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Summary. *

Summary. We introduce the MIR task of segmenting melodies into phrases, summarise the
musicological and psychological background to the task andreview existing computational
methods before presenting a new model, IDyOM, for melodic segmentation based on statisti-
cal learning and information-dynamic analysis. The performance of the model is compared to
several existing algorithms in predicting the annotated phrase boundaries in a large corpus of
folk music. The results indicate that four algorithms produce acceptable results: one of these is
the IDyOM model which performs much better than naive statistical models and approaches
the performance of the best-performing rule-based models.Further slight performance im-
provement can be obtained by combining the output of the fouralgorithms in a hybrid model,
although the performance of this model is moderate at best, leaving a great deal of room for
improvement on this task.

1 Introduction

The segmentation of music into meaningful units is a fundamental (pre-)processing step for
many MIR applications including melodic feature computation, melody indexing, and retrieval
of melodic excerpts. Here, we focus on the grouping of musical elements into contiguous seg-
ments that occur sequentially in time or, to put it another way, the identification of boundaries
between the final element of one segment and the first element of the subsequent one. This
way of structuring a musical surface is usually referred to asgrouping(Lerdahl & Jackendoff,
1983) orsegmentation(Cambouropoulos, 2006) and is distinguished from the grouping of
musical elements that occur simultaneously in time, a process usually referred to asstreaming
(Bregman, 1990). In musical terms, the kinds of groups we shall consider might correspond
with motifs, phrases, sections and other aspects of musicalform, so the scope is rather general.
Just as speech is perceptually segmented into phonemes, andthen words which subsequently
provide the building blocks for the perception of phrases and complete utterances (Brent,
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1999b; Jusczyk, 1997), motifs or phrases in music are identified by listeners, stored in mem-
ory and made available for inclusion in higher-level structural groups (Lerdahl & Jackendoff,
1983; Peretz, 1989; Tanet al., 1981). The low-level organisation of the musical surface into
groups allows the use of these primitive perceptual units inmore complex structural process-
ing and may alleviate demands on memory.

We restrict ourselves primarily to research on symbolic representations of musical struc-
ture that take discrete events (individual musical notes inthis work) as their musical surface
(Jackendoff, 1987). Working at this level of abstraction, the task is to gather events (repre-
sented in metrical time as they might be in a musical score) into sequential groups. Research
on segmentation from sub-symbolic or acoustic representations of music is not discussed as it
generally operates either at the level of larger sections ofmusic differing in instrumentation
(e.g., Abdallahet al., 2006) or at the lower level of separating a continuous audiostream into
individual note events (e.g., Gjerdingen, 1999; Todd, 1994). Furthermore, the present work
emphasises melody (although not exclusively) reflecting the predominant trends in theoretical
and computational treatments of perceived grouping structure in music.

Grouping structure is generally agreed to be logically independent of metrical structure
(Lerdahl & Jackendoff, 1983) and some evidence for a separation between the psychologi-
cal processing of the two kinds of structure has been found incognitive neuropsychological
(Liegeoise-Chauvelet al., 1998; Peretz, 1990) and neuroimaging research (Brochardet al.,
2000). In practice, however, metrical and grouping structure are often intimately related and
both are likely to serve as inputs to the processing of more complex musical structures (Lerdahl
& Jackendoff, 1983). Nonetheless, most theoretical, empirical and computational research has
considered the perception of grouping structure independently of metrical structure (Stoffer,
1985, and Temperley, 2001, being notable exceptions).

Melodic segmentation is a key task in the storage and retrieval of musical information.
The melodic phrase is often considered one of the most important basic units of musical con-
tent (Lerdahl & Jackendoff, 1983) and many large electroniccorpora of music are structured
or organised by phrases, for example, the Dictionary of Musical Themes by Barlow & Mor-
genstern (1949), the Essen Folksong Collection (EFSC, Schaffrath, 1995) or the RISM collec-
tion (RISM-ZENTRALREDAKTION, RISM-ZENTRALREDAKTION). At the same time,
melodic grouping is thought to be an important part of the perceptual processing of music
(Deliège, 1987; Frankland & Cohen, 2004; Peretz, 1989). Itis also fundamental to the phras-
ing of a melody when sung or played: melodic segmentation is atask that musicians and
musical listeners perform regularly in their everyday musical practice.

Several algorithms have been proposed for the automated segmentation of melodies.
These algorithms differ in their modelling approach (supervised learning, unsupervised learn-
ing, music-theoretic rules), and in the type of informationthey use (global or local). In this
chapter, we review these approaches before introducing a new statistical model of melodic
segmentation and comparing its performance to several existing algorithms on a melody seg-
mentation task. The motivation for this model comparison istwo-fold: first, we are interested
in the performance differences between different types of model; and second, we aim to build
a hybrid model that achieves superior performance by combining boundary predictions from
different models.

2 Background

The segmentation of melodies is a cognitive process performed by the minds and brains of
listeners based on their musical and auditory dispositionsand experience. Therefore, an MIR



Melodic Grouping in MIR 3

system must segment melodies in a musically and psychologically informed way if it is to be
successful. Before reviewing computational models of melodic segmentation and their use in
MIR, we consider it appropriate to survey the musicologicaland psychological literature that
has informed the development of these models.

2.1 Music-theoretic Approaches

A Generative Theory of Tonal Music

Melodic grouping has traditionally been modelled through the identification of local discon-
tinuities or changes between events in terms of temporal proximity, pitch, duration and dy-
namics (Cambouropoulos, 2001; Lerdahl & Jackendoff, 1983;Temperley, 2001). Perhaps the
best known examples are the Grouping Preference Rules (GPRs) of the Generative Theory of
Tonal Music (GTTM, Lerdahl & Jackendoff, 1983). The most widely studied of these GPRs
predict that phrase boundaries will be perceived between two melodic events whose temporal
proximity is less than that of the immediately neighbouringevents due to a slur, a rest (GPR
2a) or a relatively long inter-onset interval or IOI (GPR 2b)or when the transition between two
events involves a greater change in register (GPR 3a), dynamics (GPR 3b), articulation (GPR
3c) or duration (GPR 3d) than the immediately neighbouring transitions. Another rule, GPR 6,
predicts that grouping boundaries are perceived in accordance with musical parallelism (e.g.,
at parallel points in a metrical hierarchy or after a repeated motif). The GPRs were directly
inspired by the principles of proximity (GPR 2) and similarity (GPR 3) developed to account
for figural grouping in visual perception by the Gestalt school of psychology (e.g., Koffka,
1935).

The Implication-Realisation Theory

Narmour (1990, 1992) presents theImplication-Realisation(IR) theory of music cognition
which, like GTTM, is intended to be general (although the initial presentation was restricted
to melody). However, while GTTM operates statically on an entire piece of music, the IR
theory emphasises the dynamic processes involved in perceiving music as it occurs in time.
The theory posits two distinct perceptual systems: thebottom-upsystem is held to be hard-
wired, innate and universal while thetop-down systemis held to be learnt through musical
experience. The two systems may conflict and, in any given situation, one may over-ride the
implications generated by the other.

In the bottom-up system, sequences of melodic intervals vary in the degree ofclosure
that they convey. An interval which is unclosed (i.e., one that generates expectations for a
subsequent interval) is said to be animplicative intervaland generates expectations for the
following interval, termed therealised interval. The expectations generated by implicative
intervals for realised intervals are described by Narmour (1990) in terms of several principles
of continuation which are, again, influenced by the Gestalt principles of proximity, similarity,
and good continuation. Strong closure, however, signifies the termination of ongoing melodic
structure (i.e., a boundary) and the melodic groups formed either side of the boundary thus
created can share different amounts of structure dependingon the degree of closure conveyed.
Furthermore, structural notes marked by strong closure at one level cantransformto a higher
level, itself amenable to analysis as a musical surface in its own right, thus allowing for the
emergence of hierarchical levels of structural description of a melody.
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2.2 Psychological Studies

Early studies of musical segmentation (Gregory, 1978; Sloboda & Gregory, 1980; Stoffer,
1985) provided basic evidence that listeners perceptuallyorganise melodies into structural
groups using a click localisation paradigm adapted from research on perceived phrase structure
in spoken language (Fodor & Bever, 1965; Ladefoged & Broadbent, 1960). More recently, two
kinds of experimental task have been used to study perceptual grouping in music.

The first is a short-term memory recognition paradigm introduced by Dowling (1973),
based on studies of phrase perception in language (Bower, 1970; Waugh & Norman, 1965).
In a typical experiment listeners are first presented with a musical stimulus containing one
or more hypothesised boundaries before being presented with a short excerpt (the probe) and
asked to indicate whether it appeared in the stimulus. The critical probes either border on or
straddle a hypothesised boundary and it is expected that dueto perceptual grouping, the former
will be recalled more accurately or efficiently than the latter. Dowling’s original experiment
demonstrated that silence contributes to the perception ofmelodic segment boundaries. Using
the same paradigm, Tanet al. (1981) demonstrated the influence of harmonic closure (e.g., a
cadence to the tonic chord) with an effect of musical training such that musicians were more
sensitive to this parameter than non-musicians.

In the second paradigm, subjects provide explicit judgements of boundary locations while
listening to the musical stimulus. The indicated boundaries are subsequently analysed to dis-
cover what principles guide perceptual segmentation. Using this approach with short musical
excerpts, Deliège (1987) found that musicians and (to a lesser extent) non-musicians identify
segment boundaries in accordance with the GPRs of GTTM (Lerdahl & Jackendoff, 1983)
especially those relating to rests or long notes and changesin timbre or dynamics. These fac-
tors have also been found to be important in large-scale segmentation by musically-trained
listeners of piano works composed by Stockhausen and Mozart(Clarke & Krumhansl, 1990).
Frankland & Cohen (2004) collected explicit boundary judgements from participants listening
to six melodies (nursery rhymes and classical themes) and compared these to the boundaries
predicted by quantitative implementations of GPRs 2a, 2b, 3a and 3d (see Table 1). The re-
sults indicated that GPR 2b (Attack-point) produced consistently strong correlations with the
empirical boundary profiles, while GPR 2a (Rest) also received support in the one case where
it applied. No empirical support was found for GPRs 3a (Register Change) and 3d (Length
change).

Given the differences between these two experimental paradigms, it is not certain that
they probe the same cognitive systems. Peretz (1989) addressed this question by comparing
both methods on one set of stimuli (French folk melodies). The judgement paradigm (on-
line, explicit) showed that musicians and non-musicians responded significantly more often
in accordance with GPR 3d (Length change) than they did with GPR 3a (Register Change).
However, the recognition-memory paradigm (offline, implicit) showed no effect of boundary
type for either group of participants. To test the possibility that this discrepancy is due to a
loss of information in the offline probe-recognition task, Peretz carried out a third experiment
in which participants listened to a probe followed by the melody and were asked to indicate as
quickly and accurately as possible whether the probe occurred in the melody. As predicted, the
results demonstrated an influence of GPR 3d, but not 3a, on boundary perception. In contrast
to these results, however, Frankland & Cohen (2004) found nomajor difference between the
results of their explicit judgement task and a retrospective recognition-memory task using the
same materials.
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Table 1. The quantification by Frankland & Cohen (2004) of GTTM’s grouping preference
rules which identify boundaries between notes based on their properties (n) including local
proximity to other notes (GPR 2) or the extent to which they reflect local changes in pitch or
duration (GPR 3).⊥ indicates that the result is undefined.

GPRDescription n Boundary Strength
2a Rest absolute length of rest (semibreve = 1.0)

2b Attack-point length

{

1.0− n1+n3
2×n2

if n2 > n3∧n2 > n1

⊥ otherwise

3a Register changepitch height















1.0− |n1−n2|+|n3−n4|
2×|n2−n3|

if n2 6= n3∧
|n2−n3|> |n1−n2|∧
|n2−n3|> |n3−n4|

⊥ otherwise

3d Length change length 1.0−

{

n1/n3 if n3 ≥ n1

n3/n1 if n3 < n1

Many questions remain open and further empirical study is necessary to fully understand
perceptual grouping. Nonetheless, psychological research has guided the development of com-
putational models of melodic segmentation, which can be applied to practical tasks in MIR.

2.3 Computational Models

Tenney & Polansky (1980) were perhaps the first to propose formal models of melodic seg-
mentation based on Gestalt-like rules, which became the dominant paradigm in the years to
come. In this section,q we review three models developed within this tradition: quantified ver-
sions of the GPRs from GTTM (Frankland & Cohen, 2004); the Local Boundary Detection
Model (Cambouropoulos, 2001); and Grouper (Temperley, 2001). We also summarise pre-
vious studies that have evaluated the comparative performance of some of these models of
melodic segmentation. Recently, there has been increasinginterest in using machine learning
to build models that learn about grouping structure, in either a supervised or unsupervised
manner, through exposure to large bodies of data (Bod, 2001;Brent, 1999a; Ferrandet al.,
2003; Saffranet al., 1999). The model we present follows this tradition and we include some
related work in our review. In another direction, some researchers have combined Gestalt-like
rules with higher-level principles based on parallelism and music structure (Ahlbäck, 2004;
Cambouropoulos, 2006) in models which are mentioned for thesake of completeness but not
reviewed in detail.

Grouping Preference Rules

Inspired by the GTTM, Frankland & Cohen (2004) quantified GPRs 2a, 2b, 3a and 3d as shown
in Table 1. Since a slur is a property of the IOI while a rest is an absence of sound following a
note, they argued that these two components of GPR 2a should be separated and, in fact, only
quantified the rest aspect. Since GPRs 2a (Rest), 2b (Attack-point) and 3d (Length change)
concern perceived duration, they were based on linearly scaled time in accordance with psy-
choacoustic research (Allan, 1979). Finally, a natural result of the individual quantifications
is that they can be combined using multiple regression (a multivariate extension to linear cor-
relation, Howell, 2002) to quantify the implication contained in GPR 4 (Intensification) that
co-occurrences of two or more aspects of GPRs 2 and 3 lead to stronger boundaries.
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The Local Boundary Detection Model

Cambouropoulos (2001) proposes a model related to the quantified GPRs in which boundaries
are associated with any local change in interval magnitudes. TheLocal Boundary Detection
Model (LBDM) consists of achangerule, which assigns boundary strengths in proportion
to the degree of change between consecutive intervals, and aproximity rule, which scales
the boundary strength according to the size of the intervalsinvolved. The LBDM operates
over several independent parametric melodic profilesPk = [x1,x2, . . . ,xn] wherek ∈ {pitch,
ioi, rest}, xi > 0, i ∈ {1,2, . . . ,n} and the boundary strength at intervalxi (a pitch interval in
semitones, inter-onset interval, or offset-to-onset interval) is given by:

si = xi × (r i−1,i + r i,i+1) (1)

where the degree of change between two successive intervals:

r i,i+1 =

{

|xi−xi+1|
xi+xi+1

if xi +xi+1 6= 0∧xi ,xi+1 ≥ 0

0 if xi = xi+1 = 0.
(2)

For each parameterk, the boundary strength profileSk = [s1,s2, . . . ,sn] is calculated and nor-
malised in the range[0,1]. A weighted sum of the boundary strength profiles is computed
using weights derived by trial and error (.25 forpitch and rest, and .5 forioi), and bound-
aries are predicted where the combined profile exceeds a threshold which may be set to any
reasonable value (Cambouropoulos used a value such that 25%of notes fell on boundaries).

Cambouropoulos (2001) found that the LBDM obtained a recallof 63-74% of the bound-
aries marked on a score by a musician (depending on the threshold and weights used) although
precision was lower at 55%. In further experiments, it was demonstrated that notes falling
before predicted boundaries were more often lengthened than shortened in pianists’ perfor-
mances of Mozart piano sonatas and a Chopin étude. This was also true of the penultimate
notes in the predicted groups.

More recently, Cambouropoulos (2006) proposed a complementary model which identi-
fies instances of melodic repetition (or parallelism) and computes a pattern segmentation pro-
file. While repetitions of melodic patterns are likely to contribute to the perception of grouping
(see GPR 6 above), this model is not yet a fully developed model of melodic segmentation as it
operates at a “local level (i.e. within a time window rather than [on] a whole piece)” (Emilios
Cambouropoulos, personal email communication, 09/2007).

Grouper

Temperley (2001) introduces a model calledGrouper which accepts as input a melody, in
which each note is represented by its onset time, off time, chromatic pitch and level in a metri-
cal hierarchy (which may be computed using a beat-tracking algorithm or computed from the
time signature and bar lines if these are available), and returns a single, exhaustive partition-
ing of the melody into non-overlapping groups. The model operates through the application
of threePhrase Structure Preference Rules(PSPRs):

PSPR 1 (Gap Rule): prefer to locate phrase boundaries at (a) large IOIs and (b) large offset-
to-onset intervals (OOI); PSPR 1 is calculated as the sum of the IOI and OOI divided by
the mean IOI of all previous notes;
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PSPR 2 (Phrase Length Rule): prefer phrases with about 10 notes, achieved by penalising
predicted phrases by|(log2N)− log2 10| whereN is the number of notes in the predicted
phrase – the preferred phrase length is chosenad hoc(see Temperley, 2001, p. 74), to
suit the corpus of music being studied (in this case Temperley’s sample of the EFSC) and
therefore may not be general;

PSPR 3 (Metrical Parallelism Rule): prefer to begin successive groups at parallel points in the
metrical hierarchy (e.g., both on the first beat of the bar).

The first rule is another example of the Gestalt principle of temporal proximity (cf. GPR 2
above) while the third is related to GPR 6; the second was determined through an empirical
investigation of the typical phrase lengths in a collectionof folk songs. The best analysis of
a given piece is computed offline using a dynamic programmingapproach where candidate
phrases are evaluated according to a weighted combination of the three rules. The weights
were determined through trial and error. Unlike the other models, this procedure results in
binary segmentation judgements rather than continuous boundary strengths. By way of evalu-
ation, Temperley used Grouper to predict the phrase boundaries marked in 65 melodies from
the EFSC, a collection of several thousand folk songs with phrase boundaries annotated by
expert musicologists, achieving a recall of.76 and a precision of.74.

Data Oriented Parsing

Bod (2001) argues for a supervised learning approach to modelling melodic grouping struc-
ture as an alternative to the rule-based approach. He examined three grammar induction algo-
rithms originally developed for automated language parsing in computational linguistics: first,
the treebank grammar learning technique which reads all possible context free rewrite rules
from the training set and assigns each a probability proportional to its relative frequency in
the training set (Manning & Schütze, 1999); second, the Markov grammar technique which
assigns probabilities to context free rules by decomposingthe rule and its probability by a
Markov process, allowing the model to estimate the probability of rules that have not occurred
in the training set (Collins, 1999); and third, a Markov grammar augmented with a Data Ori-
ented Parsing (DOP, Bod, 1998) method for conditioning the probability of a rule over the
rule occurring higher in the parse tree. A best-first parsingalgorithm based on Viterbi optimi-
sation (Rabiner, 1989) was used to generate the most probable parse for each melody in the
test set given each of the three models. Bod (2001) evaluatedthe performance of these three
algorithms in predicting the phrase boundaries in the EFSC using F1 scores (Witten & Frank,
1999). The results demonstrated that the treebank technique yielded moderately high preci-
sion but very low recall (F1= .07), the Markov grammar yielded slightly lower precision but
much higher recall (F1= .71) while the Markov-DOP technique yielded the highest precision
and recall (F1= .81). A qualitative examination of the folk song data revealed several cases
(15% of the phrase boundaries in the test set) where the annotated phrase boundary cannot be
accounted for by Gestalt principles but is predicted by the Markov-DOP parser.

Transition Probabilities and Pointwise Mutual Information

In research on language acquisition, it has been shown that infants and adults reliably identify
grouping boundaries in sequences of synthetic syllables onthe basis of statistical cues (Saffran
et al., 1996). In these experiments participants are exposed to long, isochronous sequences of
syllables where the only reliable cue to boundaries betweengroups of syllables consist of
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higher transition probabilities within than between groups. A transition (or digram) probabil-
ity (TP) is the conditional probability of an elementei at indexi ∈ {2, . . . , j} in a sequenceej

1
of length j given the preceding elementei−1:

p(ei |ei−1) =
count(ei

i−1)

count(ei−1)
. (3)

whereen
m is the subsequence ofe between indicesm and n, em is the element at indexm

of the sequencee andcount(x) is the number of times thatx appears in a training corpus.
Further research using the same experimental paradigm has demonstrated that infants and
adults use the implicitly learnt statistical properties ofpitch (Saffranet al., 1999), pitch interval
(Saffran & Griepentrog, 2001) and scale degree (Saffran, 2003) sequences to identify segment
boundaries on the basis of higher digram probabilities within than between groups.

In a comparison of computational methods for word identification in unsegmented speech,
Brent (1999a) quantified these ideas in a model that puts a word boundary between phonemes
whenever the transition probability atei is lower than at bothei−1 andei+1. Brent also intro-
duced a related model that replaces digram probabilities with pointwise mutual information
(PMI), I(ei ,ei−1), which measures how much the occurrence of one event reducesthe model’s
uncertainty about the co-occurrence of another event (Manning & Schütze, 1999) and is de-
fined as:

I(ei ,ei−1) = log2
p(ei

i−1)

p(ei)p(ei−1)
. (4)

While digram probabilities are asymmetrical with respect to the order of the two events,
pointwise mutual information is symmetrical in this respect.4 Brent (1999a) found that the
pointwise mutual information model outperformed the transition probability model in predict-
ing word boundaries in phonemic transcripts of phonemically-encoded infant-directed speech
from the CHILDES collection (MacWhinney & Snow, 1985).

Brent (1999a) implemented these models such that a boundarywas placed whenever the
statistic (TP or PMI) was higher at one phonetic location than in the immediately neighbouring
locations. By contrast, here we construct a boundary strength profileP at each note positioni
for each statisticS= {TP, PMI} such that:

Pi =

{

2Si
Si−1+Si+1

if Si > Si−1∧Si > Si+1

0 otherwise.
(5)

Model Comparisons

The models reviewed above differ along several different dimensions. For example, the GPRs,
LBDM and Grouper use rules derived from expert musical knowledge while DOP and TP/PMI
rely on learning from musical examples. Looking in more detail, DOP uses supervised train-
ing while TP/PMI uses unsupervised induction of statistical regularities. Along another di-
mension, the GPRs, LBDM and TP/PMI predict phrase boundaries locally while Grouper and
DOP attempt to find the best segmentation of an entire melody.

4 Manning & Schütze (1999) note that pointwise mutual information is biased in favour of
low-frequency events inasmuch as, all other things being equal,I will be higher for digrams
composed of low-frequency events than for those composed ofhigh-frequency events. In
statistical language modelling, pointwise mutual information is sometimes redefined as
count(xy)I(x,y) to compensate for this bias.
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Most of these models were evaluated to some extent by their authors and, in some cases,
compared quantitatively to other models. Bod (2001), for example, compared the performance
of his data-oriented parsing with other closely related methods (Markov and treebank gram-
mars). In addition, however, a handful of studies has empirically compared the performance
of different melodic segmentation models. These studies differ in the models compared, the
type of ground truth data used and the evaluation metrics applied. Melucci & Orio (2002), for
example, collected the boundary indications of 17 expert musicians and experienced music
scholars on melodic excerpts from 20 works by Bach, Mozart, Beethoven and Chopin. Having
combined the boundary indications into a ground truth, theyevaluated the performance of the
LBDM against three models that inserted boundaries after a fixed (8 and 15) or random (in the
range of 10 and 20) numbers of notes. Melucci & Orio report false positives, false negatives
and a measure of disagreement which show that the LBDM outperforms the other models.

Melucci & Orio noticed a certain amount of disagreement between the segmentation
markings of their participants. However, as they did not observe clear distinctions between
participants when their responses were scaled by MDS and subjected to a cluster analysis,
they aggregated all participants’ boundary markings to binary judgements using a probabilis-
tic procedure.

Bruderer (2008) evaluated a broader range of models in a study of the grouping struc-
ture of melodic excerpts from six Western pop songs. The ground truth segmentation was ob-
tained from 21 adults with different degrees of musical training; the boundary indications were
summed within consecutive time windows to yield a quasi-continuous boundary strength pro-
file for each melody. Bruderer examined the performance of three models: Grouper, LBDM
and the summed GPRs (GPR 2a, 2b, 3a and 3d) quantified by Frankland & Cohen (2004).
The output of each model was convolved with a 2.4s Gaussian window to produce a bound-
ary strength profile that was then correlated with the groundtruth. Bruderer reports that the
LBDM achieved the best and the GPRs the worst performance.

In another study, Thomet al. (2002) compared the predictions of the LBDM and Grouper
with segmentations at the phrase and subphrase level provided (using a pen on a minimal
score while listening to a MIDI file) by 19 musical experts for10 melodies in a range of
styles. In a first experiment, Thomet al.examined the average F1 scores between experts for
each melody, obtaining values ranging between .14 and .82 for phrase judgements and .35 and
.8 for subphrase judgements. The higher consistencies tended to be associated with melodies
whose phrase structure was emphasised by rests. In a second experiment, the performance
of each model on each melody was estimated by averaging the F1scores over the 19 ex-
perts. Model parameters were optimised for each individualmelody. The results indicated that
Grouper tended to outperform the LBDM. Large IOIs were an important factor in the success
of both models. In a third experiment, the predictions of each model were compared with the
transcribed boundaries in several datasets from the EFSC. The model parameters were opti-
mised over each dataset and the results again indicated thatGrouper (with mean F1 between .6
and .7) outperformed the LBDM (mean F1 between .49 and .56). Finally, in order to examine
the stability of the two models, each was used to predict the expert boundary profiles using
parameters optimised over the EFSC. The performance of bothalgorithms was impaired, most
notably for the subphrase judgements of the experts.

To summarise, the few existing comparative studies suggestthat more complex models
such as Grouper and LBDM outperform the individual GPR ruleseven when the latter are
combined in an additive manner (Bruderer, 2008). Whether Grouper or LBDM exhibits a
superior performance seems to depend on the data set and experimental task. Finally, most of
these comparative studies used ground truth segmentationsderived from manual annotations
by human judges. However, only a limited number of melodies can be tested in this way
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(ranging from 6 in the case of Bruderer, 2008 to 20 by Melucci &Orio, 2002). Apart from
Thom et al. (2002, Experiment D), there has been no thorough comparative evaluation over
a large corpus of melodies annotated with phrase boundaries. However, that study did not
include the GPRs and to date, no published study has directlycompared these rule-based
models with learning-based models (as we do here).

2.4 A New Segmentation Model

The IDyOM Model

As we have seen, most existing models of melodic grouping consist of collections of sym-
bolic rules that describe the musical features corresponding to perceived groups. Such models
have to be adjusted by hand using detaileda priori knowledge of a musical style. Therefore,
these models are not only domain-specific, pertaining only to music, but also potentially style
specific, pertaining only to Western tonal music or even a certain genre.

We present a new model of melodic grouping (the Information Dynamics Of Music, or
IDyOM, model) which, unlike the GPRs, the LBDM and Grouper, uses unsupervised learning
from experience rather than expert-coded symbolic rules. The model differs from DOP in that
it uses unsupervised, rather than supervised, learning which makes it more useful for identi-
fying grouping boundaries in corpora where phrase boundaries are not explicitly marked. The
IDyOM model takes the same overall approach and inspirationfrom experimental psychology
(Saffran, 2003; Saffran & Griepentrog, 2001; Saffranet al., 1999) as the TP/PMI models (see
§2.3). In contrast to these models, however, IDyOM uses a range of strategies to improve the
accuracy of its conditional probability estimates. Beforedescribing these aspects of the model,
we first review related research in musicology, cognitive linguistics and machine learning that
further motivates a statistical approach to segmentation.

From a musicological perspective, it has been proposed thatperceptual groups are asso-
ciated with points of closure where the ongoing cognitive process of expectation is disrupted
either because the context fails to stimulate strong expectations for any particular continu-
ation or because the actual continuation is unexpected (Meyer, 1957; Narmour, 1990, see
§2.1). These proposals may be given precise definitions in an information-theoretic frame-
work (MacKay, 2003; Manning & Schütze, 1999) which we defineby reference to a model
of sequences,ei , composed of symbols drawn from an alphabetE . The model estimates the
conditional probability of an element at indexi in the sequence given the preceding elements
in the sequence:p(ei |e

i−1
1 ). Given such a model, the degree to which an event appearing ina

given context in a melody is unexpected can be defined as theinformation content(MacKay,
2003),h(ei |e

i−1
1 ), of the event given the context:

h(ei |e
i−1
1 ) = log2

1

p(ei |e
i−1
1 )

. (6)

The information content can be interpreted as the contextual unexpectedness or surprisal asso-
ciated with an event. The contextual uncertainty of the model’s expectations in a given melodic
context can be defined as theentropy(or average information content) of the predictive context
itself:

H(ei−1
1 ) = ∑

e∈E

p(ei |e
i−1
1 )h(ei |e

i−1
1 ). (7)

We hypothesise that boundaries are perceived before eventsfor which the unexpectedness of
the outcome (h) and the uncertainty of the prediction (H) are high. These correspond to two
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ways in which the prior context can fail to inform the model’ssequential predictions leading to
the perception of a discontinuity in the sequence. Segmenting at these points leads to cognitive
representations of the sequence (in this case a melody) thatmaximise likelihood and simplicity
(cf. Chater, 1996, 1999). In the current work, we focus on theinformation content (h), leaving
the role of entropy (H) for future work.

There is evidence that related information-theoretic quantities are important in cognitive
processing of language. For example, it has recently been demonstrated that the difficulty of
processing words is related both to their information content (Levy, 2008) and the induced
changes in entropy over possible grammatical continuations (Hale, 2006). Furthermore, in
machine learning and computational linguistics, algorithms based on the idea of segment-
ing before unexpected events can identify word boundaries in infant-directed speech with
some success (Brent, 1999a). Similar strategies for identifying word boundaries have been
implemented using recurrent neural networks (Elman, 1990). Recently, Cohenet al. (2007)
proposed a general method for segmenting sequences based ontwo principles: first, so as to
maximise the probability of events to the left and right of the boundary; and second, so as to
maximise the entropy of the conditional distribution across the boundary. This algorithm was
able to successfully identify word boundaries in text from four languages as well as episode
boundaries in the activities of a mobile robot.

The digram models used by TP and PMI are specific examples of a larger class of models
calledn-gram models (Manning & Schütze, 1999). Ann-gram is a sequence ofn symbols
consisting of acontextof n−1 symbols followed by a single symbolprediction. A digram, for
example, is a sequence of two symbols (n= 2) with a single symbol context and a single sym-
bol prediction. Ann-gram model is simply a collection ofn-grams each of which is associated
with a frequency count. The quantityn−1 is known as theorder of the model and represents
the number of symbols making up the sequential context within which the prediction occurs.
During thetraining of the statistical model, these counts are acquired throughan analysis of
some corpus of sequences (the training set) in the target domain. When the trained model is
exposed to an unseen sequence drawn from the target domain, it uses the frequency counts as-
sociated withn-grams to estimate a probability distribution governing the identity of the next
symbol in the sequence given then−1 preceding symbols. Therefore, an assumption made in
n-gram modelling is that the probability of the next event depends only on the previousn−1
events:

p(ei |e
i−1
1 )≈ p(ei |e

i−1
(i−n)+1)

However,n-gram models suffer from several problems, both in general and specifically
when applied to music. The TP and PMI models are conceptuallysimple but, as models of
musical structure, they have at least two major shortcomings. The first is general: probabilities
are estimated purely on the basis of digram (first order) statistics collected from some exist-
ing corpus. The second problem is representational and specific to music: in estimating the
probability of a note, only its pitch (and that of its predecessor) are taken into consideration
- the timing of the note is ignored. In the IDyOM model, we address these shortcomings as
described below.

Regarding the first problem, that of probability estimation, IDyOM uses several methods
drawn from the literature on text compression (Bellet al., 1990; Bunton, 1997) and statistical
language modelling (Manning & Schütze, 1999) to improve the prediction performance of the
model. The following is a brief description of the principalmethods used; technical details can
be found elsewhere (Conklin & Witten, 1995; Pearceet al., 2005; Pearce & Wiggins, 2004).
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Since the model is based onn-grams, one obvious improvement would be to increase the
model order (i.e.,n). However, while low-order models fail to provide an adequate account of
the structural influence of the context, increasing the order can prevent the model from cap-
turing much of the statistical regularity present in the training set (an extreme case occurring
when the model encounters ann-gram that does not appear in the training set and returns an
estimated probability of zero). To address this problem (and maximise the benefits of both
low- and high-order models) the IDyOM model maintains frequency counts during training
for n-grams of all possible values ofn in any given context. This results in a large number of
n-grams; the time and space complexity of both storage and retrieval are rendered tractable
through the use of suffix trees augmented with frequency counts (Bunton, 1997; Larsson,
1996; Ukkonen, 1995). During prediction, distributions are estimated using a weighted sum
of all models below an order bound that varies depending on the context (Cleary & Teahan,
1997; Pearce & Wiggins, 2004). This bound is determined in each predictive context using
simple heuristics designed to minimise uncertainty (Cleary & Teahan, 1997). The combina-
tion is designed such that higher-order predictions, whichare more specific to the context,
receive greater weighting than lower-order predictions, which are more general (Witten &
Bell, 1991).

Another problem with manyn-gram models is that a static (pre-trained) model will fail
to make use of local statistical structure in the music it is currently analysing. To address this
problem, IDyOM includes two kinds of model: first, a staticlong-termmodel that learns from
the entire training set before being exposed to the test data; and second, ashort-termmodel
that is constructed dynamically and incrementally throughout each individual melody to which
it is exposed (Conklin & Witten, 1995; Pearce & Wiggins, 2004). The distributions returned
by these models are combined using an entropy-weighted multiplicative combination scheme
corresponding to a weighted geometric mean (Pearceet al., 2005) in which greater weights
are assigned to models whose predictions are associated with lower entropy (or uncertainty)
at that point in the melody.

A final issue regards the fact that music is an inherently multi-dimensional phenomenon.
Musical events have many perceived attributes including pitch, onset time (the start point of
the event), duration, timbre and so on. In addition,sequencesof these attributes may have
multiple relevant emergent dimensions. For example, pitchinterval, pitch class, scale degree,
pitch contour (rising, falling or unison) and many other derived features are important in the
perception and analysis of pitch structure. To accommodatethese properties of music into
the model, we use a multiple viewpoint approach to music representation (Conklin & Witten,
1995). The modelling process begins by choosing a set of basic properties of musical events
(e.g., pitch, onset, duration, loudness etc) that we are interested in predicting. As these basic
features are treated as independent attributes, their probabilities are computed separately and
the probability of a note is simply the product of the probabilities of its attributes. Each basic
feature (e.g., pitch) may then be predicted by any number of models for different derived
features (e.g., pitch interval, scale degree) whose distributions are combined using the same
entropy-weighted scheme (Pearceet al., 2005).

The use of long- and short-term models, incorporating models of derived features, the
entropy-based weighting method and the use of a multiplicative (as opposed to a weighted
linear or additive) combination scheme all improve the performance of IDyOM in predicting
the pitches of unseen melodies; technical details of the model and its evaluation can be found
elsewhere (Conklin & Witten, 1995; Pearceet al., 2005; Pearce & Wiggins, 2004). The goal
in the current work, however, is to test its performance in retrieving segmentation boundaries
in large corpora of melodies. Here, we use the model to predict the pitch, IOI and OOI associ-
ated with melodic events, multiplying the probabilities ofthese attributes together to yield the
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overall probability of the event. For simplicity, we use no derived features. We then focus on
the unexpectedness of events (information content,h) using this as a boundary strength profile
from which we compute boundary locations, as described in§2.4.

Peak Picking

To convert the boundary strength profile produced by IDyOM into a concrete segmentation,
we devised a simple method that achieves this using three principles. First, given a vector
S of boundary strengths for each note in a melody, the note following a boundary should
have a greater or equal boundary strength than the note following it: Sn ≥ Sn+1. Second, the
note following a boundary should have a greater boundary strength than the note preceding it:
Sn >Sn−1. Third, the note following a boundary should have a high boundary strength relative
to the local context. We implement this principle by requiring the boundary strength to bek
standard deviations greater than the mean boundary strength computed in a linearly weighted
window from the beginning of the piece to the preceding event:

Sn > k

√

√

√

√

∑n−1
i=1 (wiSi −Sw,1...n−1)2

∑n−1
1 wi

+
∑n−1

i=1 wiSi

∑n−1
1 wi

. (8)

wherewi are the weights associated with the linear decay (triangular window) and the param-
eterk is allowed to vary depending on the nature of the boundary strength profile.

3 Method

3.1 The Ground Truth Data

The IDyOM model was tested against existing segmentation models on a subset of the EFSC,
databaseErk, containing 1705 Germanic folk melodies encoded in symbolic form with anno-
tated phrase boundaries which were inserted during the encoding process by folk song experts.
The dataset contains 78,995 note events at an average of about 46 events per melody and over-
all about 12% of notes fall before boundaries (a boundary occurs between two notes). There
is only one hierarchical level of phrasing and the phrase structure exhaustively subsumes all
the events in a melody.

3.2 The Models

The models included in the comparison are as follows:

Grouper: as implemented by Temperley (2001);5

LBDM: as specified by Cambouropoulos (2001) withk= 0.5;
IDyOM: as specified in§2.4 withk= 2;
GPR2a: as quantified by Frankland & Cohen (2004) withk= 0.5;
GPR2b: as quantified by Frankland & Cohen (2004) withk= 0.5;
GPR3a: as quantified by Frankland & Cohen (2004) withk= 0.5;
GPR3d: as quantified by Frankland & Cohen (2004) withk= 2.5;

5 Adapted for use with Melconv 2 by Klaus Frieler.
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TP: as defined in§2.3 withk= 0.5;
PMI: as defined in§2.3 withk= 0.5;
Always: every note falls on a boundary;
Never: no note falls on a boundary.

The Always model predicts a boundary for every note while theNever model never predicts
a boundary for any note. Grouper outputs binary boundary predictions. These models, there-
fore, do not use the peak-picking and are not associated witha value ofk. The output of
every other model was processed by Simple Picker using a value of k chosen from the set
{0.5,1,1.5,2,2.5,3,3.5,4} so as to maximise F1 (and secondarily Recall in the case of ties).

The DOP method (Bod, 2001) is not included due to the complexity of its implementation
and lack of any third party software that is straightforwardly applicable to musical data.

The IDyOM, TP and PMI models were trained and evaluated on melodies taken from the
Erk dataset. In order to demonstrate generalisation, we adopted a cross-validation strategy in
which the dataset is divided intok disjoint subsets of approximately equal size. The model
is trainedk times, each time leaving out a different subset to be used fortesting. A value of
k= 10 was used which has been found to produce a good balance between the bias associated
with small values ofk and the high variance associated with large values ofk (Kohavi, 1995).

3.3 Making Model Outputs Comparable

The outputs of the algorithms tested vary considerably. While Grouper marks each note with
a binary indicator (1 = boundary, 0 = no boundary), the other models output a positive real
number for each note which can be interpreted as a boundary strength. In contrast to Bruderer
(2008) we chose to make all segmentation algorithms comparable by picking binary boundary
indications from the boundary strength profiles.

To do so, we applied the peak-picking procedure described inS2.4 to the boundary profiles
of all models (except Grouper which produces binary boundary judgements) and chose a value
of k to optimise the performance of each model individually. In practice, the optimal value of
k varies between algorithms depending on the nature of the boundary strength profiles they
produce.

In addition, we modified the output of all models to predict animplicit phrase boundary
on the last note of a melody.

3.4 Evaluation Measures

It is common to represent a segmentation of a melody using a binary vector with one element
for each event in the melody indicating, for each event, whether or not that event falls on a
grouping boundary. An example is shown in Figure 1.

Given this formulation, we can state the problem of comparing the segmentation of a
model with the ground truth segmentation in terms of computing the similarity or distance
between two binary vectors. Many methods exist for comparing binary vectors. For example,
version 14 of the commercial statistical software package SPSS provides 27 different measures
for determining the similarity or distance between binary variables. Additional measures have
been proposed in the areas of data mining and psychological measurement. The appropriate
measure to use depends on the desired comparison and the nature of the data (Sokolova &
Lapalme, 2007). Here we introduce and compare five methods that are widely used in psy-
chology, computer science and biology.
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Incorrect 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 1 1
Correct 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 0 1



incorrect

correct

        



          

Fig. 1. An example showing the binary vectors representing the segmentation of a melody.

Table 2. A summary of the outcomes of comparing prediction and groundtruth binary data.

Ground Truth
P N

Prediction
p TP FP
n FN TN

These methods enable us to compute the similarity between phenomenal data encoded as
a binary vector, theground truth, and the output of a model of the process generating that data,
theprediction, encoded in the same way.

All methods start with the 2 x 2 table shown in Table 2 which summarises the co-
occurrences of binary events between the ground truth and the prediction. The ground truth
positives (P) and negatives (N), respectively, are the numbers of positions where the ground
truth vector contains 1 and 0. The predicted positives (p) and negatives (n) indicate numbers
of positions where the prediction vector contains 1 and 0 respectively. Thetrue positives (TP)
is the number of positions where both ground truth and prediction vectors indicate 1 while
the true negatives (TN)is the number of positions where both vectors contain 0.False posi-
tives (FP)andfalse negatives (FN)are the numbers of locations where the ground truth and
prediction vectors differ. In the former case, the prediction contains 1 where the ground truth
contains 0, andvice versafor the latter.

One of the most intuitive measures for comparing binary vectors isaccuracy, defined as
the number of times the prediction vector and ground truth vector agree as a proportion of the
total number of entries in the vector:

accuracy=
TP+T N

P+N
(9)

However, this measure ofaccuracycan be misleading when the ground truth data is skewed.
For example, if the proportion of negative cases in the ground truth is.8, a model that always
gives a negative answer will achieve an accuracy of 80%. The following measures take into
account the proportion of positive and negative instances in the ground truth data which means
that the values are comparable across the distributions occurring in different datasets.

Psychologists are often interested in the agreement between human raters or judges when
they assess the same items and Kappa (κ) has become one of the most frequently used mea-
sures for assessing inter-rater agreement. It is conceptually related to the accuracy measure but
takes the distribution of the two binary classes into account and thus resembles the well-known
χ2 distribution. The variant known asFleiss’κ (Fleiss, 1971) is formulated for multiple-class
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ratings and multiple raters. Reducingκ to binary markings from only two sources (raters) and
using the notation introduced above,κ is defined as the difference between the proportions of
actual agreement (Pr = accuracy) and expected agreement (Pre):

κ =
Pr−Pre
1−Pre

(10)

where:

Pr =
TP+T N

P+N
, Pre = Pr2

1+Pr2
0, (11)

Pr1 =
P+ p

2· (P+N)
, Pr0 =

N+n
2· (P+N)

. (12)

(13)

Another measure,d′ (Green & Swets, 1966), was developed in psychophysics and isoften
used to measure human ability to detect a particular cue in a signal or distinguish two stimuli
differing along some dimension. It has been also widely usedto analyse experimental data in
other areas of cognitive psychology such as memory. It is defined as:

d′ = z(
TP

TP+FN
)−z(

FP
FP+TN

) (14)

wherez() is the cumulative distribution function of the normal probability distribution.
In modern data mining, the following three measures are standard methods for evaluating

query-based systems for document retrieval (Witten & Frank, 1999).Precisionreflects the true
positives as a proportion of the positive output of the prediction whileRecallreflects the true
positives as a proportion of the positive data in the ground truth.F1 is the harmonic mean of
the two.

Precision=
TP

TP+FP
,

Recall=
TP

TP+FN
,

F1 =
2· precision· recall
precision+ recall

.

4 Results

Before comparing the performance of the models, it is instructive to consider the problem of
how to evaluate quantitatively the degree of correspondence between two segmentations of
a melody. To do so, we compute the Pearson correlation coefficients between the different
evaluation measures described in§3.4 for each pairwise comparison between each models
output for each melody in the dataset. The results are shown in Table 3.

Precision and Recall each only take into consideration one kind of error (i.e.,FP or FN)
and show low or moderate correlations with the other measures (and very low correlations
with each other as expected). Here, however, we want a measure that takes into account both
kinds of error.κ, F1 andd′ all correlate very highly with each other because they all reflect
TP in relation toFP andFN. Although κ is also influenced byTN, the proportion of true
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Table 3. Correlations between evaluation measures over models and melodies.

Accuracy Precision Recall F1d′ κ
Accuracy 1
Precision 0.56 1
Recall -0.31 0.08 1
F1 0.45 0.69 0.63 1
d′ 0.52 0.48 0.64 0.91 1
κ 0.86 0.70 0.17 0.83 0.84 1

Table 4. The model comparison results in order of mean F1 scores. See text for details of the
Hybrid model.

Model Precision Recall F1

Hybrid 0.87 0.56 0.66

Grouper 0.71 0.62 0.66
LBDM 0.70 0.60 0.63
IDyOM 0.76 0.50 0.58
GPR2a 0.99 0.45 0.58

GPR2b 0.47 0.42 0.39
GPR3a 0.29 0.46 0.35
GPR3d 0.66 0.22 0.31
PMI 0.16 0.32 0.21
TP 0.17 0.19 0.17

Always 0.13 1.00 0.22
Never 0.00 0.00 0.00

negatives is constrained given a fixed number of data points (i.e. if we know TP, FP, and FN
and the total number of notes then TN is fixed; we have 3 degreesof freedom and not 4
for pairs of vectors of the same length). Accuracy exhibits only small correlations with these
three measures (exceptκ to which it is closely related) and is not appropriate here due to the
unequal proportions of positive and negative values in the data (see§3.4). The results of the
correlational analysis suggest that we could have used any one ofd′, F1 orκ for evaluating our
models against the ground truth. Following common practicein data mining and information
retrieval, we useF1 to compare model performance.

The results of the model comparison are shown in Table 4. The four models achieving
mean F1 values of over 0.5 (Grouper, LBDM, GPR2a, IDyOM) werechosen for further analy-
sis. Sign tests between the F1 scores on each melody indicatethat all differences between these
models are significant at an alpha level of 0.01, with the exception of that between GPR2a and
LBDM. In order to see whether further performance improvement could be achieved by a com-
bined model, we constructed a logistic regression model including Grouper, LBDM, IDyOM
and GPR2a as predictors. Backwards stepwise elimination using the Bayes Information Crite-
rion (BIC) failed to remove any of the predictors from the overall model (Venables & Ripley,
2002). The performance of the resulting model is shown in thetop row of Table 4. Sign tests
demonstrated that the Hybrid model achieved better F1 scores on significantly more melodies
than each of the other models (including Grouper, in spite ofthe fact that the average perfor-
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mance, shown in Table 4, was the same). Compared to Grouper and LBDM, the hybrid model
has slightly worse recall but much better precision; compared to IDYOM, the hybrid model
has better precision and recall; while compared to GPR2a, the lower precision achieved by the
hybrid model is balanced by it’s better recall.

5 Discussion

We would like to highlight four results of this evaluation study. First, we were surprised by the
strong performance of one of the GTTM preference rules, GPR2a. This points to the conclu-
sion that rests, perhaps above all other melodic parameters, have a large influence on bound-
aries for this set of melodies. Consequently, all of the high-performing rule-based models
(Grouper, LBDM, GPR2a) make use of a rest or temporal gap rulewhile IDyOM includes
rests in its probability estimation. Future research should undertake a more detailed quali-
tative comparison of the kinds of musical context in which each model succeeds or fails to
predict boundaries. This suggests that future research should focus on boundaries not indi-
cated explicitly by rests.

Second, it is interesting to compare the results to those reported in other studies. In gen-
eral, the performance of Grouper and LBDM are comparable to their performance on a dif-
ferent subset of the EFSC reported by Thomet al. (2002). The performance of Grouper is
somewhat lower than that reported by Temperley (2001) on 65 melodies from the EFSC. The
performance of all models is lower than that of the supervised learning model reported by Bod
(2001).

Third, the hybrid model which combines Grouper, LBDM, GPR2aand IDyOM generated
better performance values than any of its components. The fact that theF1 value seems to
be only slightly better than Grouper is due to the fact that logistic regression optimises the
log-likelihood function for whether or not a note is a boundary given the boundary indications
of the predictor variables (models). It therefore uses information about positive boundary in-
dications (P) and negative boundary indications (N) to an equal degree, in contrast toF1.
This suggests options, in future research, for assigning different weights toP andN instances
or including the raw boundary profiles of LBDM and IDyOM (i.e., without peak-picking) in
the logistic regression procedure. Another possibility isto use boosting (combining multi-
ple weak learners to create a single strong learner, Schapire, 2003) to combine the different
models which may lead to better performance enhancements than logistic regression.

Finally, it is interesting to note that an unsupervised learning model (IDyOM) that makes
no use of music-theoretic rules about melodic phrases performed as well as it does. It not only
performs much better than simple statistical segmenters (the TP and PMI models) but also
approaches the performance of sophisticated rule-based models. In fact, IDyOM’s precision
is better than LBDM and Grouper although it’s Recall is worse(this is a common tradeoff in
MIR). In comparison to supervised learning methods such as DOP, IDyOM does not require
pre-segmented data as a training corpus. This may not be an issue for folk-song data where
we have large corpora with annotated phrase boundaries but is a significant factor for other
musical styles such as pop. IDyOM learns regularities in themelodic data it is trained on and
outputs probabilities of note events which are ultimately used to derive an information content
(unexpectedness) for each note event in a melody. In turn, this information-theoretic quantity
(in comparison to that of previous notes) is used to decide whether or not the note falls on a
boundary.

These findings have been corroborated by a recent study comparing computational mod-
els of melodic segmentation to perceived segmentations indicated by human listeners for 10
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popular melodies (de Nooijeret al., 2008). The results showed that IDyOM’s segmentations
did not differ significantly from those of the listeners and,furthermore, that the segmentations
of IDyOM, LBDM and Grouper did not differ.

We argue that the present results provide preliminary evidence that the notion of expect-
edness is strongly related to boundary detection in melodies. In future research, we hope
to achieve better performance by tailoring IDyOM specifically for segmentation including
a metrically-based (i.e., we represent whatever is happening in each metrical time slice) rather
than an event-based representation of time, optimising thederived features that it uses to make
event predictions and using other information-theoretic measures such as entropy or predictive
information (Abdallah & Plumbley, 2009).
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