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Abstract

We outlinea framework within which machinecompositionsmaybeevaluatedobjectively. In particular, theframework
allows statementsaboutthosecompositionsto berefutedon thebasisof empiricalexperimentation.We considerthis to
befundamentalif we wish to evaluatethedegreeto whichourprogramsachieve their compositionalaims.Furthermore,
a review of the literaturerevealsthat this is a largely ignoredaspectof researchinto algorithmic composition. Our
framework involvesfour components:specifyingthecompositionalaims;inducingacritic from asetof examplemusical
phrases;composingmusicthatsatisfiesthecritic; andevaluatingspecificclaimsaboutthecompositionsin experiments
usinghumansubjects.Wedescribeasystemwhichexemplifiesthesefour stagesandwhichdemonstratesthepracticality
of the framework. Finally, the applicationof the framework to the evaluationof musicalcreativity is discussedand
directionsfor futureresearcharesuggested.

1 Introduction

Our concernin this paperis the evaluationof the music
composedby computerprograms.The crux of the prob-
lem is that Artificial Intelligenceand the Cognitive Sci-
ences(including cognitive musicology)arescientificdis-
ciplinesfollowing a methodologywhich attemptsto eval-
uatetheoriesobjectively throughempirical experimenta-
tion. However, theevaluationof beautyor aestheticvalue
in worksof art (includingmusic)oftencomesdown to in-
dividual subjectiveopinion.This,asnotedby Spectorand
Alpern (1994),“presentsaproblemfor AI scientistswish-
ing to producecomputationalartists.” How might we rec-
onciletheobjectivity thatscientificmethodologyseemsto
requirewith theapparentsubjectivity inherentin aesthetic
evaluationof artworks?

In fact,theproblemof evaluatingthemusicgenerated
by systemsfor algorithmiccompositionis onethatis typ-
ically givenlittle attentionin theliterature.It is, however,
fundamentalthatsuchsystemsbeevaluatedobjectively on
the basisof the music they compose.How elsecan we
decidewhetheror not the machinecomposersucceedsin
fulfilling thespecifiedcompositionalgoals?

Suchevaluationis also important(in a wider sense)
if we are to develop “progressive researchprogrammes”
(Lakatos,1970) in the field of cognitive musicology. As
notedby Desainet al. (1998)“a computationalmodel is
[not] anaim untoitself but a meansto compareandcom-
municatetheoriesbetweendifferent researchcommuni-
ties.” We considera commonmeansof evaluationto be
fundamentalif weareto judgemusicaltheoriesfrom other
communitiesin our researchprogramme.

Therefore,it is our opinion that any programfor the

algorithmic compositionof music (and indeedthe gen-
erationof other works of art) shouldbe embeddedin a
theoreticalmodelthatallows its outputto beevaluatedin
objective terms. Thereare (at least)two ways in which
machinecomposersmight beevaluated:first, in termsof
the musicthey compose;andsecond,on the basisof the
mannerin which they composemusic(which mayor may
not be importantdependingon the aimsof the research).
We setout hereto outlinea theoreticalframework for the
formermeansof evaluationandto discussits implications.

This paperis structuredasfollows. First, we consider
notions of the demarcationbetweenscientific and non-
scientificknowledgeandhow this relatesto the problem
of evaluatingmachinecompositions.In Section3 we re-
view previouswork concerningtheevaluationof machine
compositionsfinding thatthelittle work donefails to pro-
vide meansof objectivelyevaluatingcomputergenerated
compositions.Our framework for evaluationis presented
anddiscussedin Section4 while in Section5 we describe
a systemwhich embodiestheframework. This work pro-
vided importantdirectionsfor future researchwhich are
discussedin Section6. Finally, in Section7, therelevance
of thiswork to theevaluationof thecreativity of programs
for thealgorithmiccompositionof musicis considered.

It is importantbeforewestartto distinguishtwo differ-
ent usesof the word “evaluation”. First, a compositional
systemmayevaluateits own compositionsduringvarious
phasesof thecompositionalprocess.We label this evalu-
ationmodulethe “critic”. Thesecondsenseconcernsthe
evaluationof themachinecompositionsasameansof sci-
entifically gaugingthedegreeto which thesystemgener-
atesmusic that fulfills the specifiedcompositionalaims.
We call this process“evaluation.”



2 Science and Music

In an attemptto distinguishpropositionsof the scientific
disciplinesfrom thenon-scientific,Karl Popperdeveloped
the approachof methodologicalfalsificationism. Scien-
tific statementsmustbeembeddedin a framework within
which experimentsmaybedesignedthatwill allow them
to berefuted:

“statements,or systemsof statements,
convey informationabouttheempiricalworld
only if they arecapableof clashingwith ex-
perience;or, moreprecisely, only if they can
besystematicallytested, that is to say, if they
canbesubjected... to testswhichmightresult
in their refutation.” (Popper, 1959)

Therefore, what distinguishesscientific from non-
scientific statementsis not formality or precision nor
weightof positiveevidencebut simplywhetherit is possi-
ble to carryoutanexperimentwhichmayrefutethatstate-
ment1. Although not without its critics, Popper’s episte-
mologyof sciencehasbeenoneof themostinfluentialof
thelastcentury.

Cross(1998)hasconsidered“the relevanceandutil-
ity of sciencefor our understandingof music.” At one
extreme he considersthe “immanentist” position which
holds that “music hasno physicalreality or locusbut is
constitutedand inferred from the humancapacityto en-
dow with meaningthe contingentphenomenaof the ma-
terial world andof humaninteraction.” He notesthat this
positionbothdenies“all scienceanyefficacy in respectof
music” andthat it “seemsto pervadecurrentmusicologi-
cal thinking andwriting.” From this standpointthequest
to find anobjective meansof evaluatingmachinecompo-
sitionswould clearlybea futile task.

Proponentsof theimmanentistview considerthatsci-
enceis irrelevant to music theory becauseof the latter’s
interpreted,cultural andintentionalnature. Cross(1998)
argues that this implies a (mis)conceptionof scientific
methodas positivist, of scientific knowledgeas general
(cultureindependent)andtheobjectsof scientificresearch
being exclusively material. In contrast,he arguesthat
a conceptionof sciencebasedon falsificationism(rather
thanpositivism)can“disposeof many of theobjectionsof
theimmanentists.”

In particularthe sophisticatedmethodological falsifi-
cationismof Lakatos(1970),introducesthe notion of re-
search programmesasthebasicunit of scientificachieve-
ment(in placeof isolatedhypotheses).Sufficient weight
of changein the backgroundknowledgeof sucha pro-
grammemaycontributeto itssuccessionor radicalchange.
Sincetheseresearchprogrammesconsistpartly of local
backgroundknowledgeandheuristicsfor changethey are
not unsuitablefor “cultural exegesis”(Cross,1998). Fur-
thermore,the requirementthat the scientificevidencebe

1SeeGould (1985), chapter6, for an elegant demonstrationof this
thesis.

observable“is no hindranceto its applicationto theinten-
tional sphere,while [this account’s] provisional and dy-
namicnatureis not dissonantwith the ideathat ‘thereare
no genuineabsolutes”’(Cross,1998). Finally, this ac-
countseemsto characterisewell the progressof science
(Lakatos,1970) and “is an increasinglypopularview of
changein scientifictheories”(Brown, 1989).

Sowheredoesthis leaveus?It is clearthatthefield of
cognitive musicologyis in theearlystagesof its develop-
mentandresearchprogrammesarestill only in their infant
years.Thenotionof evaluationby falsificationof theories
in theprotectivebelt (Lakatos,1970)of theseprogrammes
is crucialsoasto build up a theoreticalhardcore asthese
theoriescontinueto go unrefuted. Only in this manner
maywebegin to build predictiveandprogressiveresearch
programmeswithin thefield of cognitivemusicology. The
developmentof a framework for the objective evaluation
of our modelsof musicalcompositionis a small,but nec-
essary, stepin thisendeavour.

3 Background

Clearly the meansof evaluatingthe compositionsgener-
atedby amachinewill dependontheaimsof thedesigner.
For example,somesystemsaredesignedto composemu-
sic basedon critical feedbackfrom the userandin these
cases“the acceptabilityof thefinal melodicmaterialis en-
tirely up to theuser”(Ralley, 1995).Therewould seemto
be no way of objectively evaluatingthe musiccomposed
by theprogram.

More objective evaluation is possiblewhen, for ex-
ample,the systemis designedto composemusicaccord-
ing to critical criteriaderivedfrom musictheoryor in the
styleof a composer. An exampleof the formerapproach
is reportedby Phon-Amnuaisuket al. (1999)who devel-
oped a GeneticAlgorithm (GA) for harmonisingtradi-
tional choralemelodies.The harmonisationswereevalu-
atedby a senioruniversitymusiclectureraccordingto the
criteria usedfor examining first year undergraduatestu-
dents’harmony. Thelatterapproachis exemplifiedby the
work of Hild et al. (1992)who developeda systemwhich
wouldharmonisein thestyleof J.S.Bach.Theharmonisa-
tionsproducedby their systemwereevaluatedby “music
professionals”possessingexpert knowledgeof the com-
poser’swork.

However, the situationbecomesmuch more compli-
catedin situationswhere the programhas a more spe-
cific musicalgoal thansimply to composesomethingthat
the userlikesor wherea formal musicaltheoryor expert
knowledgeis not available for evaluationpurposes.The
following is a brief review of previousapproachesto the
problemof evaluatingmachinecompositions.

Thevastmajorityof researchinto algorithmiccompo-
sition gives the topic of evaluationshort thrift, typically
concludingwith a sentencesuchas: “Almost all of the
generatedindividualswerepleasantto listen to” (Johan-
son and Poli, 1998). Suchsubjective evaluationby the



author(s)of the systemis clearly unsatisfactorynot only
due to the biasandsubjectivity involved but alsodue to
thelackof anobjectivecriterionfor success.

An alternative approachseemsto be inspiredby nor-
mal modesof presentingmusic: that is to organisecon-
certsanduseaudiencefeedbackasa measureof success
(Biles, 1999;Hild et al., 1992). This providesa measur-
ablecriterion for successandremovesthebiasof the de-
veloperof thesystemfrom theevaluation.It alsoattempts
to reducethe problemof subjectivity by collectingmany
judgements.

However, while a well received performancewould
seema goodcriterionfor theevaluationof new works(as
in thecaseof Biles),in thecaseof Hild etal. (1992)whose
systemwasdesignedto harmonisein thestyleof J.S.Bach
it is unsatisfactory. First, it is not clearthatall of the au-
diencewill be evaluatingthe patternson the basisof the
samecriteria: factorssuchasmusicaltasteandknowledge
of thegenre(aswell asanawarenessthatthecompositions
aremachinecomposed)will havesignificantimpactonthe
individual judgementsmade.

Otherattemptsto evaluatemachinecompositionshave
usedcriteriadrawn from informationtheory. Conklin and
Witten (1995), for example, employed a framework in
which a context model was usedto infer the probabili-
tiesof musicaleventsin a bodyof Bachchoralesgivena
precedingcontext. Witten et al. (1994)demonstratedthat
their predictionmodel showed “striking” similarity with
theexpectanciesof humanlistenersandtheirconjectureis
thatahighly predictivetheory, asmeasuredby its entropy,
will alsobe a goodgenerative theory. However, Conklin
andWitten(1995)finally resortto subjectiveevaluationof
anexamplechoralegeneratedby thesystemsayingthatit
“seemsto bereasonable.”

A final possibility is to use formalisedrules for the
evaluationof machinecompositions. Ames (1992) sur-
veys a numberof meansfor quantitatively assessingthe
“merit” of machinecompositions.Thesemaybeused“to
assessto whatextentachoice(anoption,aprovisionalso-
lution or afinal result)conformto asetof criteriasetforth
by a composeror analyst”(Ames,1992).

SpectorandAlpern(1994)havetakenupthisapproach
in anattempt“to separatethosecomponentsof anAI sys-
temtowhichaestheticjudgementsshouldapplyfromthose
to which scientific judgementshouldapply.” They have
developeda GPsystemwhich takesasparametersa critic
(criteriadefiningthe“fitness”of acomposition)andacul-
ture(a prior bodyof works). They arguethata numberof
critical criteriafrom opposingpartiesmaybepluggedinto
the systemfor any particularsetof musicalworks. If the
systemsucceedsin satisfyingall thesecritics then it can
besaidto havesucceededoverall.

However, suchcritical criteriamaynot beusedfor the
objective evaluationof machinecompositionssincethey
would be taintedby the subjectivity of the programmer
who designedthem. Essentially, this model simply re-
placesthe humancritic in an IGA with a humancritic’s

personalchoiceof formalisedcritical evaluationcriteria.
Furthermore,SpectorandAlpern (1994)noteof their sys-
tem that while “the responsepleasesthe critic, it does
not pleaseus (the authors)very well.” It wason the ba-
sis of subjective considerationssuchas thesethat Spec-
tor andAlpern (1995)extendedtheir framework to usea
trainedmulti-layerperceptroncritic. Ultimately thenthis
approachreturnsto thesubjectiveevaluationwearetrying
to escapefrom.

It is clear from this review that previous approaches
have eitherfailed to evaluatethe musiccomposedby the
systemor failedto do soin objectiveterms.

4 The Proposed Framework

4.1 Overview

Theproposedframework for thealgorithmiccomposition
of musicandevaluationof thosecompositionsbuilds and
improvesonthesepreviousapproachesin twogeneralways.
First, it providesa meansof objectively evaluatingthede-
greeto which themusiccomposedby thesystemsucceeds
in attainingthecompositionalgoals.Second,it placesno
limitationsonthetypesof computationalmethodsusedfor
thecompositionof music.

Thereare four essentialelementsin the framework:
specifyingthecompositionalaims;inducingacritic from a
corpusof data;composingmusicwhichsatisfiesthecritic;
andevaluatingthemusiccomposedby thesystem.

4.2 Aims

First, the aimsof the researcherin developinga compo-
sitionalsystemshouldbeclearlystated.While this seems
obviousit isoftenoverlookedwith researchersbeingvague
aboutthegoalsof their research.This factbegsa deeper
analysisof whatexactly thereis to bespecified!

A generaldistinctioncanbemadebetweenthosesys-
temswhich are designedto composewithin a particular
genreof music or in the style of a particularcomposer
andthosewhich designedto allow the generationof new
styles(essentiallyan artistic pursuit). Ames(1992)calls
these“empirical style modelling” and “active style syn-
thesis” respectively and our framework is designedwith
the formeractivity in mind. Given this generalaim there
still existswidevarietyin thespecificaimsof researchers.
Are wemodellingamusicalgenreor thestyleof aparticu-
lar composer?Are wedealingwith entirecompositionsor
compositionalsubcomponents(e.g.,harmonisation,rhyth-
mic developmentandsoon)?How strictly dowewantour
systemto adhereto thestylebeingmodelled?And many
otherissueswhich mustbespecifiedin detailascomposi-
tionalaimsof theresearch.



4.3 Inducing the Critic

In the secondphase,a critic is inducedfrom a setof pat-
ternsrepresentingthe relevant musicalgenreusingsome
machinelearningtechnique.In theory, any suitablecom-
putationaltechniquesmaybeusedfor this - theappropri-
ate methodologyis likely to dependon the musicaldo-
main. The useof a particulartechniqueshouldhowever
beclearly justified in termsof thecompositionalandaca-
demicgoalsof theresearch.

Thismethodis preferreddueto thedifficulty of gener-
atingacomprehensivesetof rulesfor musicalgenreslack-
ing a well developedformal theory2(especiallythe prob-
lemsof capturingall the exceptionsto rules). An under-
specifiedrule basewill not only fail to describethegenre
adequatelybut will alsosuffer from biasintroducedby the
selectionof rulesby theknowledgeengineer(Conklinand
Witten,1995).Finally, thefailureto includethenecessary
rule exceptionsmay leadto a lack of diversityor rigidity
in themusiccomposed.

When using machinelearning techniques,however,
therealso exist several sourcesof potentialbias. These
include the selectionof training data, the representation
languageusedandthelevel of abstractionemployed(Wid-
mer, 2000). Therefore,“any musicologicalassumptions
that influencedthesechoicesmust be madeexplicit, as
they alsodeterminewhatconclusionsmaybelegitimately
be drawn from the resultsof the experiments”(Widmer,
2000).

4.4 Composition

Thethird phaseof the framework involvesthegeneration
of musicalcompositionswhich satisfy the critic. Once
againany appropriatecomputationalmethodsmay, in prin-
ciple, be usedfor this process.The mechanismfor com-
positionmaybethesameasthatusedto inducethecritic
in the caseof, for example,a grammar. However, as in
the caseof the critic the choiceof computationalmech-
anismshouldbe justified in termsof the compositional
andacademicgoalsandany music-theoreticassumptions
madeexplicit.

4.5 Evaluation

Finally, the generatedmusic can be evaluatedby asking
humansubjectsto distinguishcompositionstaken from
the dataset from thosegeneratedby the system. If the
systemcomposedpiecesaremisclassifiedashumancom-
posedwith a frequency thatmaynotbedistinguished(sta-
tistically) from randomselectionwecanconcludethatthe
machinecompositionsare indistinguishablefrom human

2However, SpectorandAlpern (1994)find working in adomaingov-
ernedby formalisedvaluationcriteria unsatisfactory for threereasons.
First, the existing formalisationsare often “dead forms” and therefore
not suitablefor theproductionof creative works. Second,they notethat
adherenceto rulesmay not be a good indicatorof aestheticvalue. Fi-
nally, work with rulesin onegenremaynotgeneralisewell to otherareas
wherecritical criteriaarenotsouniformly accepted.

composedpieces. As will be seenin Section5.4 simi-
lar experimentscanbe devised to evaluatethe degreeto
which a systemfulfills othercompositionalaims.

It will beclearthat this experimentalprocedurebears
a certainresemblanceto the famous“imitation game”of
Turing (1950). It is, however, worth notingseveraldiffer-
ences:

1. While the Turing test is designed to test for
the presence of machine-thinking (intelli-
gence/consciousness)our test simply determines
the(non-)membershipof a machinecompositionin
asetof humancomposedpiecesof music.

2. While the interrogatorin theTuring testmay inter-
actwith themachine,in ourtestthesubjectsaresim-
ply passive listeners:thereis no interactionwith the
machine.

Therefore,our discriminationtest is only analogous
to the Turing test in that in both casesa behavioural test
(ratherthanonewhich analysesthe structureof the pro-
cessesunderlyingbehaviour) is usedto decidewhethera
behaviour may be includedin a set: the setof intelligent
behaviourson theonehandandthesetof musicalpieces
in a particularstyleon theother. We arguein Section4.6
thatthisprovidesaverypowerful test3.

4.6 Why is the Framework Useful?

This framework hasseveral attractive features.First, the
critic (which determinesthevalueof a compositioninter-
nally within thesystem)is extractedfrom examplesof the
compositionalgenreusingacceptedcomputationalmeth-
odsratherthanrelyingonhumanexpertiseto generatesets
of rules.We are,in general,notoriouslyunreliablein for-
malisingourexpertknowledge.

Second,thefinal machinecompositionsareevaluated
objectivelywithin aclosedsystemwhichprovidesnoplace
for subjectiveevaluationof aestheticmerit. Thesystemis
intendedto modelastyleof music(representedby its cor-
pusof trainingexamples)andits compositionsareevalu-
atedby comparisonwith exactly thatsetof examplesfrom
which its critical knowledgewasextracted.

A third attractive feature is the use of experiments
(which areintegral to theframework) thatwill potentially
allow claims aboutthe compositionalcapabilitiesof the
systemto be refuted. Questionssuchas: “Is this music
good?” arebeingturnedinto statementssuchas“People
cannotdistinguishthemachinecomposedmusicfrom hu-
mancomposedmusic”which mayberefutedthroughem-
pirical experimentation.In effect, we have a framework
within which statementsof the type: “I cansaywith cer-
tainty that [the generatedmusicalphrases]rival the care-
fully prepareddemosequencesdistributedwith mostdrum
machines!”(Horowitz, 1994)mayberefutedon objective
grounds.

3Theuseof a Turing testasa procedurefor evaluatingmachinegen-
eratedmusichasbeencriticisedby Marsden(2000).



It is worth noting that,althoughsimple,the discrimi-
nationtestdescribedabove is very powerful. In fact, the
successof apieceof machinecomposedmusiconthis test
would meanthat thereareabsolutelyno perceivablefea-
turespresentor absentin themusicwhichallow expertsto
identify it asbeingcomposedby a machineratherthana
humancomposer. Thesefeaturesmaybetakento include
suchelusivenotionsasaestheticqualityorperceivablecre-
ativity.

Finally, theframework isgeneralin threerespects:first,
examplesfrom any style/type/genreof musiccanbe sup-
plied asparameters4 to the system;second,experiments
canbedevisedto evaluatea rangeof compositionalaims;
andfinally, it placesno restrictionson the typesof com-
putationaltechniquesusedfor thecritic andthecomposi-
tionalmodules.

5 A Preliminary Study

This sectiondescribesa systembasedon a geneticalgo-
rithm which embodiesthe framework outlinedin Section
4. The four stagesin the developmentof this systemare
describedin turn (seePearce,2000,for full detailsof this
research).

5.1 Aims

The compositionalaims were to develop a systemthat
would generatedrum patternsconformingto the follow-
ing criteria:

1. They should be in the style of “drum and bass”
(henceforthd&b).

2. They shouldbe comparablewith humangenerated
patternsin this style.

3. The composedpatterns should show a certain
amountof variationboth within andbetweenruns
of thesystem.

5.2 The Critic

The critic consistedof a multilayer perceptron(MLP)
trainedon a setof positive andnegative examplesof this
style. A MLP was chosenover and above other ma-
chinelearningtechniquesdueits capacityfor generalisa-
tion and toleranceof noiseand contradictorydata(Toi-
vianen,2000). The former propertywasconsideredde-
sirabledueto thepotentialto allow a degreeof flexibility
in the critic and thereforegreaterdiversity in the gener-
ateddrumpatterns.Thelattercapacityseemedappropriate
sinceit seemedunlikely thatd&b patternscouldbeeasily
describedby any consistentsetof rules.

The useof a trainedMLP as the critic in evolution-
ary compositionalsystemshasprovedproblematicin pre-
vious research(seeTodd andWerner,1999, for a recent

4It could perhapsbe extendedto cover the machinegenerationof
othertypesof artwork suchaspaintingsor stories.

review of evolutionaryapproachesto algorithmiccompo-
sition). An attemptwasmadehereto improveuponthese
approachesin two main areas:the selectionof the posi-
tiveandnegativetrainingdataandthenumberof instances
usedto train thenetwork (Pearce,2000).

Thenetwork learnedto classifythetrainingdatawith
a final RMS error of 0.1476and a classificationrate of
93% on the test set, demonstratingthat its classification
performancegeneralisedwell to unseendata.

5.3 Composition

A generationalGA with probabilisticbinary tournament
selectionwas used to evolve drum patternsusing the
trainedMLP asacritic. Thesystememployedsinglepoint
crossoverwithin instrumentsandthreemutationoperators:
onewhich changeda geneto a randomlyselectedvalue;
onewhich rotatedeachinstrumentabouta randomlyse-
lectedquaver timestep;andonewhich reversedtheentire
chromosome.

It becameapparentthattheMLP wasproviding impre-
ciseevaluationof thechromosomes.For example,dueto
therandominitialisationof thechromosomefar too many
notesappearedon demisemiquaver subdivisions. How-
ever, the MLP still gave thesechromosomeshigh fitness.
An informal analysisof the network weightssuggested
that thosecorrespondingto thesetimestepstendedto be
small and thereforeexertedlittle influenceon the classi-
fication of a drum pattern. It is suggestedthat this was
dueto a failureto cover thisaspectof drumpatternsin the
negative trainingdata.Thenetwork wasalsoimprecisein
other areasand this is likely also to have beena conse-
quenceof thenegative trainingsetfailing to cover a large
enoughareaof thespaceof negativefeaturesof thestyle.

Althoughamoresophisticatedinitialisationof thechro-
mosomesand the additionof four rules to the critic im-
provedthequality of thegenerateddrumpatterns,thede-
velopmentof appropriatetechniquesfor inducingcriticsin
compositionalsystemsfrom examplemusicalpiecesis an
areathatwarrantsfurtherinvestigation(seeSection6.1).

5.4 Evaluation

5.4.1 Introduction

Threeevaluationexperimentswere performedusing the
systemcompositionscorrespondingto the compositional
aims set out in Section5.1. The first was our discrim-
ination test (section5.4.2); the secondasked subjectsto
classifythepatternsaccordingto style(section5.4.3);and
thefinal experimentaskedfor judgementsof thediversity
presentin groupsof threesystemgeneratedpatternstaken
from bothbetweenandwithin runs(section5.4.4).

Theexperimentswerecarriedoutusing19humansub-
jects from the Schoolof Artificial Intelligenceat Edin-
burgh University. All experimentswereconductedin one
sessionwith all 19 subjectspresentin order to maintain
extraneousinfluencesconstantacrosssubjects.Theques-



tionspertainingtoexperimentsoneandtwo wereanswered
with respectto thesamesetof drumpatternsin anattempt
to reducetheamountof listeningthesubjectswould have
to do. As notedby Biles (1999),subjectsfind active lis-
teningandcriticismof musicanextremelytiring task.The
subjectswereaskedto stateon a scaleof betweennought
and five their knowledgeand experienceof the musical
stylesinvolved.

The patternsusedin the experimentsweregenerated
usingthesamesystemparameters.All MIDI drumparts,
bothhumanandsystemgenerated,wereonebar in length
andrecordedata tempoof 150BPM usingtheGSRoland
909drumset.It wasexplainedto thesubjectsthatall pat-
terns(both humanandsystemgenerated)werequantised
andrecordedusingelectronicdrumsounds.

All threeexperimentsinvolvetestinghypothesesabout
meansanddue to the small samplesizesinvolved the t-
test wasused. In the caseof a one-samplet-testN was
calculatedasthe numberof subjectsminusone,while in
the caseof the two samplet-test it wascalculatedasthe
numberof subjectsminustwo5.

A generaldiscussionof theseexperimentalresultscan
befoundin Section6.2.

5.4.2 Experiment 1

In this testthesubjectswereaskedto discriminatesystem
generatedpatternsandhumangeneratedpatternsfrom the
trainingset.Thesystemwasconsideredto havesucceeded
if thesubjectswereunableto distinguishsystemfrom hu-
mangeneratedpatterns.

A setof drumpatternswasconstructedcontaining10
systemgeneratedpatternstakenfrom differentrunsof the
GA and10 humangeneratedpatternsrandomlyselected
from theMLP trainingset.These20 patternswereplayed
in a randomisedorder to the subjectswho wereasked to
statefor eachpatternheardwhetherthey thoughtit was
systemor humangenerated.Subjectswerealsoasked to
stateat theendof theexperimenton whatbasisthey were
discriminating.

The proportionsof systemandhumangeneratedpat-
ternscorrectlyclassifiedwerecalculatedfromtheobtained
resultsandthefollowinghypothesestestedwith aonesam-
ple t-testagainsttheknown meanof 0.5 (thatexpectedif
subjectswerediscriminatingrandomly).

� Null hypothesisone:themeanproportionof human
generatedpatternscorrectlyclassifiedis thesameas
thatexpectedif thesubjectswereansweringat ran-
dom.

� Null hypothesistwo: themeanproportionof system
generatedpatternscorrectlyclassifiedis thesameas
thatexpectedif thesubjectswereansweringat ran-
dom.

Theresultsof thisexperimentareshown in Table1 6

5For furtherreadingCohen(1995)isanexcellenttext onexperimental

Mean SD DF t p

Human 0.516 0.224 18 0.311 0.241
System 0.679 0.181 18 4.241 0.999

Table1: Resultsof Experiment1

Theresultsprovidedtwo statisticalresultsusing95%
confidenceintervals.First,wecouldretainnull hypothesis
one and second,we could reject null hypothesistwo in
favour of thefollowing hypothesis:

� Hypothesistwo: thesamplemeanproportionof sys-
temgeneratedpatternscorrectlyclassifiedis greater
thanthatexpectedif thesubjectswereansweringat
random.

This result allows us to refute the claim that the system
generatedpatternsareindistinguishablefrom humangen-
eratedpatternsin thesamestyle.

5.4.3 Experiment 2

This experimentwas designedto evaluatewhether the
generatedpatternswere in the intendedstyle by asking
subjectsto specify a style for systemandhumangener-
atedpatterns.If the proportionof systemgeneratedpat-
ternscorrectly classifiedaccordingto style wasequalto
or greaterthan the proportion of humangeneratedpat-
ternscorrectly classifiedthen the systemgeneratedpat-
ternscouldbeconsideredto bein thecorrectstyle.

A setof drumpatternswasconstructedcontaining10
systemgeneratedpatternstakenfrom differentrunsof the
GA, 10 humangeneratedpatternsrandomlyselectedfrom
the ANN training set and 10 humangenerated“techno”
drumpatterns.Technowaschosensinceit is adistinctmu-
sicalstylefrom d&b but typically hasasimilar, fasttempo.
These30patternswereplayedin arandomisedorderto the
subjectswho were asked to statefor eachpatternheard
the style of the patternfrom a choiceof “drum&bass”,
“techno”and“other”.

Themeanproportionsof humanandsystemgenerated
patternscorrectlyclassifiedaccordingto stylewerecalcu-
latedfrom theexperimentaldataandthefollowinghypoth-
esiswastestedwith atwo samplet-test.In thecaseof sys-
temgeneratedpatterns“correctlyclassified”refersto clas-
sificationin the intendedstyle (d&b). Theoption“other”
wascountedasanincorrectclassificationin all cases.

� Null hypothesis:thereis no differencein the mean
proportionsof humanandsystemgeneratedpatterns
correctlyclassifiedaccordingto style.

Theresultsof thisexperimentareshown in Table2.

methodsin AI.
6In this descriptionof our resultsthedegreesof freedomaredenoted

by “DF”, thestandard deviation is denotedby “SD”, “t” is thet statistic
and“p” is theprobabilitythatthesamplemeanscomefrom two popula-
tionswhosetruemeansdiffer.



HumanMean SystemMean DF t p

0.729 0.568 17 2.181 0.978

Table2: Resultsof Experiment2: againstsystemmean

Within a confidenceinterval of 95%, we could reject
thenull hypothesisin favour of thefollowing hypothesis:

� Hypothesisone: the meanproportionof correctly
classifiedhumangeneratedpatternsis significantly
higher than the meannumberof systemgenerated
patterns.

Given this result a further one-samplet-test was run
againsttheknown mean0.33(theexpectedresultassum-
ing thesubjectswereansweringat random)usingthenull
hypothesis:

� Null hypothesis:the meanproportionof correctly
classifiedsystempatternsis equalto the meanex-
pectedif subjectswereansweringat random.

Theresultof this testis givenin Table3.

SystemMean Known Mean DF t p

0.568 0.333 18 3.474 0.999

Table3: Resultsof Experiment2: againstknown mean

We could, therefore,within a confidenceinterval of
0.99,rejectthenull hypothesisin favour of the following
hypothesis:

� Hypothesisone: the meanproportionof correctly
classifiedsystemgeneratedpatternsis greaterthan
theproportionexpectedif thesubjectswereanswer-
ing randomly.

Thesestatisticalresultsallow usto refutetheproposalthat
thesystemgeneratedpatternsarein theintendedstyle(Ta-
ble 2) althoughthey also suggestthat the set of system
generatedpatternsdoesoverlapwith thesetof patternsin
thestyleof d&b (Table3).

5.4.4 Experiment 3

This experimentwasdesignedto evaluatethe amountof
musicalvariationin thepatternsgeneratedbothwithin one
run andbetweenrunsof theGA comparedto theamount
of variationin the training data. Perceived variationwas
chosenasmoremusicallyrelevantthanananalysisof the
patternsthemselves(usingHammingdistance,for exam-
ple). An intermediatedegreeof variationwasdesiredsince
toomuchwould takethepatternsoutof theintendedstyle.
Thevariationin thetrainingdatawaschosenasa reason-
ableindicationof a desirableamount.

A setof drumpatternswasconstructedcontaining20
groupsof threepatterns. Five of thesegroupsof three

wereconstructedfrom patternstakenfrom within individ-
ual runsof theGA, anotherfive from patternstakenfrom
different runs of the GA and the final ten from patterns
randomlyselectedfrom the training set. Subjectswere
playedthese20 groupsof patternsin a randomisedorder
andasked to indicateon a scaleof oneto five how much
variation they consideredthereto be within eachgroup.
The total amountof variationfor the human,the within-
run and the between-rungroupswascalculatedfor each
subjectand convertedto a fraction betweennoughtand
oneby dividing it by the maximumpossiblescore. The
meanof thesevaluesacrosssubjectswasthencollected.

Themeanvariationof thewithin-runandbetween-run
groupswascomparedto themeanvariationof thehuman
groupsin a two samplet-testwith the following null hy-
potheses:

� Null hypothesisone: there is no differencebe-
tweenthe meanperceived variationof the within-
rungroupsandthehumangroups.

� Null hypothesistwo: thereis no differencebetween
the mean perceived variation of the between-run
groupsandthehumangroups.

Table4 shows the resultsfor machinegeneratedpatterns
takenfrom within runsof thesystemwhile Table5 shows
theresultsfor thosetakenfrom differentruns.

HumanMean SystemMean DF t p

0.601 0.502 17 3.055 0.996

Table4: Resultsof Experiment3: Within Run

HumanMean SystemMean DF t p

0.601 0.502 17 3.055 0.996

Table5: Resultsof Experiment3: BetweenRun

Thesestatisticalresultsshowedthatwithin a99%con-
fidenceinterval we could reject both null hypothesesin
favour of thefollowing hypotheses:

� Hypothesisone:themeanperceivedvariationof the
humangroupsof patternsis greaterthanthatof the
within-rungroupsof systemgeneratedpatterns.

� Hypothesistwo: themeanperceivedvariationof the
humangroupsof patternsis greaterthanthatof the
between-rungroupsof systemgeneratedpatterns.

Theseresultsindicatethat the systemgeneratedpat-
ternsfail to reachthecriterionlevel of perceivedvariation.
We haverefutedtheassertionthatthereareequalamounts
of variationin the systemgeneratedpatternsandthe hu-
mangeneratedpatterns.



6 Future Directions

This researchhasdemonstratedthepracticalityof thepro-
posedframework andalso highlightedseveral areasthat
areworthyof furtherdevelopment.

6.1 Inducing the Critic

Thefailureof this studyto achieve its aimswasattributed
largely to problemswith usinga MLP to learnto classify
musicalsequencesevenwhenstepsweretaken to ensure
thattherewasasufficientamountof trainingdataandthat
positive training datacamefrom an internally consistent
source. The major obstacleseemsto be finding a setof
negative training instancesthatwill sufficiently cover the
spaceof musicalphrasesnot in the target classification.
This is a seriousproblemandonethatmustbedealtwith
if this methodis to beusedin thecompositionof music.

Since the proposedframework is general,however,
other machinelearningtechniquescan be appliedto in-
ducea critic (seePapadopoulosandWiggins,1999,for a
recentreview of techniquesfor algorithmiccomposition).
Forexample,thereisabodyof researchconcerningtheuse
of recurrentMLPs for thegenerationof music(e.g.,Todd
andLoy, 1991;Griffith andTodd,1999).In thisparadigm,
the recurrentnetwork is trainedto predict the note on a
particulartimestepgivena previoussequenceof notesas
a context. However, an inability to extract higher level
featuresof musicseemsto be a problemthathasdogged
mostattemptsto composewith recurrentneuralnetworks.
Mozer(1994)commentsthat:

“While the local contoursmadesense,the
pieceswere not musically coherent,lacking
thematicstructureandhaving minimalphrase
structureandrhythmicorganisation.”

Oneexceptionis HARMONET(Hild etal.,1992).The
aimof thisstudywasto approximatethefunctionmapping
choralemelodiesontotheirharmonisationusingatraining
setof 400four-partchoralescomposedby J.S.Bach.They
approachedtheproblemby decomposingit into sub-tasks:
generatinga skeletonstructureof the harmony basedon
local context; generatinga chordstructureconsistentwith
theharmonicskeleton;andfinally addingornamentalqua-
versto thechordskeleton.Neuralnetworkswereusedfor
the first and third tasksand a symbolic constraintsatis-
factionapproachwasappliedto thesecondsub-task.The
resultingharmonisationswere judgedby an audienceof
“music professionals”to beon thelevel of animprovising
organist.Theauthorsconcludethat:

“By usingahybridapproachweallow thenet-
worksto concentrateonmusicalessentialsin-
steadof on structuralconstraintswhich may
behardif learnedby anetwork but easyif ex-
pressedsymbolically.”

While thenetworksin thesecompositionalsystemses-
sentiallyperformthefunctionsof bothcritic andcomposer

in theaboveframework, they arestill amenableto theeval-
uatorysystem. Furthermore,recurrentMLPs requireno
setof negativetraininginstances.

Anotherpossibilityis touseunsupervisedlearningtech-
niqueswhich alsorequireonly positive data. Burton and
Vladimirova(1997)usedanunsupervisedART network to
developclusterscorrespondingto drumpatternsfrom dif-
ferentstylesof music(rock, funk, disco,latin andfusion)
from a setof training examples.The fitnessof candidate
patternsgeneratedby aGA wasgivenby theirpropinquity
to the desiredcluster. However, the ART network critic
seemedto produceacertainhomogeneityin thegenerated
patterns(Burton,1998).

Alternatively, symbolic machinelearningtechniques
mightbeusedto extractacritic from asetof musicaldata.
Typically, this hasinvolvedtheuseof oneof two AI tech-
niquesto extractamusicaltheoryfrom acorpusof musical
examples.First,Markov modelshavebeenusedto extract
context basednote transitionprobabilitiesfrom a corpus
of data(e.g.,Conklin andWitten, 1995). However, these
approachesonceagainsuffer from theproblemsof an in-
ability to extracthigherlevel structurein music.A second
approachhasbeento extractgrammarsthroughstatistical
analysisof asetof musicalpieces(e.g.,Cope,1991;Pons-
ford etal.,1999).Amongthemaindrawbacksof theseap-
proachesaredealingwith ambiguityandthe potentialto
generatelargenumbersof stringsof questionablequality
(PapadopoulosandWiggins,1999).

Theappropriatemethodsto usewill dependcrucially
on the musicaldomainbeingmodeled.However, we be-
lieve thatanapproachthatappliesdifferentAI techniques
to thosecritical andcompositionalsubtasksto which they
arebestsuited(asin HARMONET) is likely to provemost
fruitful.

6.2 Experimental Design

Theexperimentsperformedto evaluatethedrumpatterns
generatedby the systemproved inadequatein several re-
spects. It is interestingto note that in Experiment1 the
subject’s classificationperformanceon the humangener-
atedpatternswasnobetterthanrandom.Thissuggeststwo
things: that thesubject’s familiarity with thedomainwas
low; anda biastowardsclassifyingthepatternsassystem
generated.

Thefirst suggestionis supportedby the the low aver-
ageexperienceand knowledgeof d&b professedby the
subjects(two out of five) andalsoby the low meanpro-
portion of humangeneratedpatternscorrectly classified
accordingto style in Experiment2. The subject’s self-
professedlack of knowledgeof the relevantmusicalgen-
resmadetheir judgementshardto evaluate. Ideally such
experimentsshouldbemadewith subjectswho arehighly
familiar with the genreof musicbeingcomposedby the
system7.

7Although the subjectsmust not be familiar with the humancom-
posedpiecesusedin thetest



The secondproblemconcernsthe bias towardsclas-
sifying drum patternsas systemcomposed. Somerea-
sonsfor thisbiasweresuggestedby aninformalcollection
of the criteria usedby the subjectsto distinguishsystem
andhumangeneratedpatterns.It seemedthat they were,
in general,looking out for negative features8 of the pat-
ternswhich would classifythemassystemgenerated.A
sensethatthey werebeingaskedto “catchthesystemout”
mayhave leadthemto overclassifythepatternsassystem
generated.Thosesubjectswho werelooking for features
of humangeneratedpatternssearchedfor “smoothness”,
“coherency”, “largescalestructure”,“subtleties”andsuch
featuresaswhetherit qualifiedaspart of a songor simi-
larity to rhythmsthey hadheardin songs.Given that the
drum patternswereshort,lacking musicalcontext andin
anunfamiliar style for mostsubjects,theuseof thesecri-
teriamayhaveleadto thebiastowardsclassifyingpatterns
assystemgenerated.

Urwin (1997),in a similar experiment,askedsubjects
to assumethatapatternwashumangeneratedif they were
unsure(andobtained85%misclassificationof thesystem
generatedpatterns).However, this is likely to have pro-
duceda biasin theoppositedirection. Therearetwo ob-
viousmeansof counteringthesekindsof biases.Thefirst
wouldbeto useacontrolexperimentin whichsubjectsare
given a setof humancompositions.The proportionmis-
classifiedasmachinegeneratedcould thenbe taken asa
baselineto be factoredinto the statisticalanalysisof the
actualexperiments. A secondsolution would be to in-
form thesubjectsthatthesetof musicalphrasescontained
equalproportionsof machineandhumangeneratedcom-
positions. An extensionof this ideawould be to present
thesubjectswith a setof compositionsonly oneof which
is bemachinegenerated.Thetaskwould thenbecometo
decidewhich compositionhasbeencomposedby thema-
chine.

A further possibility would be to setup the test in a
mannermoreakin to the Turing test. A computerinter-
facecouldbe designedwhich presentedtwo buttons,one
of whichwouldplaycompositionsrandomlyselectedfrom
the training setwhile the otherwould play compositions
randomlyselectedfrom thesetof machinecompositions.
The subjectswould have to decidewhich button corre-
spondedto the systemgeneratedcompositions.Statistics
suchasthenumberof timeseachbuttonwaspressedand
soon couldbecollectedfor eachsubject.

Finally, a few points madeby the subjectsconcern-
ing the experimentsare worth noting. First, it was sug-
gestedthattheshortdurationof thepatterns(justonebar)
mayhaveforcedsubjectsto quickandunreliabledecisions
while the lack of musicalcontext for the drum patterns
madetheevaluationdifficult. Second,themerging of ex-

8Examplesof thesefeatureswerelack of originality, randomness(or
how chaoticthepatternsseemed),predictabilityandmechanicalitylead
to classificationassystemgenerated.It is interestingto notethat both
extremeconformity to theprototypeof a styleandextremerandomness
in a patternclassifiedit assystemgeneratedin theeyes(or ears)of the
subjects.

perimentsoneandtwo may have leadto unreliabledeci-
sionssincesubjectshadto answertwo differentquestions
(relatingto whetherthepatternwassystemor humangen-
eratedand what style it was in) aboutthe samepattern.
Onceagain,this may have forcedhurriedandunreliable
responsesfrom thesubjects.

Therefore,somesuggestionsfor betterdesignedexper-
imentswould be to useseparateexperimentsfor eachin-
dividual test, to usemoreknowledgeablesubjectsandto
uselongerpatterns. Finally, the problemof the bias to-
wardsclassifyingpatternsassystemgeneratedshouldbe
addressed.

6.3 What do the Results Mean?

Thediscriminationtestby itself simplytellsuswhetherthe
systemgeneratedpatternsareperceptuallydistinguishable
from humangeneratedpatternsin the samestyle. This
tells us nothing aboutwhich subcomponentsof the sys-
temandits behaviour arein needof furtherdevelopment.
However, thisinformationis veryimportantif ourresearch
programmesareto beprogressive asdescribedin Section
2.

Theotherexperimentsdescribedhereweredesignedto
beableto refuteotherspecificclaimsaboutthedrumpat-
ternscomposedby thesystem.Experiment2 would allow
usto refutetheclaimthatthepatternswerein theintended
style. However, sincemembershipof a stylistic groupis
probablynotadiscreteconcept,abetterexperimentmight
have askedfor judgementsof thedegreeto which thepat-
ternswereconsideredd&b patterns.

Experiment3 would allow us to refutethe claim that
thereexisted asmuch perceptualdiversity in the system
generatedpatternsasin thehumangeneratedtrainingset.
Another experimentwhich asked subjectsto distinguish
systemgeneratedpatternsfrom humangeneratedexam-
plesof the style which werenot includedin the dataset
could also be usedto test the claim that the knowledge
possessedby the systemwasgeneralisedto the style un-
der considerationratherthan reflectingonly the training
corpus.

It canbe seenthat experimentscould be designedto
test claimsaboutmany other aspectsof the systemgen-
eratedpatterns.For example,the outputof creative sys-
temsmaybeevaluatednotonly in termsof setmembership
but alsousingqualitative measures.Therefore,anexperi-
mentaskingfor anaestheticevaluationof asetof patterns
containingmachineandhumancomposedmusicmightbe
helpful in determiningnot only whetherthe systemgen-
eratedpiecesarecomparableto humancomposedpieces
andin thecorrectstylebut alsohow “good” they arecon-
sideredto be within the style. It would be interestingto
seehow muchconsensustherewouldbebetweensubjects
on suchaestheticmatters.

Sowhat do theresultsof theseexperimentsmean?It
shouldbe notedthat theseexperimentsare not intended
asreplacementsfor thecommentsof musiciansandmusi-



cologistswhich maybeextremelyinsightful andusefulin
termsof improving our computationalmodelsof compo-
sition. However, theseexperimentsdo allow us to make
scientific(refutable)claimsaboutthemusicgeneratedby
our compositionalsystems.Nevertheless,many questions
remain. Are we justified in assumingthat if a group of
knowledgeablesubjectsmisclassified50% of the system
generatedpatternsashumangeneratedthen they canbe
takento beansweringat random?Cantheclaim of indis-
tinguishabilityberefutedby a singlecorrectclassification
of a patternassystemgenerated?

7 Evaluating Musical Creativity

No mentionhasyetbeenmadeof musicalcreativity – does
our framework haveany relevanceto theevaluationof the
creativity of machinecomposers?The framework is de-
signedfor theevaluationof machinecompositionswithin
aspecifiedstyle. It might thereforebeobjectedthatthere-
ally creative musicalactsinvolve the foundingof a new
style or genre. However, as notedby Garnham(1994)
mostcreative achievementin theartsdoesnot follow this
form: “the originsof thesymphony arelost in historyand
its majortriumphsarethework of composerswho did not
invent the basicsymphonicform.” Most creative work is
carriedout within stylesor genres.

Creativity can be definedin two ways: what Boden
(1990)calls the PsychologicalandHistorical (P- andH-)
formsof creativity. Theformerrefersto thegenerationof
acreativeproductthatis novel for theindividualwhile the
latter indicatesthat somethingnever beforeconceivedof
by mankindhasbeengenerated.SinceH-creativity canbe
seenasa subsetof P-creativity dependingalsoon histori-
calaccidentandsocialfashion(Boden,1990),ourconcern
hereis with P-creativity.

How might we go aboutevaluatingtheP-creativity of
our compositionalsystem?Therewould seemto be two
aspectsof thesystemto besubjectedto evaluation.First,
themusiccomposedandsecond,the internalworkingsof
thesystemitself.

Regardingtheformer(whichhasbeenthemajorfocus
of this paper),we have arguedthat the systemgenerated
compositionswill only succeedon our discriminationtest
if thereareabsolutelynoperceivablefeatureswhichcanbe
usedto distinguishthesetof machinecompositionsfrom
thesetof humancompositions.If it is possibleto perceive
creativity in music(or to infer theP-creativity of thecom-
poser)thenthis would beamongthesefeatures.

In fact,theperceivedcreativity of awork of artorpiece
of musicis likely to becloselyrelatedto its perceivedaes-
thetic valueandit is possiblethat this wasconsideredby
the subjectsin their attemptsto discriminatehumanand
systemgeneratedpatterns.Thisconjectureis supportedto
somedegreeby thecommentsof thesubjectsin theexper-
imentsdescribedabove: both extremeconformity to the
prototypeof a style andextremerandomnessin a pattern
asindicativethatit hadbeenmachinegenerated.Thissug-

geststhatguidedexplorationof thespaceof possibledrum
patternswasconsideredindicativeof humancomposition.
This,in turn,accordswith thenotionthatcreativeproducts
mustbebothoriginal (p-novel) and“appropriate”(Boden,
1990).

Theotherexperimentsin theresearchdescribedin Sec-
tion 5 mayalsobepertinenthere.Thesecondexperiment
ensuresthat thepatternsarein thecorrectstyleandthere-
fore“appropriate”.Finally, thethird experimentwaslook-
ing at the ability of the systemto continually and thor-
oughly explore its the spaceof drum patternsin a non-
repetitivemanner. Similarly, we would expectcreative in-
dividualsto consistentlyandcontinuallygeneratecreative
products.

Otherexperimentscouldbedevisedalongsimilar lines
to probeotheraspectsof creativecomposition.For exam-
ple, by obtaining judgementsof the perceptualdistance
betweenpairs of training examplesand training exam-
ple/systemgeneratedpairsit wouldbepossibleto evaluate
how far theprogramexploresaway from theexperienced
musicalexamples.

It mightbesuggestedthatevaluationof machinecom-
positionsthemselvescan tell us only so muchaboutthe
creativity of a compositionalsystem: we would want to
know aboutthe internalworkingsof thesystem(its com-
positionalprocesses)beforewecalledit creative. As noted
by Boden(1990)this appearsto bean importantcriterion
by whichpeoplearereluctantto attributecreativity to ma-
chines. Furthermore,Cohen(1999) refusesto attribute
Aaron (his programfor the generationof artworks) with
creativity althoughit generatespiecesit hasneverpainted
beforeandhasa uniqueandcharacteristicstyle. This is
largely becausehedoesn’t believe it is creatingthepaint-
ingsin theright way.

While it would seemimportant to complementbe-
havioural evaluation of our creative systemswith what
we might call “cognitive” evaluation9 our testscanshow
somelight on the internalmechanicsof thesystem.Hof-
stadter(1994) has argued that the premisethat “covert
mechanismscanbedeeplyprobedandeventuallyrevealed
merely by meansof watchingovert behaviour... lies at
theveryheartof modernscience.” In particular, heargues
thattheTuringtestoffersamultitudeof probeswhichmay
beusedin long-terminteractionwith acognitivemodelto
infer themechanismsunderlyingits behaviour.

To give an example,a systemwhich storedsamples
from varioussongsand simply pastedthem togetherto
producenew compositionsmight passthe discrimination
testinitially. However, it would seemlikely that over re-
peatedexperimentsthe underlyingmechanismsof “com-
position” would be inferredby the subjects.This exam-
pleemphasisestwo importantfeaturesof theexperiments:
first, the criteria usedby the subjectsfor evaluationare
usefulaspointersto the typesof behaviour they identify
asexposingnon-humanmechanismsin thecompositional

9Althoughimportantthis is a topic for anotherpaper.



system10; second,the subjectsshouldideally be allowed
to take thetestrepeatedly.

8 Summary and Conclusions

This paperhasprovideda tentative first steptowardsthe
developmentof a generalframework for the evaluation
of machinegeneratedmusicby computerprogramsbased
on AI techniques.The evaluationof algorithmiccompo-
sitions is an importantissuesincewithout it we have no
meansof telling whetherthesystemswe developsucceed
in their compositionalaimsand,if not, why not. This in
turn is importantif weareto developprogressiveresearch
programmeswithin thefield of cognitivemusicology. The
issueof evaluationis alsoonethatis frequentlygivenless
attentionthanit deservesin the literatureon algorithmic
composition.

The framework involvesfour stages:specificationof
compositionalaims; inductionof a critic from examples
of the relevant musicalgenre;compositionof music that
satisfiesthecritic; andevaluationof themachinecompo-
sitionsusinghumansubjects.

Theframework hasseveralattractive features,onebe-
ing thatit placesnorestrictionsonthecompositionalaims,
themusicgeneratedandtheAI techniquesusedin there-
search.However, our presentationin Section5 of a com-
positionalsystemwhich embodiestheframework demon-
stratesthat is not so generalasto be meaningless.In ef-
fect,it allowsusto makerefutable,andthereforescientific,
claimsaboutthedegreeto whichasystemfulfills its com-
positionalaims.Therefutationof theseclaimsmayallow
usto identify areasin whicharecompositionalmodelsare
lacking. Finally, theframework maybeextendedto eval-
uatethemusicalcreativity of machinecomposers.

In additionwe have highlightedseveral issuesworthy
of futurework includingthefollowing:

� A reliableandappropriatemeansof inducingacritic
from a bodyof music.

� Variousissuesconcerningtheexperimentalprotocol
usedfor evaluationincluding: theuseof expertsub-
jects; counteringclassificationbiases;andthe pre-
sentationof thecomposedmusicin anaturalcontext
for evaluationby thesubjects.

� The evaluationof musicalcreativity both in terms
of the compositionsproducedandhow the compo-
sition allow subjectsto infer theunderlyingmecha-
nismsof thesystem.

� Finally, theframework shouldbeappliedto systems
with a wider rangeof compositionalaims and the
generationof differentstylesandtypesof music. It
would also be interestingconsiderthe application
of theframework to theevaluationof othercreative
systemsfor the generationof, for example,visual
art,storiesandjokes.

10asnotedin section6.2

We expectto addresstheseissuesin futureresearch.
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