes a model related to theifjgd®PRs in which boundaries
are associated with any local change in interval magnituties Local Boundary Detection
Model (LBDM) consists of achangerule, which assigns boundary strengths in proportion
to the degree of change between consecutive intervals, gmmdxamity rule, which scales
the boundary strength according to the size of the interivaisived. The LBDM operates
over several independent parametric melodic profles: [x1, X2, ...,Xn] wherek € {pitch,

ioi, restt, x; > 0,i € {1,2,...,n} and the boundary strength at interval(a pitch interval in
semitones, inter-onset interval, or offset-to-onsetrirah is given by:

§ =% x (fi—vj +rij+1) (1)
where the degree of change between two successive intervals
ri_iﬂ_{iﬁgﬂ i.f X +X%17#0AX,%11>0 @

' 0 if i =%41=0.

For each parametés the boundary strength profi& = [s1,, .. .,Sn] is calculated and nor-
malised in the rang€0, 1]. A weighted sum of the boundary strength profiles is computed
using weights derived by trial and error (.25 fpitch andrest, and .5 forioi), and bound-
aries are predicted where the combined profile exceeds shiicewhich may be set to any
reasonable value (Cambouropoulos used a value such thab®58tes fell on boundaries).

Cambouropoulos (2001) found that the LBDM obtained a rexfa8i3-74% of the bound-
aries marked on a score by a musician (depending on the tidesid weights used) although
precision was lower at 55%. In further experiments, it washaiestrated that notes falling
before predicted boundaries were more often lengthenedghartened in pianists’ perfor-
mances of Mozart piano sonatas and a Chopin étude. Thisleadrae of the penultimate
notes in the predicted groups.

More recently, Cambouropoulos (2006) proposed a compleanemodel which identi-
fies instances of melodic repetition (or parallelism) anchpotes a pattern segmentation pro-
file. While repetitions of melodic patterns are likely to tdipute to the perception of grouping
(see GPR 6 above), this model is not yet a fully developed hafdeelodic segmentation as it
operates at a “local level (i.e. within a time window rathwart [on] a whole piece)” (Emilios
Cambouropoulos, personal email communication, 09/2007).

Grouper

Temperley (2001) introduces a model callédouper which accepts as input a melody, in
which each note is represented by its onset time, off timarohtic pitch and level in a metri-

cal hierarchy (which may be computed using a beat-tracKigorithm or computed from the

time signature and bar lines if these are available), andneta single, exhaustive partition-
ing of the melody into non-overlapping groups. The modelrages through the application
of threePhrase Structure Preference Rul@&SPRs):

PSPR 1 (Gap Rule): prefer to locate phrase boundaries atrg@ 10Is and (b) large offset-
to-onset intervals (OOIl); PSPR 1 is calculated as the surneof@! and OOI divided by
the mean 10l of all previous notes;
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PSPR 2 (Phrase Length Rule): prefer phrases with about H¥,nathieved by penalising
predicted phrases Hylog, N) —log, 10| whereN is the number of notes in the predicted
phrase — the preferred phrase length is chashoc(see Temperley, 2001, p. 74), to
suit the corpus of music being studied (in this case Temgsréample of the EFSC) and
therefore may not be general,

PSPR 3 (Metrical Parallelism Rule): prefer to begin sudeeggoups at parallel points in the
metrical hierarchy (e.g., both on the first beat of the bar).

The first rule is another example of the Gestalt principleesfiporal proximity (cf. GPR 2
above) while the third is related to GPR 6; the second wasmé@ted through an empirical
investigation of the typical phrase lengths in a collectidriolk songs. The best analysis of
a given piece is computed offline using a dynamic programraipgroach where candidate
phrases are evaluated according to a weighted combinatitredhree rules. The weights
were determined through trial and error. Unlike the othedei®, this procedure results in
binary segmentation judgements rather than continuousdzoy strengths. By way of evalu-
ation, Temperley used Grouper to predict the phrase boigsdararked in 65 melodies from
the EFSC, a collection of several thousand folk songs wittagdn boundaries annotated by
expert musicologists, achieving a recall. 6 and a precision aof74.

Data Oriented Parsing

Bod (2001) argues for a supervised learning approach to iiraflenelodic grouping struc-
ture as an alternative to the rule-based approach. He egdrttinee grammar induction algo-
rithms originally developed for automated language parsircomputational linguistics: first,
the treebank grammar learning technique which reads atliljpescontext free rewrite rules
from the training set and assigns each a probability prapaat to its relative frequency in
the training set (Manning & Schiitze, 1999); second, thekghagrammar technique which
assigns probabilities to context free rules by decompotiegrule and its probability by a
Markov process, allowing the model to estimate the proliguf rules that have not occurred
in the training set (Collins, 1999); and third, a Markov graar augmented with a Data Ori-
ented Parsing (DOP, Bod, 1998) method for conditioning ttabability of a rule over the
rule occurring higher in the parse tree. A best-first parsiggrithm based on Viterbi optimi-
sation (Rabiner, 1989) was used to generate the most pmpabde for each melody in the
test set given each of the three models. Bod (2001) evalthgeperformance of these three
algorithms in predicting the phrase boundaries in the EFS@yu-1 scores (Witten & Frank,
1999). The results demonstrated that the treebank tealyiglded moderately high preci-
sion but very low recallf 1 = .07), the Markov grammar yielded slightly lower precision bu
much higher recallg 1 = .71) while the Markov-DOP technique yielded the highest isien
and recall F1 = .81). A qualitative examination of the folk song data revdadeveral cases
(15% of the phrase boundaries in the test set) where the aedqthrase boundary cannot be
accounted for by Gestalt principles but is predicted by tleekdv-DOP parser.

Transition Probabilities and Pointwise Mutual I nformation

In research on language acquisition, it has been shownrtfzetts and adults reliably identify
grouping boundaries in sequences of synthetic syllablésehasis of statistical cues (Saffran
et al, 1996). In these experiments participants are exposedty isochronous sequences of
syllables where the only reliable cue to boundaries betwggenps of syllables consist of
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higher transition probabilities within than between greuftransition (or digram) probabil-
ity (TP) is the conditional probability of an elememtat indexi € {2,...,j}ina sequence’l

of lengthj given the preceding elemegt_1:

countd_,)
P@le-1) = Cinta 1) ®)
where€)], is the subsequence efbetween indicesn andn, ey, is the element at indem

of the sequence andcount(x) is the number of times that appears in a training corpus.
Further research using the same experimental paradigmdmerdtrated that infants and
adults use the implicitly learnt statistical propertiepit¢h (Saffraret al, 1999), pitch interval
(Saffran & Griepentrog, 2001) and scale degree (Saffrab3pP8equences to identify segment
boundaries on the basis of higher digram probabilitiesiwithan between groups.

In a comparison of computational methods for word identificein unsegmented speech,
Brent (1999a) quantified these ideas in a model that puts d bmurndary between phonemes
whenever the transition probability gtis lower than at bott®_; ande 1. Brent also intro-
duced a related model that replaces digram probabilitiéls paintwise mutual information
(PMI), 1 (&,6_1), which measures how much the occurrence of one event retheesdel’s
uncertainty about the co-occurrence of another event (Man& Schitze, 1999) and is de-
fined as:

I(&,6-1) = log, % 4)

While digram probabilities are asymmetrical with resperthe order of the two events,
pointwise mutual information is symmetrical in this resp®rent (1999a) found that the
pointwise mutual information model outperformed the titdms probability model in predict-
ing word boundaries in phonemic transcripts of phonemyeaticoded infant-directed speech
from the CHILDES collection (MacWhinney & Snow, 1985).

Brent (1999a) implemented these models such that a boumderylaced whenever the
statistic (TP or PMI) was higher at one phonetic locatiomtimethe immediately neighbouring
locations. By contrast, here we construct a boundary stingmgfile P at each note position
for each statistiS= {TP, PMI} such that:

H:{sffsﬂ ifS>§ 1A >S50 ©)
0 otherwise

Model Comparisons

The models reviewed above differ along several differemteisions. For example, the GPRs,
LBDM and Grouper use rules derived from expert musical keolge while DOP and TP/PMI
rely on learning from musical examples. Looking in more deBOP uses supervised train-
ing while TP/PMI uses unsupervised induction of statistiegularities. Along another di-
mension, the GPRs, LBDM and TP/PMI predict phrase bounsléizally while Grouper and
DOP attempt to find the best segmentation of an entire melody.

4 Manning & Schiitze (1999) note that pointwise mutual infation is biased in favour of
low-frequency events inasmuch as, all other things beinglelwill be higher for digrams
composed of low-frequency events than for those composéigbffrequency events. In
statistical language modelling, pointwise mutual infotima is sometimes redefined as
count(xy)l (x,y) to compensate for this bias.
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Most of these models were evaluated to some extent by thiiouand, in some cases,
compared quantitatively to other models. Bod (2001), famegle, compared the performance
of his data-oriented parsing with other closely relatedhods (Markov and treebank gram-
mars). In addition, however, a handful of studies has ewadlsi compared the performance
of different melodic segmentation models. These studiferdn the models compared, the
type of ground truth data used and the evaluation metrickeapplelucci & Orio (2002), for
example, collected the boundary indications of 17 experiomns and experienced music
scholars on melodic excerpts from 20 works by Bach, Mozaé&tBoven and Chopin. Having
combined the boundary indications into a ground truth, thgluated the performance of the
LBDM against three models that inserted boundaries afteeed i8 and 15) or random (in the
range of 10 and 20) numbers of notes. Melucci & Orio reporefglositives, false negatives
and a measure of disagreement which show that the LBDM dotpes the other models.

Melucci & Orio noticed a certain amount of disagreement leetwthe segmentation
markings of their participants. However, as they did noteobs clear distinctions between
participants when their responses were scaled by MDS arjdctet to a cluster analysis,
they aggregated all participants’ boundary markings tatyijudgements using a probabilis-
tic procedure.

Bruderer (2008) evaluated a broader range of models in & stiithe grouping struc-
ture of melodic excerpts from six Western pop songs. Thergtdtth segmentation was ob-
tained from 21 adults with different degrees of musicahirag; the boundary indications were
summed within consecutive time windows to yield a quasitionious boundary strength pro-
file for each melody. Bruderer examined the performance refetimodels: Grouper, LBDM
and the summed GPRs (GPR 2a, 2b, 3a and 3d) quantified by &nah& Cohen (2004).
The output of each model was convolved with a 2.4s Gaussiadami to produce a bound-
ary strength profile that was then correlated with the growmath. Bruderer reports that the
LBDM achieved the best and the GPRs the worst performance.

In another study, Thorat al. (2002) compared the predictions of the LBDM and Grouper
with segmentations at the phrase and subphrase level pyigsing a pen on a minimal
score while listening to a MIDI file) by 19 musical experts fod melodies in a range of
styles. In a first experiment, Thoet al. examined the average F1 scores between experts for
each melody, obtaining values ranging between .14 and r§hfase judgements and .35 and
.8 for subphrase judgements. The higher consistencieedainde associated with melodies
whose phrase structure was emphasised by rests. In a seqoadmeent, the performance
of each model on each melody was estimated by averaging theedtés over the 19 ex-
perts. Model parameters were optimised for each indivichelbdy. The results indicated that
Grouper tended to outperform the LBDM. Large I0OIs were andrtgnt factor in the success
of both models. In a third experiment, the predictions ofheaodel were compared with the
transcribed boundaries in several datasets from the EFB&€nmibdel parameters were opti-
mised over each dataset and the results again indicate@tbaper (with mean F1 between .6
and .7) outperformed the LBDM (mean F1 between .49 and .563llf, in order to examine
the stability of the two models, each was used to predict ¥pert boundary profiles using
parameters optimised over the EFSC. The performance ofbgdhithms was impaired, most
notably for the subphrase judgements of the experts.

To summarise, the few existing comparative studies sugbasimore complex models
such as Grouper and LBDM outperform the individual GPR raesn when the latter are
combined in an additive manner (Bruderer, 2008). Whetheu@er or LBDM exhibits a
superior performance seems to depend on the data set anihexpial task. Finally, most of
these comparative studies used ground truth segmentat@vived from manual annotations
by human judges. However, only a limited number of melodias be tested in this way
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(ranging from 6 in the case of Bruderer, 2008 to 20 by MelucdD#o, 2002). Apart from
Thomet al. (2002, Experiment D), there has been no thorough comparetigluation over
a large corpus of melodies annotated with phrase boundat@sever, that study did not
include the GPRs and to date, no published study has direotiypared these rule-based
models with learning-based models (as we do here).

2.4 A New Segmentation M odel
The |DyOM Mode

As we have seen, most existing models of melodic groupingisbof collections of sym-
bolic rules that describe the musical features corresponidi perceived groups. Such models
have to be adjusted by hand using detadagtiori knowledge of a musical style. Therefore,
these models are not only domain-specific, pertaining anipdsic, but also potentially style
specific, pertaining only to Western tonal music or even ta@egenre.

We present a new model of melodic grouping (the Informatigmémics Of Music, or
IDyOM, model) which, unlike the GPRs, the LBDM and Groupesgsiunsupervised learning
from experience rather than expert-coded symbolic rules.rmodel differs from DOP in that
it uses unsupervised, rather than supervised, learninghwhakes it more useful for identi-
fying grouping boundaries in corpora where phrase bouadarie not explicitly marked. The
IDyOM model takes the same overall approach and inspirditaom experimental psychology
(Saffran, 2003; Saffran & Griepentrog, 2001; Saffedral., 1999) as the TP/PMI models (see
§2.3). In contrast to these models, however, IDyOM uses aerafgtrategies to improve the
accuracy of its conditional probability estimates. Befdescribing these aspects of the model,
we first review related research in musicology, cognitingliistics and machine learning that
further motivates a statistical approach to segmentation.

From a musicological perspective, it has been proposedhtraeptual groups are asso-
ciated with points of closure where the ongoing cognitivecpss of expectation is disrupted
either because the context fails to stimulate strong eagieas for any particular continu-
ation or because the actual continuation is unexpected éMey@57; Narmour, 1990, see
§2.1). These proposals may be given precise definitions imfmmnhation-theoretic frame-
work (MacKay, 2003; Manning & Schutze, 1999) which we defiryereference to a model
of sequencesg, composed of symbols drawn from an alphaffefThe model estimates the
conditional probability of an element at indein the sequence given the preceding elements
in the sequencep(g \e'l’l). Given such a model, the degree to which an event appeariag in
given context in a melody is unexpected can be defined asfillenation conten{MacKay,
2003),h(g \e'l’l), of the event given the context:

h(e|é ) = logy — . 6
(Q‘ 1 ) O2 p(a|e|l,1) ( )
The information content can be interpreted as the contedhexpectedness or surprisal asso-
ciated with an event. The contextual uncertainty of the Mie@dg&pectations in a given melodic
context can be defined as thetropy(or average information content) of the predictive context

itself:

HE ) =3 plale, Hhiale ™). (7)
ecé
We hypothesise that boundaries are perceived before efcentdich the unexpectedness of
the outcomelf) and the uncertainty of the predictiod ) are high. These correspond to two
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ways in which the prior context can fail to inform the modekxjuential predictions leading to
the perception of a discontinuity in the sequence. Segmgatithese points leads to cognitive
representations of the sequence (in this case a melodypthamise likelihood and simplicity
(cf. Chater, 1996, 1999). In the current work, we focus oritfermation contentlf), leaving
the role of entropyHl) for future work.

There is evidence that related information-theoretic tjtiaa are important in cognitive
processing of language. For example, it has recently beewigrated that the difficulty of
processing words is related both to their information confeevy, 2008) and the induced
changes in entropy over possible grammatical continuat{tale, 2006). Furthermore, in
machine learning and computational linguistics, algonghbased on the idea of segment-
ing before unexpected events can identify word boundariesfant-directed speech with
some success (Brent, 1999a). Similar strategies for ig@rgi word boundaries have been
implemented using recurrent neural networks (Elman, 19R6gently, Cohert al. (2007)
proposed a general method for segmenting sequences based principles: first, so as to
maximise the probability of events to the left and right af ttoundary; and second, so as to
maximise the entropy of the conditional distribution asrtiee boundary. This algorithm was
able to successfully identify word boundaries in text framrflanguages as well as episode
boundaries in the activities of a mobile robot.

The digram models used by TP and PMI are specific examplesaofiericlass of models
called n-gram models (Manning & Schitze, 1999). Argram is a sequence of symbols
consisting of a&ontextof n— 1 symbols followed by a single symbptediction A digram, for
example, is a sequence of two symbais=(2) with a single symbol context and a single sym-
bol prediction. Am-gram model is simply a collection ofgrams each of which is associated
with a frequency count. The quantity— 1 is known as therder of the model and represents
the number of symbols making up the sequential context witlfiich the prediction occurs.
During thetraining of the statistical model, these counts are acquired thremganalysis of
some corpus of sequences (the training set) in the targetidonhen the trained model is
exposed to an unseen sequence drawn from the target domaasithe frequency counts as-
sociated witm-grams to estimate a probability distribution governing ithentity of the next
symbol in the sequence given the- 1 preceding symbols. Therefore, an assumption made in
n-gram modelling is that the probability of the next eventelgts only on the previous— 1
events:

p(aler )~ palet) )

However,n-gram models suffer from several problems, both in generdlspecifically
when applied to music. The TP and PMI models are conceptsatiple but, as models of
musical structure, they have at least two major shortcomimbe first is general: probabilities
are estimated purely on the basis of digram (first orderjssiz collected from some exist-
ing corpus. The second problem is representational andfispcmusic: in estimating the
probability of a note, only its pitch (and that of its predesar) are taken into consideration
- the timing of the note is ignored. In the IDyOM model, we agkdr these shortcomings as
described below.

Regarding the first problem, that of probability estimatityOM uses several methods
drawn from the literature on text compression (Blal., 1990; Bunton, 1997) and statistical
language modelling (Manning & Schiitze, 1999) to improwegtediction performance of the
model. The following is a brief description of the principaéthods used; technical details can
be found elsewhere (Conklin & Witten, 1995; Peagtal., 2005; Pearce & Wiggins, 2004).
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Since the model is based argrams, one obvious improvement would be to increase the
model order (i.e.n). However, while low-order models fail to provide an adelgueccount of
the structural influence of the context, increasing the rocda prevent the model from cap-
turing much of the statistical regularity present in thénirsg set (an extreme case occurring
when the model encounters argram that does not appear in the training set and returns an
estimated probability of zero). To address this problend (araximise the benefits of both
low- and high-order models) the IDyOM model maintains frelgqey counts during training
for n-grams of all possible values afin any given context. This results in a large number of
n-grams; the time and space complexity of both storage amigvat are rendered tractable
through the use of suffix trees augmented with frequency tso(Bunton, 1997; Larsson,
1996; Ukkonen, 1995). During prediction, distributions astimated using a weighted sum
of all models below an order bound that varies depending erctimtext (Cleary & Teahan,
1997; Pearce & Wiggins, 2004). This bound is determined ohegaedictive context using
simple heuristics designed to minimise uncertainty (Glé&aTeahan, 1997). The combina-
tion is designed such that higher-order predictions, wiaich more specific to the context,
receive greater weighting than lower-order predictionkjctv are more general (Witten &
Bell, 1991).

Another problem with many-gram models is that a static (pre-trained) model will fail
to make use of local statistical structure in the music itisently analysing. To address this
problem, IDyOM includes two kinds of model: first, a stdtiag-termmodel that learns from
the entire training set before being exposed to the test dathsecond, ahort-termmodel
that is constructed dynamically and incrementally thraugleach individual melody to which
it is exposed (Conklin & Witten, 1995; Pearce & Wiggins, 20Bhe distributions returned
by these models are combined using an entropy-weightedpiizdtive combination scheme
corresponding to a weighted geometric mean (Peatra, 2005) in which greater weights
are assigned to models whose predictions are associatiedowier entropy (or uncertainty)
at that point in the melody.

A final issue regards the fact that music is an inherently irdlithensional phenomenon.
Musical events have many perceived attributes includimghpionset time (the start point of
the event), duration, timbre and so on. In additisaquencesf these attributes may have
multiple relevant emergent dimensions. For example, pitdrval, pitch class, scale degree,
pitch contour (rising, falling or unison) and many otherided features are important in the
perception and analysis of pitch structure. To accommottegse properties of music into
the model, we use a multiple viewpoint approach to musicasgmtation (Conklin & Witten,
1995). The modelling process begins by choosing a set of Ipasperties of musical events
(e.g., pitch, onset, duration, loudness etc) that we aezasted in predicting. As these basic
features are treated as independent attributes, theiapildles are computed separately and
the probability of a note is simply the product of the protitibs of its attributes. Each basic
feature (e.g., pitch) may then be predicted by any number adeats for different derived
features (e.g., pitch interval, scale degree) whose Higtdns are combined using the same
entropy-weighted scheme (Peasteal., 2005).

The use of long- and short-term models, incorporating noadélderived features, the
entropy-based weighting method and the use of a multipliedas opposed to a weighted
linear or additive) combination scheme all improve the eniance of IDyOM in predicting
the pitches of unseen melodies; technical details of theefrentH its evaluation can be found
elsewhere (Conklin & Witten, 1995; Peareeal., 2005; Pearce & Wiggins, 2004). The goal
in the current work, however, is to test its performance trieeing segmentation boundaries
in large corpora of melodies. Here, we use the model to préuioitch, 10l and OOl associ-
ated with melodic events, multiplying the probabilitiestloése attributes together to yield the
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overall probability of the event. For simplicity, we use reriged features. We then focus on
the unexpectedness of events (information contgntsing this as a boundary strength profile
from which we compute boundary locations, as describé@ ia.

Peak Picking

To convert the boundary strength profile produced by IDyOM & concrete segmentation,
we devised a simple method that achieves this using threeipiés. First, given a vector
S of boundary strengths for each note in a melody, the noteviatig a boundary should
have a greater or equal boundary strength than the notevioliat: S, > S,,1. Second, the
note following a boundary should have a greater boundagpngth than the note preceding it:
S, > S,-1. Third, the note following a boundary should have a high lataup strength relative
to the local context. We implement this principle by recugrithe boundary strength to lke
standard deviations greater than the mean boundary dtreagtputed in a linearly weighted
window from the beginning of the piece to the preceding event

"—lwg — S 2 gl
5> k\j Sici(WiS —Sw1.n-1) N ,:niiN.-S . ®
wherew; are the weights associated with the linear decay (triamguitedow) and the param-
eterk is allowed to vary depending on the nature of the boundaength profile.

3 Method

3.1 The Ground Truth Data

The IDyOM model was tested against existing segmentatiotetsmn a subset of the EFSC,
databasé&r k, containing 1705 Germanic folk melodies encoded in synatfolim with anno-
tated phrase boundaries which were inserted during theder@process by folk song experts.
The dataset contains 78,995 note events at an average af4bevents per melody and over-
all about 12% of notes fall before boundaries (a boundaryiscbetween two notes). There
is only one hierarchical level of phrasing and the phraagctire exhaustively subsumes all
the events in a melody.

3.2 TheModels

The models included in the comparison are as follows:

Grouper: as implemented by Temperley (2001);

LBDM: as specified by Cambouropoulos (2001) witk- 0.5;
IDyOM: as specified ir$2.4 withk = 2;

GPR2a: as quantified by Frankland & Cohen (2004) \kith0.5;
GPR2b: as quantified by Frankland & Cohen (2004) With 0.5;
GPR3a: as quantified by Frankland & Cohen (2004) \ith0.5;
GPR3d: as quantified by Frankland & Cohen (2004) With 2.5;

5 Adapted for use with Melconv 2 by Klaus Frieler.
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TP: as defined i§2.3 withk = 0.5;

PMI: as defined ir§2.3 withk = 0.5;
Always: every note falls on a boundary;
Never: no note falls on a boundary.

The Always model predicts a boundary for every note whileNleger model never predicts
a boundary for any note. Grouper outputs binary boundargiigiiens. These models, there-
fore, do not use the peak-picking and are not associated avithlue ofk. The output of
every other model was processed by Simple Picker using & &l chosen from the set
{0.5,1,1.5,2,2.5,3,3.5,4} so as to maximise F1 (and secondarily Recall in the cased)f tie

The DOP method (Bod, 2001) is not included due to the comiglexiits implementation
and lack of any third party software that is straightforwaiapplicable to musical data.

The IDyOM, TP and PMI models were trained and evaluated odies$ taken from the
Er k dataset. In order to demonstrate generalisation, we adl@pteoss-validation strategy in
which the dataset is divided intodisjoint subsets of approximately equal size. The model
is trainedk times, each time leaving out a different subset to be usetkfting. A value of
k =10 was used which has been found to produce a good balancedsetie bias associated
with small values ok and the high variance associated with large valuds(&bhavi, 1995).

3.3 Making Model Outputs Comparable

The outputs of the algorithms tested vary considerably.l&®\M@rouper marks each note with
a binary indicator (1 = boundary, 0 = no boundary), the othedefs output a positive real
number for each note which can be interpreted as a boundangsh. In contrast to Bruderer
(2008) we chose to make all segmentation algorithms corbjgaby picking binary boundary
indications from the boundary strength profiles.

To do so, we applied the peak-picking procedure describ8@ i to the boundary profiles
of all models (except Grouper which produces binary bounfimlgements) and chose a value
of k to optimise the performance of each model individually. fagtice, the optimal value of
k varies between algorithms depending on the nature of thadasy strength profiles they
produce.

In addition, we modified the output of all models to predictimplicit phrase boundary
on the last note of a melody.

3.4 Evaluation M easures

It is common to represent a segmentation of a melody usingaybivector with one element
for each event in the melody indicating, for each event, tebr not that event falls on a
grouping boundary. An example is shown in Figure 1.

Given this formulation, we can state the problem of compptite segmentation of a
model with the ground truth segmentation in terms of cormguthe similarity or distance
between two binary vectors. Many methods exist for comabinary vectors. For example,
version 14 of the commercial statistical software packe®®Sprovides 27 different measures
for determining the similarity or distance between binaayiables. Additional measures have
been proposed in the areas of data mining and psychologieasunement. The appropriate
measure to use depends on the desired comparison and tihe ohthe data (Sokolova &
Lapalme, 2007). Here we introduce and compare five methatsatie widely used in psy-
chology, computer science and biology.
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Fig. 1. An example showing the binary vectors representing the satation of a melody.

Table 2. A summary of the outcomes of comparing prediction and grduuith binary data.
‘Ground Truth

P N
.. p|TP  FP
Predlctlonn EN TN

These methods enable us to compute the similarity betweamophenal data encoded as
a binary vector, thground truth and the output of a model of the process generating that data
the prediction encoded in the same way.

All methods start with the 2 x 2 table shown in Table 2 which marises the co-
occurrences of binary events between the ground truth angrédiction. The ground truth
positives (P) and negatives (N), respectively, are the mugbf positions where the ground
truth vector contains 1 and 0. The predicted positives (d)reggatives (n) indicate numbers
of positions where the prediction vector contains 1 and peetively. Thetrue positives (TP)
is the number of positions where both ground truth and ptiedicsectors indicate 1 while
thetrue negatives (TNis the number of positions where both vectors contaiRalse posi-
tives (FP)andfalse negatives (FNare the numbers of locations where the ground truth and
prediction vectors differ. In the former case, the preditttontains 1 where the ground truth
contains 0, andice versdor the latter.

One of the most intuitive measures for comparing binaryoamscdsaccuracy defined as
the number of times the prediction vector and ground trutitoreagree as a proportion of the
total number of entries in the vector:

P+TN
PN ©
However, this measure afccuracycan be misleading when the ground truth data is skewed.
For example, if the proportion of negative cases in the gidumnth is.8, a model that always
gives a negative answer will achieve an accuracy of 80%. dhewing measures take into
account the proportion of positive and negative instantésa ground truth data which means
that the values are comparable across the distributiongiieg in different datasets.

Psychologists are often interested in the agreement batiugman raters or judges when
they assess the same items and Kapgahés become one of the most frequently used mea-
sures for assessing inter-rater agreement. It is condptekated to the accuracy measure but
takes the distribution of the two binary classes into actand thus resembles the well-known
X2 distribution. The variant known @eiss’ k (Fleiss, 1971) is formulated for multiple-class

accuracy=
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ratings and multiple raters. Reducirgo binary markings from only two sources (raters) and
using the notation introduced aboveis defined as the difference between the proportions of
actual agreemenPf = accuracy and expected agreemeifrg):

Pr—Pre
- 1
=1 pre (10)
where:
TP+TN

Pr=—p-N" Pre = Pr2 +-Prg, (11)

P+p N+n
Pr{=—_"%9% S 12
=2 PNy 0T 20 (PEN) (12)
13)

Another measure)’ (Green & Swets, 1966), was developed in psychophysics anftkis
used to measure human ability to detect a particular cue ignalsor distinguish two stimuli
differing along some dimension. It has been also widely usethalyse experimental data in
other areas of cognitive psychology such as memory. It isiddfas:

, TP FP
& =2rp N AR TN

wherez() is the cumulative distribution function of the normal probiy distribution.

In modern data mining, the following three measures aredstahmethods for evaluating
guery-based systems for document retrieval (Witten & Fr&aBR9).Precisionreflects the true
positives as a proportion of the positive output of the mtaln while Recallreflects the true
positives as a proportion of the positive data in the grounthtF1 is the harmonic mean of
the two.

(14)

Precision= L
~ TP+FP’

TP
Recall= ————,
= TPIEN

__ 2-precision recall
"~ precisiont-recall

4 Resaults

Before comparing the performance of the models, it is irtsitra to consider the problem of
how to evaluate quantitatively the degree of corresporeldmetween two segmentations of
a melody. To do so, we compute the Pearson correlation ceetfficbetween the different
evaluation measures described§®4 for each pairwise comparison between each models
output for each melody in the dataset. The results are showable 3.

Precision and Recall each only take into consideration ame &f error (i.e.,FP or FN)
and show low or moderate correlations with the other meas{aed very low correlations
with each other as expected). Here, however, we want a metstrtakes into account both
kinds of error.k, F1 andd’ all correlate very highly with each other because they dléce
TPin relation toFP andFN. Although k is also influenced by N, the proportion of true
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Table 3. Correlations between evaluation measures over models aludlies.

Accuracy Precision Recall F1d" «
Accurac 1
Precision 0.56 1
Recall -0.31 0.08 1
F1 0.45 069 063 1
d 0.52 048 064 091 1
K 0.86 0.70 0.17 0.830.84 1

Table 4. The model comparison results in order of mean F1 scores.eRefot details of the
Hybrid model.

Model Precision Recall F1
Hybrid 0.87 0.56 0.66

Grouper 0.71  0.62 0.66
LBDM 0.70 0.60 0.63
IDyOM 0.76 0.50 0.58
GPR2a 099 045 0.58

GPR2b 0.47 0.42 0.39
GPR3a 0.29 0.46 0.35
GPR3d 0.66 0.22 0.31
PMI 0.16 0.32 0.21
TP 0.17 0.19 0.17

Always  0.13 1.00 0.22
Never 0.00 0.00 0.00

negatives is constrained given a fixed nhumber of data paietsifwe know TP, FP, and FN
and the total number of notes then TN is fixed; we have 3 degreégedom and not 4
for pairs of vectors of the same length). Accuracy exhibitly amall correlations with these
three measures (exceptto which it is closely related) and is not appropriate here tiuthe
unequal proportions of positive and negative values in tita ¢se€;3.4). The results of the
correlational analysis suggest that we could have usedremgfal’, F1 ork for evaluating our
models against the ground truth. Following common pradticata mining and information
retrieval, we usé1to compare model performance.

The results of the model comparison are shown in Table 4. ®bherhodels achieving
mean F1 values of over 0.5 (Grouper, LBDM, GPR2a, IDyOM) waresen for further analy-
sis. Sign tests between the F1 scores on each melody intheatd| differences between these
models are significant at an alpha level of 0.01, with the ptior of that between GPR2a and
LBDM. In order to see whether further performance improveteeuld be achieved by a com-
bined model, we constructed a logistic regression moddlidiicg Grouper, LBDM, IDyOM
and GPR2a as predictors. Backwards stepwise eliminatiog tise Bayes Information Crite-
rion (BIC) failed to remove any of the predictors from the @temodel (Venables & Ripley,
2002). The performance of the resulting model is shown irtdperow of Table 4. Sign tests
demonstrated that the Hybrid model achieved better F1 saorsignificantly more melodies
than each of the other models (including Grouper, in spitieffact that the average perfor-
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mance, shown in Table 4, was the same). Compared to Groug&BdM, the hybrid model
has slightly worse recall but much better precision; coragao IDYOM, the hybrid model
has better precision and recall; while compared to GPR2dotter precision achieved by the
hybrid model is balanced by it's better recall.

5 Discussion

We would like to highlight four results of this evaluatiomdy. First, we were surprised by the
strong performance of one of the GTTM preference rules, GPRRis points to the conclu-
sion that rests, perhaps above all other melodic paramétave a large influence on bound-
aries for this set of melodies. Consequently, all of the ¥pghforming rule-based models
(Grouper, LBDM, GPR2a) make use of a rest or temporal gapwhiée IDyOM includes
rests in its probability estimation. Future research dhauldertake a more detailed quali-
tative comparison of the kinds of musical context in whiclketeenodel succeeds or fails to
predict boundaries. This suggests that future researahicstiacus on boundaries not indi-
cated explicitly by rests.

Second, it is interesting to compare the results to thoserteg in other studies. In gen-
eral, the performance of Grouper and LBDM are comparabléeo performance on a dif-
ferent subset of the EFSC reported by Thetral. (2002). The performance of Grouper is
somewhat lower than that reported by Temperley (2001) on @5dies from the EFSC. The
performance of all models is lower than that of the supedvisarning model reported by Bod
(2001).

Third, the hybrid model which combines Grouper, LBDM, GPR2d IDyOM generated
better performance values than any of its components. TdtgHat theF1 value seems to
be only slightly better than Grouper is due to the fact thgtdtic regression optimises the
log-likelihood function for whether or not a note is a boundgiven the boundary indications
of the predictor variables (models). It therefore usesrmgtion about positive boundary in-
dications P) and negative boundary indicationd)(to an equal degree, in contrast Fd.
This suggests options, in future research, for assigniffigreit weights td® andN instances
or including the raw boundary profiles of LBDM and IDyOM (i.&ithout peak-picking) in
the logistic regression procedure. Another possibilityoisise boosting (combining multi-
ple weak learners to create a single strong learner, Seh&i03) to combine the different
models which may lead to better performance enhancemeaanddbistic regression.

Finally, it is interesting to note that an unsupervisedigag model (IDyOM) that makes
no use of music-theoretic rules about melodic phrases paeft as well as it does. It not only
performs much better than simple statistical segmentaes TP and PMI models) but also
approaches the performance of sophisticated rule-baseélsdn fact, IDyOM'’s precision
is better than LBDM and Grouper although it's Recall is wathés is a common tradeoff in
MIR). In comparison to supervised learning methods such@B,DDyOM does not require
pre-segmented data as a training corpus. This may not besa@ fer folk-song data where
we have large corpora with annotated phrase boundaries lausignificant factor for other
musical styles such as pop. IDyOM learns regularities imtleéodic data it is trained on and
outputs probabilities of note events which are ultimatelgdito derive an information content
(unexpectedness) for each note event in a melody. In tusiirtformation-theoretic quantity
(in comparison to that of previous notes) is used to decidether or not the note falls on a
boundary.

These findings have been corroborated by a recent study cmgramputational mod-
els of melodic segmentation to perceived segmentationisatat! by human listeners for 10
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popular melodies (de Nooijat al, 2008). The results showed that IDyOM’s segmentations
did not differ significantly from those of the listeners ahdthermore, that the segmentations
of IDyOM, LBDM and Grouper did not differ.

We argue that the present results provide preliminary edieehat the notion of expect-
edness is strongly related to boundary detection in medodre future research, we hope
to achieve better performance by tailoring IDyOM specificébr segmentation including
a metrically-based (i.e., we represent whatever is hapgenieach metrical time slice) rather
than an event-based representation of time, optimisingehged features that it uses to make
event predictions and using other information-theoregasures such as entropy or predictive
information (Abdallah & Plumbley, 2009).
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