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Abstract. The paper concerns the use of multiple viewpoint repre-
sentation schemes for prediction with statistical models of monophonic
music. We present an experimental comparison of the performance of
two techniques for combining predictions within the multiple viewpoint
framework. The results demonstrate that a new technique based on a
weighted geometric mean outperforms existing techniques. This finding
is discussed in terms of previous research in machine learning.

1 Introduction

Statistical models of symbolically represented music have been used in a number
of theoretical and practical applications in the computer modelling and retrieval
of music. Examples of such applications include computer-assisted composition
[1–3], machine improvisation with human performers [4, 5], music information
retrieval [6], stylistic analysis of music [7–9] and cognitive modelling of music
perception [10, 11]. A significant challenge faced in much of this research arises
from the need to simultaneously represent and process many different features or
attributes of the musical surface. One approach to this problem is to represent
music within a framework that allows a musical object to be observed from mul-

tiple viewpoints [12, 13]. Multiple viewpoint modelling strategies take advantage
of such a representational framework by deriving individual expert models for
any given representational viewpoint and then combining the results obtained
from each model. Here we consider multiple viewpoint systems from the perspec-
tive of statistical modelling and prediction of monophonic music. In particular,
we are concerned with the evaluation of different methods for combining the
predictions of different models in a multiple viewpoint system. To this end, we
compare the performance of a previously reported combination technique based
on a weighted arithmetic mean [14] with a new technique based on a weighted
geometric mean.

Multiple viewpoint systems are a specific instance of a more general class of
strategies in machine learning collectively known as ensemble learning methods.
As noted in [15], ensemble methods can improve the performance of machine
learning algorithms for three fundamental reasons. The first is statistical: with
small amounts of training data it is often hard to obtain reliable performance



measures for a single model. By combining a number of well performing models,
we can reduce the risk of inadvertently selecting models whose performance does
not generalise well to new examples. The second reason is computational: for
learning algorithms which employ local search, combining models which search
locally from different starting points in the hypothesis space can yield better
performance than any of the individual models. The final reason is representa-
tional: a combination of learning models may allow the system to reach parts of
the hypothesis space that the individual models would be unable, or extremely
unlikely, to reach. The development of multiple viewpoint systems was moti-
vated largely by representational concerns arising specifically in the context of
computer modelling of music [13]. Although ensemble methods have typically
been applied in classification problems, as opposed to the prediction problems
studied here, we shall draw on that body of work as required.

The paper is structured as follows. In §2, we review the theory of multiple
viewpoints as a representational formalism, describe how we may develop statis-
tical models within the multiple viewpoint framework and present the entropy
based performance metrics that we shall use to assess the performance of our
models. In §3, we introduce the techniques for combining viewpoint predictions
and the experimental procedure that we use to evaluate them is described in §4.
The results of our experiments are presented and discussed in §5. Finally, in §6,
we conclude by suggesting some directions for future research.

2 Background

2.1 Representing Music with Multiple Viewpoints

In this section, we review the representation language of the multiple viewpoint
framework as developed in [13, 14]. The specific motivation in the development of
the framework was to extend the application of statistical modelling techniques
to domains, such as music, where events have an internal structure and are
richly representable in languages other than the basic event language. Here we
consider the framework only insofar as it applies to monophonic music. See [16]
for extensions to accommodate the representation of homophonic and polyphonic
music.

The framework takes as its musical surface [17] sequences of musical events
which roughly correspond to individual notes as notated in a score. Each event
consists of a finite set of descriptive variables or basic attributes each of which
may assume a value drawn from some finite domain or alphabet. Each attribute
describes an abstract property of events and is associated with a type, τ , which
specifies the properties of that attribute (see Table 1). Each type is associated
with a syntactic domain, [τ ], denoting the set of all syntactically valid elements
of that type. Each type is also supplied with an informal semantics by means of
an associated semantic domain, [[τ ]], which denotes the set of possible meanings
for elements of type τ and a function, [[.]]τ : [τ ] → [[τ ]], which returns the
semantic interpretation of any element of type τ . The Cartesian product of the
domains of n basic types τ1, . . . , τn is referred to as the event space, ξ:



Table 1. Sets and functions associated with typed attributes

Symbol Interpretation Example

τ A typed attribute cpitch

[τ ] Syntactic domain of τ {60, . . . , 72}
〈τ〉 Type set of τ {cpitch}
[[τ ]] Semantic domain of τ {C4,C]4,. . . ,B4,C5}

[[.]]τ : [τ ] → [[τ ]] Semantic interpretation of [τ ] [[60]]cpitch = C4

Ψτ : ξ∗ ⇀ [τ ] see text see text

ξ = [τ1] × [τ2] × . . . × [τn]

An event e ∈ ξ is an instantiation of the attributes τ1, . . . , τn and consists of an
n-tuple in the event space. The event space ξ, therefore, denotes the set of all
representable events and its cardinality, |ξ|, will be infinite if one or more of the
attribute domains [τ1], . . . , [τn] is infinite. We shall use the notation ej

i ∈ ξ∗ to
denote a sequence of events ei, . . . , ej where j ≥ i ∈ Z

+ and ξ∗ denotes the set
of all sequences composed of members of ξ including the empty sequence ε.

A viewpoint modelling a type τ is a partial function, Ψτ : ξ∗ ⇀ [τ ],
which maps sequences of events onto elements of type τ .1 Each viewpoint is
associated with a type set 〈τ〉 ⊆ {τ1, . . . , τn}, stating which basic types the
viewpoint is derived from and is, therefore, capable of predicting [14]. A collection
of viewpoints forms a multiple viewpoint system. We now describe the nature of
several distinct classes of viewpoint which may be defined.

Basic Viewpoints For basic types, those associated with basic attribute domains,
Ψτ is simply a projection function [14] and 〈τ〉 is a singleton set containing
just the basic type itself. An example of a basic type is one which represents
the chromatic pitch of an event in terms of MIDI note numbers (cpitch; see
Table 1).

Derived Viewpoints A type that does not feature in the event space but which
is derived from one or more basic types is called a derived type. The function Ψτ

acts as a selector function for events, returning the appropriate attribute value
when supplied with an event sequence [14]. Since the function is partial the
result may be undefined (denoted by ⊥) for a given event sequence. Many of the
derived types implemented in [14] are inspired by the construction of quotient
GISs in [18]. The motivation for constructing such types is to capture and model
the rich variety of relational and descriptive terms in a musical language [14].
A viewpoint modelling a derived type is called a derived viewpoint and the

1 While viewpoints were defined in [13] to additionally comprise a statistical model
of sequences in [τ ]∗, here we consider viewpoints to be a purely representational
formalism and maintain a clear distinction between our representation language and
our modelling strategies.



types from which it is derived, and which it is capable of predicting, are given
by the type set for that viewpoint. An example of a derived viewpoint is one
which represents melodic intervals in the chromatic pitch domain. Given the
basic type cpitch shown in Table 1, the derived viewpoint cpint [14] is defined
by the function:

Ψcpint(e
j
1) =

{

⊥ if j = 1,

Ψcpitch(ej) − Ψcpitch(ej−1) otherwise.

Linked Viewpoints A system of viewpoints modelling primitive types will have
limited representational and predictive power due to its inability to represent
any interactions between those individual types [13]. Linked viewpoints are an
attempt to address this problem and were motivated by the direct product GISs
described in [18]. A product type τ = τ1 ⊗ . . . ⊗ τn between n constituent
types τ1, . . . , τn has the following properties:

[τ ] = [τ1] × . . . × [τn]

〈τ〉 =
n
⋃

k=1

〈τk〉

[[τ ]] = [[τ1]] and . . . and [[τn]]

Ψτ (ej
1) =

{

⊥ if Ψτi
(ej

1) is undefined for any i ∈ {1, . . . , n}

〈Ψτ1
(ej

1), . . . , Ψτn
(ej

1)〉 otherwise.

A linked viewpoint is one which models a product type. Linked viewpoints add to
the representation language the ability to represent disjunctions of conjunctions
of attribute values (as opposed to simple disjunctions of attribute values). To
give an example, it was found in [13] that a viewpoint linking melodic pitch
interval with inter-onset interval (cpint ⊗ ioi) proved useful in modelling the
chorale melodies harmonised by J. S. Bach. This finding suggests that these two
attributes types are correlated in that corpus.

Test Viewpoints A test viewpoint models a Boolean-valued attribute type and
is used to define locations in a sequence of events [19]. An example is the fib

viewpoint defined in [14] as follows:

Ψfib(e
j
1) =

{

T if Ψposinbar(e
j
1) = 1,

F otherwise

where posinbar is a derived type giving the relative position of an event in the
bar (e.g., [[1]]posinbar = the first event in the current bar).



Viewpoint Predictions (Short term) Viewpoint Predictions (Long term) 

Final Prediction

... ...

Combine Viewpoint Predictions Combine Viewpoint Predictions

Combine LTM and STM Predictions

Fig. 1. The architecture of a multiple viewpoint system

Threaded Viewpoints Types whose values are only defined at certain points in
a piece of music (e.g., the first event in each bar) are called threaded types and
viewpoints modelling these types are called threaded viewpoints. Threaded view-
points model the value of a base viewpoint at temporal or metric locations where
a specified test viewpoint returns true and are undefined otherwise [19]. The base
viewpoint may be any primitive or linked viewpoint. Threaded viewpoints were
developed to take advantage of structure emerging from metrical grouping and
phrasing in music. The alphabet of a threaded viewpoint is the Cartesian product
of the alphabets of the base viewpoint and a viewpoint, ioi, representing inter-
onset intervals [19]. To take an example, consider the thrbar viewpoint defined
in [13] constructed from the base viewpoint cpint and the test viewpoint fib.
This viewpoint represents the melodic intervals between the first events in each
consecutive bar and is undefined at all other locations in a melodic sequence.
Its viewpoint elements consist of pairs of cpint and ioi elements correspond-
ing to the pitch interval between the first events in two successive bars and the
inter-onset interval between those events.

2.2 Modelling Music with Multiple Viewpoints

The Overall Architecture For our purposes, a statistical model associated
with a viewpoint τ is a function mτ which accepts a sequence of events in τ ∗ and
which returns a distribution over [τ ] reflecting the estimated conditional proba-
bilities of the identity of the next viewpoint element in the sequence (see [13, 20]
for further description of the nature of such models). Examples of such models
include n-gram models which have been used for automatic classification of mu-
sical works [9], polyphonic score retrieval [6] and modelling of music perception
[10, 11], and dictionary based statistical models which have been used for auto-
matic music classification [7], computer improvisation with human performers
[4] and computer-assisted composition [2].

A predictive system operating on a multiple viewpoint representation lan-
guage consists of a number of models mτ1

, . . . , mτn
corresponding to the collec-



tion of viewpoints τ1, . . . , τn in the multiple viewpoint system. For each view-
point, we actually employ two models: a long-term model (LTM) and a short-

term model (STM). The LTM is trained on the entire training corpus while the
STM is constructed online for each composition modelled and is discarded af-
ter the relevant composition has been processed. The motivation for using an
STM is to take advantage of recently occurring sequences whose structure and
statistics may be specific to the individual composition being predicted. The use
of an STM has been found to improve the prediction performance of multiple
viewpoint models of music [14, 20]. The predictions of both long- and short-term
models must be combined to produce a final prediction (see §3). A number of
general architectures can be envisaged to achieve this combination:

1. combine the STM and LTM predictions for each viewpoint individually and
then combine the resulting viewpoint predictions;

2. combine the viewpoint predictions separately for the long- and short-term
models and then combine the resulting LTM and STM predictions;

3. combine all long- and short-term viewpoint predictions in a single step.

We follow previous research [13] in choosing the second of these alternatives
(see Figure 1). Two additional issues arise from the fact that our models accept
sequences in [τ ]∗ rather than ξ∗ and return distributions over [τ ] rather than ξ:
first, the corpus of event sequences in ξ∗ must be preprocessed into sequences
in τ∗ which are used to train the models; and second, the resulting distribution
over [τ ] must be postprocessed into a distribution over ξ so it may be combined
with distributions generated by other models. These issues are discussed in turn.

Preprocessing the Event Sequences We may convert sequences in ξ∗ to
sequences in [τ ]∗ using the function Φτ : ξ∗ → [τ ]∗ [13] such that:

Φτ (ei
1) =











ε if ei
1 = ε

Φτ (ei−1
1 ) if Ψτ (ei

1) =⊥

Φτ (ei−1
1 )Ψτ (ei) otherwise

Since Ψτ (ei
1) = ⊥ ⇒ Φτ (ei

1) = Φτ (ei−1
1 ), it is necessary to check that Ψτ (ei

1)
is defined to prevent the same sequence in [τ ]∗ being added to the model more
than once [13].

Completion of a Multiple Viewpoint System A model mτ returns a dis-
tribution over [τ ] but, in order to combine the distributions generated by the
models for different viewpoints, we need to convert them into distributions over
the basic event space ξ. In the interests of efficiency, prediction is elicited in
stages, one for each basic type of interest [14]. Only those viewpoints which
contain in their type set the basic type, τb, currently under consideration are
activated at each stage. The conversion is achieved by a function which maps
elements of [τ ] onto elements of [τb]:



Ψ ′
τ : ξ∗ × [τ ] → P ([τb])

where P (S) denotes the power set of set S. The function Ψ ′
τ is implemented by

creating a set of events each of which corresponds to a distinct basic element
in [τb]. A set of sequences is created by appending each of these events to the
sequence of previously processed events in the composition. By calling the func-
tion Ψτ on each of these sequences each element in [τb] is put into the mapping
with the current element of [τ ]. The mapping is, in general, many-to-one since
a derived sequence Φτ (ei

1) could represent many sequences of events other than
ei
1. As a result, the probability estimate returned by the model for the derived

sequence must be divided equally among the basic event sequences onto which
it maps.

A model mτ must return a complete distribution over the basic attributes
in 〈τ〉. This does not present problems for basic viewpoints where the viewpoint
domain is predefined to be the set of viewpoint elements occurring in the cor-
pus.2 However, for derived viewpoints, such as cpint, it may not be possible
to derive a complete distribution over [cpitch] from the set of derived elements
occurring in the corpus. To address this problem, the domain of each derived
type τ is set prior to prediction of each event such that there is a one-to-one
correspondence between [τ ] and the domain of the basic type τb ∈ 〈τ〉 currently
being predicted. We assume that the modelling technique has some facility for
assigning probabilities to events that have never occurred before [13, 20]. If no
viewpoints predict some basic attribute then the completion of that attribute
must be predicted on the basis of information from other sources or on the basis
of a uniform distribution over the attribute domain. In this research, mτb

was
used to achieve the completion of attribute τb in such cases.

Once the distributions generated by each model in a multiple viewpoint sys-
tem have been converted to complete distributions over the domain of a basic
type, the distributions may be combined into final distributions for each basic
type. The topic of this paper is how best to achieve this combination and two
methods are discussed in detail in §3.

2.3 Performance Metrics

Given a probability mass function p(a ∈ A) = P (X = a) of a random variable
X distributed over a discrete alphabet A, the entropy is calculated as:

H(p) = H(X ) = −
∑

a∈A

p(a) log2 p(a). (1)

Shannon’s (1948) fundamental coding theorem states that entropy provides a
lower bound on the average number of binary bits per symbol required to encode

2 The domain of a viewpoint modelling the onset time of events is potentially infinite
and assumes a value derived from the onset time of the previous event and the set
of inter-onset intervals that occur in the corpus [13].



an outcome of the variable X . The corresponding upper bound occurs in the
case where each symbol in the alphabet has an equal probability of occurring,
∀a ∈ A, p(a) = 1

|A| , as shown in Equation 2.

Hmax(p) = Hmax(A) = log2 |A| (2)

Entropy has an alternative interpretation in terms of the degree of uncertainty
that is involved in selecting a symbol from an alphabet: greater entropy implies
greater uncertainty. In practise, we rarely know the true probability distribution
of the stochastic process and use a model to approximate the probabilities in
Equation 1. Cross entropy is a quantity which represents the divergence between
the entropy calculated from these estimated probabilities and the source entropy.
Given a model which assigns a probability of pm(aj

1) to a sequence aj
1 of outcomes

of X , we can calculate the cross entropy H(pm, aj
1) of model m with respect to

event sequence aj
1 as shown in Equation 3.

H(pm, aj
1) = −

1

j

j
∑

i=1

log2 pm(ai|a
i−1
1 ) (3)

While cross entropy provides a direct measure of performance in the field of data
compression, it has a wider use in the evaluation of statistical models. Since
it provides us with a measure of how uncertain a model is, on average, when
predicting a given sequence of events, it can be used to compare the performance
of different models on some corpus of data [21, 22].

3 Combining Viewpoint Prediction Probabilities

3.1 Introduction

In this section, we shall describe several techniques for combining the distri-
butions generated by statistical models for different viewpoints. Let τb be the
basic viewpoint currently under consideration and [τb] = {t1, t2, . . . , tk} its do-
main. Our multiple viewpoint system has n viewpoints τ1, . . . , τn which are de-
rived from τb and there exist corresponding sets of long-term models LTM =
{ltm1, ltm2, . . . , ltmn} and short-term models STM = {stm1, stm2, . . . , stmn}.
We require a function that combines the distributions over τb generated by sets
of models. As described in §2.2, this function is used in the first stage of combina-
tion to combine the distributions generated by the LTM and the STM separately
and, in the second stage of prediction, to combine the two combined distribu-
tions resulting from the first stage. In what follows we describe functions for
combining individual probabilities which may then be applied to sorted distri-
butions over τb. For the purposes of illustration, we employ an anonymous set
of models M = m1, m2, . . . , mn.3

3 We refer to combination schemes based on the arithmetic mean as arithmetic com-
bination and those based on the geometric mean as geometric combination. Similar



3.2 Arithmetic Combination

Perhaps the simplest method of combining distributions is to compute the arith-
metic mean of the estimated probabilities for each symbol t ∈ [τb] such that:

p(t) =
1

n

∑

m∈M

pm(t).

This combination technique may be improved by weighting the contributions
made by each of the models such that:

p(t) =

∑

m∈M wmpm(t)
∑

m∈M wm

.

A method for calculating the weights, wm, is described in [14]. It is based on
the entropies of the distributions generated by the individual models such that
greater entropy (and hence uncertainty) is associated with a lower weight. The
weight of model m is wm = Hrelative(pm)−b. The relative entropy Hrelative(pm)
of a model is given by:

Hrelative(pm) =

{

H(pm)/Hmax(pm) if Hmax([τb]) > 0
1 otherwise.

where H and Hmax are as defined in Equations 1 and 2 respectively. The bias b ∈
Z is a parameter giving an exponential bias towards models with lower relative
entropy. Note that with b = 0, the weighted arithmetic scheme is equivalent to
its non-weighted counterpart. This weighting mechanism is described in more
detail in [14] where the weighted arithmetic mean was used for combining both
viewpoint predictions and the predictions of the long- and short-term models
while this method was used for combining viewpoint predictions only in [13].4

3.3 Geometric Combination

We present a novel method for combining the distributions generated by our
statistical models which is based on a weighted geometric mean. A simple geo-
metric mean of the estimated probabilities for each symbol t ∈ [τb] is calculated
as:

p(t) =
1

R

∏

m∈M

pm(t)
1

n .

distinctions have been made in the literature between linear and logarithmic opinion
pools [23], combining classifiers by averaging and multiplying [24] and mixtures and
products of experts [25, 26].

4 Other methods were also examined in [13] including a ranking-based combination
method as well as a method based on the rule of combination used in the Dempster-
Shafer theory of evidence.



Table 2. The basic and derived viewpoints used in this research

τ Class [[.]]τ [τ ] 〈τ〉

onset basic onset time of event {0,1,2,. . . } {onset}
cpitch basic chromatic pitch (MIDI) {60,. . . ,79,81} {cpitch}

ioi derived inter-onset interval {1,. . . ,20} {onset}
fib derived (not) first event in bar {T,F} {onset}
cpint derived sequential melodic interval Z {cpitch}
cpintfref derived vertical interval from referent {0,. . . ,11} {cpitch}

where R is a normalisation constant. As in the case of the arithmetic mean, this
technique may be improved by weighting the contributions made by each of the
models such that:

p(t) =
1

R

∏

m∈M

pm(t)wm

where R is a normalisation constant and the weights wm are normalised such that
they sum to one. We may use the same weighting technique as for arithmetic
combination (see §3.2) and, once again, with b = 0, the weighted geometric
scheme is equivalent to its non-weighted counterpart.

4 Experimental Procedure

The corpus of music used is a subset of the chorale melodies harmonised by
J. S. Bach. A set of 185 chorales (BWV 253 to BWV 438) has been encoded
by Steven Rasmussen and is freely available in the **kern format [27] from
the Centre for Computer Assisted Research in the Humanities (CCARH) at
Stanford University, California (see http://www.ccarh.org). We have used cross
entropy, as defined in Equation 3, computed by 10-fold cross-validation [28, 29]
over the corpus as a performance metric for our models. The statistical model
used was a smoothed, variable-order n-gram model described in more detail
in [20]. Since the goal of this research was to examine methods for combining
viewpoint predictions, we have used a constant set of viewpoints corresponding
to the best performing of the multiple viewpoint systems described in [13]. This
system consists of the following viewpoints:

cpintfref⊗ cpint,

cpint⊗ ioi,

cpitch,

cpintfref⊗ fib.



onset 0 24 48 72 96 120 144
cpitch 71 71 71 74 72 72 71

ioi ⊥ 24 24 24 24 24 24
fib T F F F T F F
cpint ⊥ 0 0 3 -2 0 -1
cpintfref 4 4 4 7 5 5 4

cpint⊗ioi ⊥ (0 24) (0 24) (3 24) (-2 24) (0 24) (-1 24)

Fig. 2. The first phrase of the chorale melody Meinen Jesum laß’ ich nicht, Jesus

(BWV 379) represented as viewpoint sequences in terms of the basic, derived and
linked viewpoints used in the experiments

It is capable of modelling the basic type cpitch alone. See Table 2 for details
of each of the viewpoints in this system and Figure 4 for an exemplary use of
these viewpoints in representing an excerpt from a chorale melody in terms of
viewpoint sequences. We have examined the weighted arithmetic and geometric
combination schemes described in §3 in both stages of combination with the bias
settings drawn from the set {0,1,2,3,4,5,6,7,8,16,32}.5

5 Results and Discussion

The results of the experiment are shown in Table 3 which is divided into four sec-
tions corresponding to the four combinations of the two combination methods.
Figures in bold type represent the lowest entropies in each of the four sections of
the table. The results are also plotted graphically in Figure 5. The first point to
note is that the multiple viewpoint system is capable of predicting the dataset
with much lower entropies (e.g., 2.045 bits/symbol) than those reported in [20]
for a system modelling chromatic pitch alone (e.g., 2.342 bits/symbol) on the
same corpus. This replicates the findings of [13] and lends support to the asser-
tion that the multiple viewpoint framework can increase the predictive power
of statistical models of music. It is also clear that the use of an entropy based
weighting scheme improves performance and that performance can be further
improved by tuning the bias parameter which gives exponential bias towards
models with lower relative entropies [14].

5 The Dempster-Shafer and rank-based combination schemes described in [13] were
found to perform less well than these two methods (when optimally weighted) and
are not included in the results.



Table 3. Cross entropies (bits/symbol) of the data given the model using weighted arithmetic and geometric schemes with a range of
bias settings for combining the LTM-STM and viewpoint predictions

Viewpoint Combination

Arithmetic Geometric

0 1 2 3 4 5 6 7 8 16 32 0 1 2 3 4 5 6 7 8 16 32

A 0 2.493 2.437 2.393 2.363 2.342 2.327 2.316 2.309 2.304 2.290 2.291 2.357 2.321 2.299 2.286 2.278 2.274 2.271 2.270 2.269 2.274 2.285

r 1 2.434 2.368 2.317 2.281 2.257 2.241 2.230 2.222 2.217 2.207 2.212 2.256 2.216 2.192 2.180 2.175 2.173 2.173 2.174 2.175 2.188 2.203

i 2 2.386 2.317 2.264 2.229 2.207 2.193 2.184 2.178 2.175 2.171 2.178 2.189 2.150 2.130 2.123 2.122 2.124 2.126 2.130 2.133 2.152 2.169

t 3 2.350 2.279 2.228 2.196 2.177 2.166 2.160 2.156 2.155 2.159 2.168 2.146 2.111 2.096 2.094 2.097 2.102 2.107 2.112 2.117 2.142 2.160

h 4 2.323 2.253 2.204 2.175 2.159 2.150 2.147 2.145 2.146 2.157 2.169 2.119 2.088 2.077 2.078 2.085 2.092 2.100 2.107 2.113 2.142 2.161

m 5 2.303 2.234 2.188 2.161 2.147 2.141 2.139 2.140 2.141 2.158 2.173 2.102 2.074 2.066 2.070 2.079 2.089 2.098 2.106 2.113 2.146 2.167

e 6 2.288 2.221 2.176 2.152 2.140 2.136 2.135 2.137 2.140 2.161 2.179 2.091 2.066 2.060 2.066 2.077 2.088 2.098 2.108 2.116 2.151 2.174

t 7 2.276 2.211 2.168 2.146 2.136 2.133 2.134 2.136 2.140 2.165 2.184 2.085 2.061 2.057 2.064 2.076 2.088 2.099 2.110 2.118 2.156 2.180

i 8 2.268 2.204 2.163 2.142 2.133 2.131 2.133 2.136 2.140 2.168 2.189 2.080 2.057 2.055 2.064 2.076 2.089 2.101 2.112 2.121 2.161 2.186

c 16 2.243 2.186 2.152 2.136 2.132 2.133 2.138 2.143 2.149 2.184 2.212 2.073 2.053 2.054 2.066 2.081 2.097 2.111 2.123 2.134 2.182 2.212

32 2.239 2.185 2.154 2.140 2.138 2.140 2.145 2.151 2.157 2.195 2.226 2.074 2.055 2.058 2.070 2.086 2.103 2.118 2.132 2.143 2.194 2.226

0 2.496 2.437 2.386 2.346 2.316 2.294 2.278 2.266 2.257 2.237 2.240 2.311 2.267 2.238 2.222 2.213 2.208 2.207 2.206 2.207 2.219 2.234

G 1 2.425 2.354 2.295 2.252 2.222 2.202 2.188 2.178 2.172 2.160 2.165 2.200 2.155 2.129 2.118 2.114 2.114 2.116 2.119 2.122 2.141 2.157

e 2 2.372 2.298 2.240 2.201 2.176 2.161 2.151 2.145 2.142 2.142 2.150 2.138 2.098 2.081 2.077 2.079 2.084 2.090 2.096 2.101 2.126 2.143

o 3 2.334 2.260 2.206 2.172 2.152 2.141 2.135 2.133 2.132 2.141 2.154 2.104 2.070 2.059 2.060 2.067 2.076 2.084 2.092 2.099 2.13 2.149

m 4 2.307 2.235 2.185 2.155 2.139 2.131 2.128 2.128 2.129 2.146 2.163 2.086 2.057 2.050 2.054 2.064 2.075 2.085 2.095 2.103 2.138 2.159

e 5 2.288 2.218 2.171 2.145 2.132 2.127 2.126 2.127 2.130 2.152 2.171 2.077 2.051 2.046 2.053 2.065 2.077 2.089 2.099 2.108 2.146 2.169

t 6 2.275 2.207 2.163 2.139 2.129 2.125 2.126 2.128 2.132 2.158 2.179 2.072 2.048 2.045 2.054 2.067 2.080 2.092 2.103 2.113 2.154 2.178

r 7 2.265 2.200 2.158 2.136 2.127 2.125 2.127 2.130 2.134 2.163 2.186 2.069 2.047 2.045 2.055 2.069 2.083 2.096 2.107 2.117 2.160 2.185

i 8 2.258 2.194 2.155 2.134 2.127 2.125 2.128 2.132 2.136 2.167 2.192 2.068 2.047 2.046 2.057 2.071 2.085 2.099 2.111 2.121 2.165 2.191

c 16 2.240 2.184 2.151 2.136 2.132 2.133 2.138 2.144 2.150 2.186 2.216 2.070 2.051 2.053 2.065 2.081 2.098 2.112 2.125 2.136 2.186 2.217

32 2.239 2.185 2.154 2.141 2.138 2.141 2.146 2.151 2.158 2.198 2.229 2.073 2.055 2.057 2.070 2.087 2.104 2.12 2.134 2.145 2.197 2.230
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Fig. 3. Cross entropies (bits/symbol) of the data given the model using weighted arithmetic and geometric schemes with a range
of bias settings for combining the LTM-STM and viewpoint predictions



Regarding the combination methods, the results demonstrate that the weighted
geometric combination introduced in this paper tends to outperform arithmetic
combination and that this effect is much more marked in the case of viewpoint
combination than it is for LTM-STM combination. Some theoretical justification
for this result can be found in the literature on combining classifier systems. Hin-
ton [25, 26] argues that combining distributions through multiplication has the
attractive property of making distributions “sharper” than the component dis-
tributions. For a given element of the distributions it suffices for just one model
to correctly assign that element a low estimated probability. If this is the case,
the combined distribution will assign that element a low probability regardless of
whether other models (incorrectly) assign that element a high estimated proba-
bility. Arithmetic combination, on the other hand, will tend to produce combined
distributions that are less sharp than the component distributions and is prone
to erroneously assigning relatively high estimated probabilities to irrelevant ele-
ments. However, since the combined distribution cannot be sharper than any of
the component distributions arithmetic combination has the desirable effect of
suppressing estimation errors [24].

In [24] the performance of arithmetic and geometric combination schemes is
examined in the context of multiple classifier systems. In accordance with the-
oretical predictions, an arithmetic scheme performs better when the classifiers
operate on identical data representations and a geometric scheme performs bet-
ter when the classifiers employ independent data representations. Analogously,
we hypothesise that when combining viewpoint predictions (derived from dis-
tinct data representations), a geometric scheme performs better since it trusts
specialised viewpoints to correctly assign low probability estimates to a given
element. Consider movement to a non scale degree as an example: a model asso-
ciated with cpitch might return a high probability estimate for such a transition
whereas a model associated with cpintfref is likely to return a low estimated
probability. In cases such as this, it is preferable to trust the model operating
over the more specialised data representation (i.e., cpintfref).

When combining LTM-STM predictions (where each distribution is already
the result of combining the viewpoint predictions), on the other hand, a premium
is placed on minimising estimation errors. For example, for n-grams which are
common in the current composition but rare in the corpus as a whole, the LTM
will return low estimates and the STM high estimates. In cases such as this, it
is preferable to suppress the estimation errors yielded by the LTM. The finding
that geometric combination still outperforms arithmetic combination in LTM-
STM combination may be a result of the fact that n-grams are added online to
the LTM as prediction progresses much as they are for the STM [20]. Finally,
it is possible that the difference in relative performance of the geometric and
arithmetic schemes for LTM-STM and viewpoint combination is a result of the
order in which these combinations are performed (see Figure 1). However, we
hypothesise that this is not the case and the observed pattern of results arises
from the difference between combining distributions derived from distinct data
representations as opposed to combining two distributions already combined



from the same sets of representations. Further research is required to examine
these hypotheses in more depth.

Another aspect of the results that warrants discussion is the effect on per-
formance of the bias parameter which gives an exponential bias towards distri-
butions with lower relative entropy. Overall performance seems to be optimised
when the bias for LTM-STM combination is relatively high (between 6 and 16)
and the bias for viewpoint combination is relatively low (between 1 and 5). We
suggest that this is due to the fact that at the beginning of a composition, the
STM will generate relatively high entropy distributions due to the lack of con-
text. In this case, it will be advantageous for the system to strongly bias the
combination towards the LTM predictions. This is not an issue when combining
viewpoint predictions and more moderate bias values tend to be optimal. Other
research has also found that high bias values for the combination of the LTM-
STM predictions tend to improve performance leading to the suggestion that the
weight assigned to the STM could be progressively increased from an initially
low value at the beginning of a composition as more events are processed [14].

The results shown in Table 2 also reveal an inverse relationship between
the optimal bias settings for LTM-STM combination and those for viewpoint
combination. With high bias values for LTM-STM combination, low bias values
for viewpoint combination tend to be optimal and vice versa. High bias settings
will make the system bolder in its estimation by strongly favouring sharper
distributions while low bias settings will lead it to more conservative predictions.
On these grounds, with all other things being equal, we would expect moderate
bias values to yield optimal performance. If an extreme bias setting is preferred
in one stage of combination for some other reason (e.g., the case of LTM-STM
combination just discussed), the negative effects may, it seems, be counteracted
to some extent by using settings at the opposing extreme in the other stage.
Although these arguments are general, we would expect the optimal bias settings
themselves to vary with different data, viewpoints and predictive systems.

6 Conclusions

We have presented an experimental comparison of the performance of two tech-
niques for combining distributions within the multiple viewpoint framework for
representing and modelling music. Specifically, a novel combination technique
based on a weighted geometric mean was compared to an existing technique
based on a weighted arithmetic mean. We have used an entropy based tech-
nique to compute the weights which accepts a parameter which fine-tunes the
exponential bias given to distributions with lower relative entropy. A range of
parameterisations of the two techniques have been evaluated using cross entropy
computed by 10-fold cross-validation over a dataset of chorale melodies har-
monised by J. S. Bach. The results demonstrate that the weighted geometric
combination introduced in this research tends to outperform arithmetic combi-
nation especially for the combination of viewpoint models. Drawing on related
findings in previous research in machine learning on combining multiple classi-



fiers, it was hypothesised that this asymmetry arises from the difference between
combining distributions derived from distinct data representations as opposed
to combining distributions derived from the same data representations.

We would like to conclude the paper by suggesting some directions we feel
would be fruitful for future research. Perhaps the most important limitation of
this research is that results have been obtained for a single dataset (representing
a single genre of melodic music) using a single set of viewpoints. However, this
research does make specific hypotheses to be refuted or corroborated by further
experiments which go beyond these restrictions. Our confidence in the generality
of these results obtained would be increased if they could be replicated using
different corpora of music, different viewpoint systems and other forms of music.
It would also be useful to conduct a thorough examination of the effect of the
overall architecture of the system on performance. How is performance affected,
for example, if we first combine the LTM-STM predictions for each viewpoint
and then combine the resulting distributions? It seems unlikely that a single
combination of all distributions will improve performance but this conjecture
can only be tested by empirical experimentation. Finally, it remains to be seen
whether other combination schemes developed in the field of machine learning
[30–32] can be profitably applied to modelling music with multiple viewpoint
systems.

This research has examined a number of techniques for improving the pre-
diction performance of statistical models of music. These techniques have been
evaluated in an application neutral manner using cross entropy as an index of
model uncertainty. In statistical language modelling, it has been demonstrated
that cross entropy provides a good predictor of model performance in specific
practical contexts:

“For a number of natural language processing tasks, such as speech recog-
nition, machine translation, handwriting recognition, stenotype tran-
scription and spelling correction, language models for which the cross
entropy is lower lead directly to better performance.”

[21, p. 39].

While corresponding results are not currently available in the literature on com-
putational music research, we believe the techniques presented in this paper can
be applied profitably to practical problems in the modelling and retrieval of
music.
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