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ABSTRACT

The prevalent approach to developing cognitive models of music perception

and composition is to construct systems of symbolic rules and constraints on

the basis of extensive music-theoretic and music-analytic knowledge. The the-

sis proposed in this dissertation is that statistical models which acquire knowl-

edge through the induction of regularities in corpora of existing music can, if

examined with appropriate methodologies, provide significant insights into the

cognitive processing involved in music perception and composition. This claim

is examined in three stages. First, a number of statistical modelling techniques

drawn from the fields of data compression, statistical language modelling and

machine learning are subjected to empirical evaluation in the context of se-

quential prediction of pitch structure in unseen melodies. This investigation

results in a collection of modelling strategies which together yield significant

performance improvements over existing methods. In the second stage, these

statistical systems are used to examine observed patterns of expectation col-

lected in previous psychological research on melody perception. In contrast to

previous accounts of this data, the results demonstrate that these patterns of

expectation can be accounted for in terms of the induction of statistical regu-

larities acquired through exposure to music. In the final stage of the present

research, the statistical systems developed in the first stage are used to examine

the intrinsic computational demands of the task of composing a stylistically suc-

cessful melody. The results suggest that the systems lack the degree of expres-

sive power needed to consistently meet the demands of the task. In contrast to

previous research, however, the methodological framework developed for the

evaluation of computational models of composition enables a detailed empirical

examination and comparison of such models which facilitates the identification

and resolution of their weaknesses.
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CHAPTER 1

INTRODUCTION

1.1 The Problem Domain and Approach

The research presented in this dissertation is concerned with modelling cogni-

tive processes in the perception and composition of melodies. The particular

computational problem studied is one of sequence prediction: given an ordered

sequence of discrete events, the goal is to predict the identity of the next event

(Dietterich & Michalski, 1986; Sun & Giles, 2001). In general, the prediction

problem is non-deterministic since in most stylistic traditions an incomplete

melody may have a number of plausible continuations.

Broadly speaking, we adopt an empiricist approach to solving the problem,

in which the function governing the identity of an event in a melodic sequence

is learnt through experience of existing melodies. In psychology, learning is usu-

ally defined as “the process by which long-lasting changes occur in behavioural

potential as a result of experience” (Anderson, 2000, p. 4). Expanding on this

definition, research in machine learning specifies a well-posed learning prob-

lem as one in which the source of experience is identified and the changes in

behavioural potential are quantified as changes in a performance measure on a

specified set of tasks:

A computer program is said to learn from experience E with respect

to some class of tasks T and performance measure P , if its perfor-

mance at tasks in T , as measured by P , improves with experience

E.

(Mitchell, 1997, p. 2)

1



2 INTRODUCTION 1.1

As stated above, the task T is one of non-deterministic sequence prediction

in which, given a sequence si, si+1, . . . , sj, the goal is to predict sj+1. Having

predicted sj+1, the learner is shown sj+1 and challenged to predict sj+2 and so

on. This differs from the classification problems typically studied in machine

learning where the goal is to learn the function mapping examples from the

target domain onto a discrete set of class labels (Sun & Giles, 2001). The

performance measure P is the performance of the trained model in predicting

unseen melodies, operationalised in terms of the average surprisal induced in

the model by each unseen event. Finally, the source of experience E consists of

melodies drawn from existing musical repertoires.

Machine learning algorithms differ along a number of dimensions. For ex-

ample, it is common to distinguish between inductive learning and analytical

learning. While the former involves statistical inference on the basis of existing

data to find hypotheses that are consistent with the data, the latter involves

deductive inference from a logical domain theory to find hypotheses that are

consistent with this theory. Analytical learners can learn from scarce data but

require the existence of significant a priori domain knowledge. Inductive learn-

ers, on the other hand, require little prior knowledge of the domain but require

extensive data from which to learn. Furthermore, in order to generalise to novel

domain examples, inductive learning algorithms require an inductive bias: a set

of assumptions about the target hypothesis, which serve to justify its inductive

inferences as deductive inferences (Mitchell, 1997). Inductive learning algo-

rithms are also commonly classified according to whether they learn in a super-

vised or unsupervised manner. Supervised learning algorithms require feedback

during learning as to the correct output corresponding to any given input, while

unsupervised learners require no such feedback. The selection of an appropri-

ate kind of machine learning algorithm (supervised or unsupervised; inductive

or analytical) is heavily task dependent, depending on the relative availability

of large corpora of training data, extensive domain theories and target outputs.

In the present research, an unsupervised, inductive learning approach is fol-

lowed, which makes minimal a priori assumptions about the sequential struc-

ture of melodies. The particular brand of inductive learning model examined

may be categorised within the class of finite context or n-gram models. Intro-

duced fully in §3.2 and §6.2.1, these models represent knowledge about a target

domain of sequences in terms of an estimated probability distribution govern-

ing the identity of an event given a context of preceding events in the sequence.

The length of the context is referred to as the order of the model. As discussed

in §3.2, these models are intrinsically weak in terms of the structural descrip-
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tions they assign to sequences of events (although this weakness is orthogonal

to their stochastic nature). However, in contrast to more powerful modelling

approaches, finite context models lend themselves to an unsupervised learning

approach in which the model acquires its knowledge of sequential structure

in the target domain exclusively through exposure to existing event sequences

drawn from that domain. Finally, the research presented in this dissertation em-

phasises the problem of accurately estimating event probabilities from trained

models (and examining these models in the context of music cognition) rather

than comparing the performance of different learning algorithms.

1.2 Motivations: Cognition, Computation and Analysis

Existing cognitive models of music perception typically consist of systems of

symbolic rules and constraints constructed by hand on the basis of extensive

(style specific) music-theoretic knowledge (e.g., Deutsch & Feroe, 1981; Ler-

dahl & Jackendoff, 1983; Narmour, 1990; Temperley, 2001).1 The same may

be said of research on cognitive processes in music composition (e.g., Baroni,

1999; Johnson-Laird, 1991) although this area of research has received far less

attention than the perception of music. When inductive statistical models of

observed phenomena in music perception have been examined (see §3.6), they

have typically been limited to fixed, low order models of a small number of

simple representational dimensions of music (Eerola, 2004b; Krumhansl, 1990;

Krumhansl et al., 1999; Oram & Cuddy, 1995; Vos & Troost, 1989).

Within the field of Artificial Intelligence (AI), sophisticated statistical learn-

ing models which operate over rich representations of musical structure have

been developed (see §3.4) and used for a number of tasks including the pre-

diction of music (Conklin & Witten, 1995), classification of music (Westhead

& Smaill, 1993) and stylistic analysis (Ponsford et al., 1999). In particular,

the multiple viewpoints framework (Conklin & Witten, 1995) extends the use of

finite context modelling techniques to domains, such as music, where events

have an internal structure and are richly representable in languages other than

the basic event language (see §5.2.3). However, this body of research has not

examined the capacity of such models to account for observed phenomena in

music perception. Furthermore, while the models developed have been used to

generate music, the objective has been to verify the music analytic principles

involved in their construction (Conklin & Witten, 1995; Ponsford et al., 1999)

1The theory of Lerdahl & Jackendoff (1983) is summarised in §3.3 and that of Narmour

(1990) in §8.2.2.
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or to examine their utility as tools for composers and performers (Assayag et al.,

1999; Lartillot et al., 2001) and not specifically to model cognitive processes in

music composition.

The motivation behind the research presented in this dissertation is to ad-

dress the observed gulf between the development of sophisticated statistical

models of musical structure in AI research and their application to the under-

standing of cognitive processing in music perception and composition. It is

pertinent to ask, however, whether there is any reason to believe that address-

ing this issue will afford any advantages over and above existing approaches in

the study of music cognition. As noted above, the dominant theories of music

cognition consist of hand constructed systems of symbolic rules and constraints

derived from extensive and specialised music-analytic knowledge. Without a

doubt, such theories have made significant contributions to the understanding

of music cognition in terms of explicit accounts of the structures potentially af-

forded by the perceptual environment. However, as noted by West et al. (1985)

and suggested by a small number of empirical studies (Boltz & Jones, 1986;

Cook, 1987), these theoretical accounts may significantly overestimate the per-

ceptual and cognitive capacities of even musically trained listeners. Further-

more, as noted by Cross (1998a), they are typically accompanied by claims of

universal applicability and exhibit a degree of inflexibility which are incom-

mensurate with the small number of empirical psychological studies of music

perception in cross-cultural settings (Castellano et al., 1984; Eerola, 2004b;

Stobart & Cross, 2000).

From a methodological perspective, Cook (1994) charges the prevalent ap-

proaches in music cognition with theorism, the implicit premise that people

perceive music in terms of music-theoretic structures which were, in fact, de-

veloped for pedagogical purposes. In considering this tension between music

theory and music psychology, Gjerdingen (1999a, pp. 168–169) encourages the

use of machine learning models to develop “theories of music perception that

replace the calculus of musical atoms with an emphasis on experience, train-

ing and attention.” In summary, the application of sophisticated techniques for

knowledge acquisition and deployment to the development of data-driven mod-

els of music cognition offers the opportunity of addressing the theory-driven

biases, inflexibility and cross-cultural limitations of current approaches to the

modelling of music cognition.2

2As discussed in §2.6, the machine learning approach also affords other related methodolog-

ical advantages.
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1.3 Thesis Statement

The thesis proposed in this dissertation is that statistical models which acquire

knowledge through induction of regularities in corpora of existing music can, if

examined with appropriate methodologies, provide significant insights into the

cognitive processing involved in music perception and composition. In particu-

lar, the present research seeks answers to the following specific questions:

1. Which computational techniques yield statistical models of melodic struc-

ture that exhibit the best performance in predicting unseen melodies?

2. Can these models account for empirically observed patterns of expecta-

tion exhibited by humans listening to melodies?

3. Can these models account for the cognitive processing involved in com-

posing a stylistically successful melody?

In pursuing answers to each of these questions, it is necessary to decide

upon a methodological approach which is capable of producing empirical re-

sults pertinent to answering the question. Where appropriate methodologies

exist in relevant fields of research, they have been adopted; in addition, it is

within the scope of the present research to adapt or elaborate existing method-

ologies in order to yield objective answers to the research questions (see, for

example, Chapter 9). In the case of Question 1, the techniques examined as

well as the methodologies used to evaluate these techniques are drawn from

research in the fields of Artificial Intelligence and Computer Science. However,

Questions 2 and 3 explicitly introduce the goal of understanding cognitive pro-

cesses which in turn implies different criteria and methodological approaches

for evaluating the computational models (see §2.4). Since our current under-

standing of statistical processes in music perception and, especially, composi-

tion is relatively undeveloped, the present research follows common practice

in cognitive-scientific research in adopting a computational level approach (see

§2.4). Specifically, the focus is placed on developing our understanding of the

intrinsic nature and computational demands of the tasks of perceiving melodic

structure and composing a melody in terms of constraints placed on the expres-

sive power and representational dimensions of the cognitive systems involved.

1.4 Research Objectives and Scope

Given the motivating factors discussed in §1.2 and the research questions stated

in §1.3, the research presented in this dissertation adopts the following specific
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objectives:

1. to conduct an empirical examination of a range of modelling techniques

in order to develop powerful statistical models of musical structure which

have the potential to account for aspects of the cognitive processing of

music;

2. to apply the best performing of these models in an examination of spe-

cific hypotheses regarding cognitive processing in music perception and

composition;

3. to investigate and adopt appropriate existing methodologies, adapting

and elaborating them where necessary, for the empirical evaluation of

these hypotheses.

In order to reduce the complexity of the task of achieving these objectives,

the scope of the research presented in this dissertation was constrained in sev-

eral ways. First, the present research is limited to modelling monophonic music

and the corroboration of the results with homophonic or polyphonic music re-

mains a topic for future research (see §4.2).3 Second, the focus is placed firmly

on modelling pitch structure, although the influences of tonal, rhythmic, metric

and phrase structure on pitch structure are taken into consideration (see §5.4).

This decision may be justified in part by noting that pitch is generally the most

complex dimension of the musical genres considered in the present research

(see §4.3). Third, a symbolic representation of the musical surface is assumed

in which a melody consists of a sequence of discrete events which, in turn, are

composed of a finite number of discrete features (see §5.1). This decision may

be justified by noting that many aspects of music theory, perception and com-

position operate on musical phenomena defined at this level (Balzano, 1986b;

Bharucha, 1991; Krumhansl, 1990; Lerdahl, 1988a). Fourth, several complex

features, such as tonal centres or phrase boundaries, are taken directly from

the score (see §5.3). It is assumed that the determination of these features in

a given task such as melody perception may be regarded as a subcomponent

of the overall problem to be solved independently from the present modelling

concerns.

In addition to these constraints imposed on the nature and representation of

the objects of study, some limitations were placed on the modelling techniques

used. In particular, the present research examines the minimal requirements

3A piece of music is monophonic if it is written for a single voice, homophonic if it is written

for multiple voices all of which move in the same rhythm and polyphonic if it is written for

multiple voices each exhibiting independent rhythmic movement.
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placed on the cognitive processing of melodies through the exclusive use of

finite context models (see §3.2). If these relatively weak grammars prove in-

sufficient to meet the demands of a given task, it remains for future research to

examine the capacity of more powerful grammars on that task. This decision

may be justified by invoking the principle of Ockham’s razor: we prefer sim-

pler models which make fewer assumptions until the limited capacities of such

models prove inadequate in accounting for empirically observed phenomena.

1.5 Original Contributions

In §2.3, a distinction is made between three different branches of AI each with

its own motivations, goals and methodologies: basic AI; cognitive science; and

applied AI. The present research makes direct contributions in the fields of

basic AI and, especially, cognitive science and indirectly contributes to the field

of applied AI.

The goal of basic AI is to examine computational techniques which have

the potential for simulating intelligent behaviour. Chapters 6 and 7 present

an examination of the potential of a range of computational modelling tech-

niques to simulate intelligent behaviour in the context of sequence learning

and prediction. The techniques examined and the methodologies used to eval-

uate these techniques are drawn from the fields of data compression, statistical

language modelling and machine learning. In particular, Chapter 6 examines

a number of strategies for deriving improved predictions from trained finite

context models of melodic pitch structure, whilst Chapter 7 introduces a new

technique based on a weighted geometric mean for combining the predictions

of multiple models trained on different representations of the musical surface.

In empirically identifying a number of techniques which consistently improve

the performance of finite context models of melodic music, the present research

contributes to our basic understanding of computational models of intelligent

behaviour in the induction and prediction of musical structure.

Another contribution made in the present research is to use a feature se-

lection algorithm to construct multiple viewpoint systems (see 5.2.3) on the

basis of objective criteria rather than hand-crafting them on the basis of expert

human knowledge as has been done in previous research (Conklin, 1990; Con-

klin & Witten, 1995). This allows the empirical examination of hypotheses re-

garding the degree to which different representational dimensions of a melody

afford regularities which can be exploited by statistical models of melodic struc-

ture and in music cognition.
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The goal of cognitive-scientific research is to further our understanding of

human cognition using computational techniques. In Chapter 8, the statisti-

cal techniques developed in Chapters 6 and 7 are used to analyse existing be-

havioural data on melodic expectations. The results support the theory that

expectations are generated by a cognitive system of unsupervised induction of

statistical regularities in existing musical repertoires. This theory provides a

functional account, in terms of underlying cognitive mechanisms, of existing

theories of expectancy in melody (Narmour, 1990) and addresses the theory-

driven biases associated with such knowledge-engineering theories (see §1.2).

It also offers a more detailed and parsimonious model of the influences of the

current musical context and prior musical experience on music perception.

In Chapter 9, computational constraints on melodic composition are exam-

ined by applying the statistical techniques developed in Chapters 6 and 7 to

the task of generating stylistically successful melodies. In spite of efforts made

to improve on the modelling strategies adopted in previous research, the re-

sults demonstrate that these simple grammars are largely incapable of meeting

the intrinsic demands of the task. Given that the same models successfully ac-

counted for empirically observed phenomena in music perception, this result

is significant in the light of arguments made in previous research that similar

grammars underlie the perception and composition of music (Baroni, 1999;

Lerdahl, 1988a). In addition, the methodology developed to evaluate the com-

putational systems constitutes a significant contribution to future research in

the cognitive modelling of composition.

Finally, the goal of applied AI is to use existing AI techniques to develop

applications for specific purposes in industry. While this is not a direct con-

cern in the present research, the contributions made in terms of basic AI and

cognitive science could be put to practical use in systems for computer-assisted

composition (Ames, 1989; Assayag et al., 1999; Hall & Smith, 1996), machine

improvisation with human performers (Lartillot et al., 2001; Rowe, 1992) and

music information retrieval (Pickens et al., 2003). Therefore, although these

practical applications are not investigated in this dissertation, the research pre-

sented here constitutes an indirect contribution to such fields of applied AI.

1.6 Dissertation Outline

Background and Methodology

Chapter 2 contains a discussion of relevant epistemological and methodological

issues concluding with an examination of the implications such issues raise
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for the selection of appropriate methodologies for achieving the goals of the

present research.

Chapter 3 presents the background on the modelling techniques used in the

present research as well as a review of previous research which has applied

them and related techniques to modelling music and music cognition.

Music Corpora and Representation

Chapter 4 contains a discussion of issues involved in the selection of data for

computational modelling of music and presents the corpora of melodic music

used in the present research.

Chapter 5 reviews several existing formal schemes for the representation of mu-

sic and introduces the multiple viewpoint framework developed in the present

research for the flexible representation and processing of a range of different

kinds of melodic structure. The individual attribute types implemented are mo-

tivated in terms of previous research on music cognition and the computational

modelling of music.

Statistical Modelling of Melodic Structure

Chapter 6 examines a number of techniques for improving the prediction per-

formance of finite context models of pitch structure. These techniques, drawn

primarily from research on statistical language modelling and data compres-

sion, are subjected to empirical evaluation on unseen melodies in a range of

styles leading to significant improvements in prediction performance.

Chapter 7 introduces prediction within the context of multiple viewpoint frame-

works. A new method for combining the predictions of different models is pre-

sented and empirical experiments demonstrate that it yields improvements in

performance over existing techniques. A further experiment investigates the

use of feature selection to derive multiple viewpoint systems with improved

prediction performance.

Cognitive Processing of Melodic Structure

Chapter 8 presents the application of the statistical systems developed in the

foregoing two chapters to the task of modelling expectancy in melody percep-

tion. In contrast to previous accounts, the results demonstrate that observed
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patterns of melodic expectation can be accounted for in terms of the induction

of statistical regularities acquired through exposure to music.

Chapter 9 describes the use of several multiple viewpoint systems developed in

previous chapters to generate new chorale melodies in an examination of the

intrinsic computational demands of composing a successful melody. The results

demonstrate that none of the systems meet the demands of the task in spite

of efforts made to improve upon previous research on music generation from

statistical models. In contrast to previous approaches, however, the method-

ological framework developed for the evaluation of the computational systems

enables a detailed and empirical examination and comparison of the systems

leading to the identification and resolution of some of their salient weaknesses.

Summary and Conclusions

Chapter 10 includes a summary review of the research presented in this disser-

tation, a concise statement of the contributions and limitations of this research

and a discussion of promising directions for developing the contributions and

addressing the limitations in future research.
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CHAPTER 2

EPISTEMOLOGICAL AND METHODOLOGICAL FOUNDATIONS

2.1 Overview

The aim in this chapter is to define appropriate methodologies for achieving

the objectives of the present research as specified in §1.4. Since an empirical

scientific approach is adopted for the study of a phenomenon, music, which

is traditionally studied in the arts and humanities, the first concern is to dis-

tinguish scientific from non-scientific methodologies (see §2.2). The current

research examines music, specifically, from the point of view of Artificial In-

telligence (AI) and in §2.3 three branches of AI are introduced, each of which

has its own motivations and methodologies. The present research falls into the

cognitive-scientific tradition of AI research and in §2.4, the dominant method-

ologies in cognitive science are reviewed. Given this general methodological

background, §2.5 contains a discussion of methodological concerns which arise

specifically in relation to the study of music from the perspective of science

and AI. Finally, in §2.6 appropriate methodologies are defined for achieving the

objectives of the present research based on the issues raised in the foregoing

sections.

2.2 Speculative and Empirical Disciplines

Speculative disciplines are characterised by the use of deduction from defini-

tions of concepts, self-evident principles and generally accepted propositions.

Typically following a hermeneutic approach, “Their ultimate criterion of valid-

13
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ity is whether they leave the reader with a feeling of conviction” (Berlyne, 1974,

p. 2). Such fields as the aesthetics of music, music history and music criticism

fall into this category. Empirical disciplines, on the other hand, are those which

adopt experimental, scientific methodologies. It is important to be clear about

the meaning of the term science since:

A great deal of confusion has arisen from failure to realise that

words like the French science and the German Wissenschaft (with

their equivalents in other European languages) do not mean what

the English word “science” means. A more accurate translation for

them would be “scholarship”.

(Berlyne, 1974, p. 3)

Since we shall be adopting an empirical approach to the study of a phenomenon,

music, which is traditionally examined from a speculative point of view, it will

be helpful to preface this inquiry with a discussion of the epistemological status

of scientific knowledge.

In The Logic of Scientific Discovery, Karl Popper (1959) developed an epis-

temological approach known as methodological falsificationism in an attempt to

distinguish (systems of) propositions in the scientific disciplines from those of

non-scientific fields. Popper rejected the verifiability criterion of logical posi-

tivism (the assertion that statements are meaningful only insofar as they are

verifiable) on two grounds: first, it does not characterise the actual practice of

scientific research; and second, it both excludes much that we consider funda-

mental to scientific inquiry (e.g., the use of theoretical assumptions which may

not be verifiable even in principle) and includes much that we consider non-

scientific (e.g., astrology). According to Popper, scientific statements must be

embedded in a framework that will potentially allow them to be refuted:

statements, or systems of statements, convey information about the

empirical world only if they are capable of clashing with experience;

or, more precisely, only if they can be systematically tested, that is to

say, if they can be subjected . . . to tests which might result in their

refutation.

(Popper, 1959, pp. 313–314)

In logical terms, Popper’s thesis stems from the fact that while an existential

statement (e.g., ‘the book in front of me is rectangular’) can be deduced from a

universal statement (e.g., ‘all books are rectangular’), the reverse is not true. It
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is impossible to verify a universal statement by looking for instances which con-

firm that statement (e.g., by looking for rectangular books). We may only eval-

uate a universal statement by looking for empirical data supporting an existen-

tial statement that falsifies that statement (e.g., by looking for non-rectangular

books). According to Popper, a theory is only scientific if there exist existential

statements which would refute the theory. The demarcation criterion also de-

mands that a scientific theory must be stated clearly and precisely enough for it

to be possible to decide whether or not any existential statement conflicts with

the theory.

In methodological terms, falsificationism suggests that science does not con-

sist of a search for truth but involves the construction of explanatory hypothe-

ses and the design of experiments which may refute those hypotheses. A theory

that goes unrefuted in the face of empirical testing is said to have been corrob-

orated. Popper acknowledged that “scientific discovery is impossible without

a faith in ideas which are of a purely speculative kind” (Popper, 1959, p. 25).

However, he argued that the experiments designed to refute a scientific hypoth-

esis must be empirical in nature in order for them to be intersubjectively tested.

Therefore, the demarcation between scientific and non-scientific theories relies

not on degree of formality or precision nor on weight of positive evidence but

simply on whether empirical experiments which may refute those theories are

proposed along with the hypotheses (see Gould, 1985, ch. 6, for an exposition

of this thesis).

Although Popper remains to this day one of the most influential figures in

scientific epistemology, he has received his fair share of criticism. In particu-

lar, several authors have argued that his account fails to accurately describe

the actual progress of scientific research (Kuhn, 1962; Lakatos, 1970). Kuhn

(1962) argued that in normal science researchers typically follow culturally de-

fined paradigms unquestioningly. When such paradigms begin to fail, a crisis

arises and gives rise to a scientific revolution which is caused not by rational

or empirical but sociological and psychological factors: “. . . in Kuhn’s view sci-

entific revolution is irrational, a matter for mob psychology” (Lakatos, 1970,

p. 91). It should be noted, however, that Kuhn’s account is motivated more by

descriptive concerns than the prescriptive concerns of Popper.

Imre Lakatos (1970), however, attempted to address Kuhn’s criticisms of

Popper’s näıve falsificationism. In his own sophisticated methodological falsifica-

tionism, the basic unit of scientific achievement is not an isolated hypothesis but

a research programme which he describes (at a mature stage of development)

in terms of a theoretical and irrefutable hard core surrounded by a protective
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belt of more flexible hypotheses each with their own problem solving machin-

ery (Lakatos, 1970). The hard core of a programme is defined by its negative

heuristic, which specifies which directions of research to avoid (those which

may not refute the hard core), and its positive heuristic, which suggests fruit-

ful research agendas for the reorganisation of the protective belt. The hard

core is developed progressively as elements in the protective belt continue to

go unrefuted.

Under this view, research programmes may be divided into those which are

progressive, when they continue to predict novel facts as changes are continu-

ally made to the protective belt and hard core, or degenerating, when they lapse

into constant revision to explain facts post hoc. Therefore, whole research pro-

grammes are not falsified by experimental refutation alone but only through

substitution by a more progressive programme which not only explains the pre-

vious unrefuted content of the old programme and makes the same unrefuted

predictions, but also predicts novel facts not accounted for by the old pro-

gramme. Sophisticated methodological falsificationism seems to characterise

well the actual progress of science (Lakatos, 1970) and “is an increasingly pop-

ular view of change in scientific theories” (Brown, 1989, p. 7).

2.3 Artificial Intelligence

Noting that it is possible to differentiate natural science (the study and under-

standing of natural phenomena) from engineering science (the study and under-

standing of practical techniques), Bundy (1990, p. 216) argues that there exist

three branches of AI:

1. basic AI: an engineering science whose aim is to “explore computational

techniques which have the potential for simulating intelligent behaviour”;

2. cognitive science or computational psychology: a natural science whose aim

is “to model human or animal intelligence using AI techniques”;

3. applied AI: epistemologically speaking a branch of engineering “where we

use existing AI for commercial techniques, military or industrial products,

i.e., to build products”.

Since research in the different disciplines is guided by different motivations and

aims, this taxonomy implies different “criteria for assessing research in each

kind of AI. It suggests how to identify what constitutes an advance in the subject

and it suggests what kind of methodology AI researchers might adopt” (Bundy,
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1990, p. 219).1 In accordance with this analysis, Wiggins & Smaill (2000)

note that the motivations for applying AI techniques to the musical domain can

be drawn out on a continuum between those concerned with understanding

human musical abilities at one extreme (cognitive science) and those concerned

with designing useful tools for musicians, composers and analysts at the other

(applied AI).

2.4 Cognitive Science

The theoretical hard core in the overall research programme of cognitive sci-

ence may be defined in terms of its negative and positive heuristics (see §2.2).

The overriding negative heuristic is that purely behavioural or purely biolog-

ical approaches to understanding cognition are unlikely to prove fruitful and

will not be allowed to refute the hard core for two reasons: first, they have

not “demonstrated, or even shown how to demonstrate, that the explanatory

mechanisms [they] postulate are sufficient to account for intelligent behaviour

in complex tasks” (Newell & Simon, 1976, p. 120); and second, they have

not “been formulated with anything like the specificity of artificial programs”

(Newell & Simon, 1976, p. 120).2 The cognitive-scientific approach to under-

standing psychological phenomena is best understood by considering its posi-

tive heuristics:

explanatory adequacy: experiments on both human behaviour and the neu-

rophysiology of the brain are used to understand the constraints under

which mental processes operate and a cognitive theory should account for

what is possible within those constraints (Johnson-Laird, 1983; Newell &

Simon, 1976).

the doctrine of functionalism: a functional level of description is considered

sufficient for the development of theories of cognition; this has two impli-

cations: first, so long as the physical substrate provides for an appropriate

degree of computational power its physical nature places no constraints

on theories of cognition; and second, any scientific theory of cognition

may be simulated by a computer program (Chalmers, 1994; Johnson-

Laird, 1983; Pylyshyn, 1989).

the criterion of effectiveness: a theory should be defined as an effective proce-

dure (i.e., a computer program) to ensure that it takes as little as possible

1Most work in artificial intelligence may be classified as applied AI.
2Although it is many years since Newell & Simon wrote these words, their thesis remains

valid even today.
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for granted and any assumptions are clearly stated (Johnson-Laird, 1983;

Longuet-Higgins, 1981; Simon & Kaplan, 1989);

empirical evaluation: psychological experiments are required to allow the be-

haviour of a cognitive model to be evaluated with respect to the human

behaviour it purports to explain; as well as goodness of fit to the human

data, it is also important to examine discrepancies between the behaviour

of the model and the human behaviour as well as any predictions of the

model which may not be tested with the current data (Newell & Simon,

1976; Simon & Kaplan, 1989).

The progressive nature of the cognitive-scientific research programme is demon-

strated both by its increasing tenacity in modern psychological research and by

many specific examples of success such as the accurate prediction of devel-

opmental trajectories by cognitive models of language acquisition (see, e.g.,

Plunkett et al., 1997) and the success of cognitive therapies for anxiety disor-

ders over purely behavioural or biological approaches (see, e.g., Clark & Wells,

1997).

Regarding methodology, Marr (1982) introduced a framework for the un-

derstanding of complex information processing systems such as the mind/brain

which has proved highly influential in modern cognitive science. Noting that

different properties of such systems must be described at different levels of de-

scription, Marr isolates three general and relatively autonomous levels at which

a description of an information processing system may be placed:

1. the computational theory;

2. the representation and algorithm;

3. the hardware implementation.3

The first level deals with the what and the why of the system. What is the goal

of the computation? Why is it appropriate? What is the logic of the strategy by

which it can be carried out? At this level, the computational theory attempts to

describe the intrinsic nature and computational requirements of a cognitive task

through a formal analysis of the various outputs resulting from different inputs.

Through understanding the nature of the problem to be solved, appropriate

constraints can be placed on the representational and algorithmic levels of the

3Pylyshyn (1984) calls these the semantic level, the symbolic or syntactic level and the biolog-

ical or physical level respectively. In the interests of clarity the terminology introduced by Marr

(1982) is used here.
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theory. It is only at the second level of analysis that the question of how is

addressed; this involves specifying a representation for the input and output of

the computation and an algorithm by which the computation may be achieved.

The final level outlined by Marr (1982) concerns the physical realisation of the

representation and algorithm. While, on the one hand, the same algorithm

may be implemented on a number of different physical substrates, on the other,

the choice of hardware may influence the choice of algorithm (between, for

example, a serial or parallel algorithm).

One approach to the algorithmic modelling of cognitive processes involves

the analysis of a limited and well-circumscribed domain with the goal of find-

ing the exact algorithms underlying the human performance of the task. This

has been dubbed the low road to understanding cognitive processes (Pylyshyn,

1989). However, for any large-scale problem there is usually a wide range of

possible representation schemes and algorithms that may be used. The choices

made will depend crucially on the constraints derived from analysing the prob-

lem at the computational level (the high road). Marr (1982) goes to great

lengths to emphasise the importance of the computational theory arguing that

the nature of the underlying computations (the second level) depends much

more upon the intrinsic computational constraints of the problems to be solved

than on the particular hardware mechanisms upon which their solutions are

implemented. Speaking of human perception he notes that:

trying to understand perception by studying only neurons is like

trying to understand bird flight by studying only feathers: it just

cannot be done.

(Marr, 1982, p. 27)

This three-level analysis of cognitive systems has been criticised by McClam-

rock (1991) who argues that the transitions between levels conflate two inde-

pendent types of change. The first describes the level of organisational abstrac-

tion of the activity and how functional components of a higher-level explana-

tion may be decomposed into those at a lower level of abstraction. There are

clearly many different such levels on which a cognitive system may be described

and the actual number of levels of organisation in any particular information

processing system “is an entirely empirical matter about that particular system”

(McClamrock, 1991, p. 9). The second type of change concerns the types of

question asked, or explanations provided, about an information processing sys-

tem at any particular level of organisation. McClamrock proposes three types

of explanation that might be given or questions asked which are roughly anal-

ogous to Marr’s three levels of description. This interpretation suggests that
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there are (at least) two methodological issues to be addressed in any cognitive-

scientific research:

1. identify the functional level of description (computational, algorithmic or

implementational) of the cognitive system which is to be the prime focus

of the research;

2. identify a level of organisational abstraction in the cognitive system which

is the prime focus of the research.

It has been argued in §2.2 that the evaluation (by falsification) of scientific

theories is crucial to the advance and development of progressive research pro-

grammes. In cognitive science, one of the primary purposes of implementing

a cognitive theory as a computer program is to allow the detailed and empiri-

cal comparison of the behaviour of the program with that of humans on some

experimental task (Newell & Simon, 1976; Pylyshyn, 1989). If there exist dis-

crepancies then the model can be improved accordingly and any predictions

made by the model can provide suggestions and guidance for further experi-

mental research (Simon & Kaplan, 1989). In the context of modelling music

cognition, Desain et al. (1998) stress the importance of empirical evaluation:

proposing a new model . . . can hardly be seen as a contribution to

the field anymore. Recently a methodology has been emerging in

which a working computational model is seen much more as the

starting point of analysis and research rather than as the end prod-

uct . . . [it] is thus no longer an aim unto itself but a means to com-

pare and communicate theories between different research commu-

nities.

(Desain et al., 1998, p. 153)

2.5 Science and Music

There exist many different motivations for applying AI techniques to the musi-

cal domain. These motivations exhibit a wide range of epistemological origins

including, for example, those drawn from natural science, engineering, engi-

neering science, the arts and the humanities. This heterogeneity has several

sources: first, the fundamental range of motivations existing in AI research

(see §2.3); second, the fact that AI techniques are being applied to a domain

which is usually studied in the arts and humanities (see §2.2); and third, the
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fact that music exists simultaneously as, for example, a physical phenomenon,

a psychological phenomenon, an art-form and a performed art.

Given the discussion in §2.2 and §2.3, it will be clear that motivations drawn

from different disciplines imply different goals and methodologies for achiev-

ing those goals. As a result, the heterogeneity noted above can lead to severe

methodological problems in cases where research projects fail to specify the

discipline to which they intend to contribute, specify goals appropriate to that

discipline and adopt appropriate methodologies for achieving those goals. To

illustrate the argument, the application of AI techniques to the generation of

music is considered as an example. There exist at least five different motiva-

tions that have led to the development of computer programs which compose

music and, correspondingly, five distinct activities each with their own goals

and appropriate methodologies. The first activity is only tangentially related to

music and may be classified as basic AI (see §2.3) since it involves the use of

music as an interesting domain for the evaluation of general-purpose AI tech-

niques (see, e.g., Begleiter et al., 2004; Ghahramani & Jordan, 1997). The other

activities are discussed in turn.

In the second activity, algorithmic composition, computer programs are used

to generate novel musical structures, compositional techniques and even genres

of music. An example of this motivation is provided by Cope (1991) who de-

veloped a system called EMI for algorithmic composition. The motivations and

goals are fundamentally artistic since AI techniques are employed as an integral

part of the compositional process. As a consequence, there are no methodolog-

ical constraints placed on the construction of the computer program. Further-

more, there is no need to define any rigorous criteria for success nor to use

such criteria in evaluating the program and the compositions. The motivation

in other projects is to use AI techniques in the design of compositional tools for

use by composers. An example of such projects is provided by the research at

IRCAM in Paris described by Assayag et al. (1999) in which researchers often

work together with composers on their products in the task analysis and testing

phases of development. Such projects may be classified as applied AI (see §2.3)

and should therefore adopt appropriate methodologies from the disciplines of

software engineering in the analysis of the task, the design and implementation

of the tool and the evaluation of whether the tool satisfies the design require-

ments.

Other motivations for applying AI techniques to the generation of music

are theoretical rather than practical. In the computational modelling of musical

styles, the goal is to propose and verify hypotheses about the stylistic attributes
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defining a corpus of musical works (Ames, 1992; Roads, 1985b). Since the

objects of study are existing musical works, this discipline may be considered

to be a branch of musicology. The implementation of stylistic hypotheses as a

computer program (which can generate music) has two potential advantages

(Camilleri, 1992; Sundberg & Lindblom, 1976, 1991). First, while musicol-

ogy has traditionally adopted speculative methodologies (see §2.2), the com-

putational approach requires that all assumptions included in the theory (self-

evident or otherwise) are explicitly and formally stated. The second potential

advantage is that the implemented model may be evaluated, and refuted or

corroborated, through empirical comparison of the compositions it generates

with the human-composed pieces which the theory is intended to describe (see

Meredith, 1996). Independent evidence for discriminating between two un-

refuted computational theories of a musical style can be obtained by consid-

ering the predictions they make about issues commonly addressed in musicol-

ogy. Examples of such issues include the ability of the models “to distinguish

. . . structures typical of particular epochs and also . . . structures belonging to

particular repertoires” (Baroni et al., 1992, p. 187).

The motivations of authors such as Steedman (1984) and Johnson-Laird

(1991), discussed in §3.3, were drawn from cognitive science rather than mu-

sicology. The distinction is important since “cognitive models need not reflect

current music-theoretic constructs, nor must models of musical knowledge have

cognitive pretensions” (Desain et al., 1998, p. 152) and the two disciplines dif-

fer greatly both in the nature of their goals and the methodologies used to

achieve those goals. Following the discussion of cognitive-scientific methodolo-

gies in §2.4, there are several advantages to implementing theories of music

cognition as computer programs. However, in order to benefit from these ad-

vantages, certain methodological practices must be followed. First, a cognitive-

scientific model should be based on specific hypotheses, derived from empir-

ical psychological results, which specify the degree of functional organisation

they address and kinds of question they pose (see, e.g., Johnson-Laird, 1991).

Second, the hypotheses should be evaluated through systematic and empirical

attempts to refute them based on comparisons of the behaviour of the imple-

mented model and the human behaviour for which it is intended to account.

Once the theory has been corroborated at one level of functional organisation,

hypotheses may be formulated and evaluated at a finer level of organisation.

More generally, Cross (1998b) has considered the relevance and utility of

different scientific approaches for our understanding of musical phenomena.

At one extreme lies the physicalist position which holds that the sounds and
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structures that we employ and experience in music are wholly determined by

the physical nature of sound. Cross rejects the physicalist position because

our current understanding of the perception of music indicates that there is

not a one-to-one correspondence between physical characteristics of acoustic

phenomena (e.g., the frequency and duration of tones) and our perception of

those objects.

At the other extreme, Cross (1998b) reviews the deconstructionist or im-

manentist conception of music which is pervasive in current musicological re-

search and which denies the possibility of any scientific understanding of mu-

sic. Cross, however, argues that this is founded on a misconception of scientific

methodology as positivist (see §2.2), of scientific knowledge as general (culture

independent) and the objects of scientific research being exclusively material.

By contrast, a conception of science based on falsificationism (see §2.2) can

dispose of many of the objections of the immanentists. In particular, the so-

phisticated methodological falsificationism of Lakatos (1970) suggests that suf-

ficient weight of change in the background knowledge may contribute to the

succession of or radical change in a research programme. Since these research

programmes consist partly of local background knowledge and heuristics for

change, they are not unsuitable for explaining culturally defined phenomena.

Furthermore, the requirement that the scientific evidence be observable does

not preclude the scientific study of intentional phenomena, and the provisional

and dynamic nature of falsificationism, is consistent with the idea that there

are no genuine absolutes.

Having proposed that the arguments of the immanentist position can be

overcome, Cross advocates a cognitive-scientific research programme for un-

derstanding music. This programme involves the study of all aspects of the

musical mind and behaviour at many levels of explanation through theoretical

inquiry, formal modelling and empirical experiment. Countless authors have

stressed the importance, indeed the necessity, of an interdisciplinary approach

to both theoretical and practical research in music. Desain et al. (1998), for

example, note that the processing and representation of musical structures can

provide a common ground for research between disciplines. However, they are

careful to distinguish the roles of different disciplines:

Such structures can be stated formally or informally within music

theory, their processing can be investigated by experimental psy-

chology, both of these aspects can be modelled in computer pro-

grams and can be given an architectural basis by neuroscience.

(Desain et al., 1998, p. 153)
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Each of these disciplines should embrace rather than become one with the oth-

ers (Gjerdingen, 1999a). Research in any discipline may have implications for,

or be inspired by, research in any other. However, in any research project it is

fundamental to clearly state the motivations involved, the specific goals of the

research and the field to which the research contributes in order to allow the

adoption of appropriate methodologies for achieving those goals.

2.6 Methodologies for the Present Research

The discussion in §2.4 and §2.5 has provided the foundations of a framework

for achieving the aims set out in §1.4. The primary motivations of the current

research are cognitive-scientific in character. However, in the development of

computational techniques for modelling cognition, subsidiary goals are defined

which may be classified as basic AI. In particular, Chapters 6 and 7 present a

computational system which is developed and evaluated using methodologies

drawn from (basic) AI, rather than cognitive science. In later chapters, this sys-

tem is applied to the cognitive modelling of music perception and composition.

In the present research, the term cognitive theory is used to describe an infor-

mation processing theory of (an aspect of) cognition and the terms cognitive

model or computational model to describe an implemented theory. The term

computational theory is used to describe cognitive theories which are pitched

at the computational (as opposed to the algorithmic or hardware) level(s) of

description.

Current understanding of music cognition (including both perception and

composition) is currently far less advanced than that of other areas of human

psychology (such as visual perception and memory) and detailed algorithmic

theories seem a long way off. Since music cognition draws on knowledge

and processing in many different domains and at many levels of description,

it seems unrealistic to aim towards a purely algorithmic model. Before such

an approach becomes possible it will be necessary to understand in more detail

the computational level theory describing the overall functional character of

the processes involved. As a consequence of these considerations, this research

is concerned with computational level theories. Following the discussion in

§2.4, the models developed here should be based on specific hypotheses which

are stated at a computational level of description, derived from empirical psy-

chological findings concerning music perception and composition, and which

identify the level of functional organisation addressed. Any implementational

details outwith the defined level of organisational abstraction are taken not as
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hypotheses about music cognition but as assumptions necessary for implement-

ing a working model. Any claims made about the computational level theory

will concern features of the processing at a level that is abstracted away from

the precise algorithmic details.

It has been argued that it is the potential for refutation that distinguishes sci-

entific statements from non-scientific statements. Therefore, any claims made

about music cognition must be accompanied by experiments which are capable

of refuting those claims. In cognitive science, the implementation of a theory

allows the objective evaluation of the behaviour of a model by comparison with

the human behaviour it is intended to account for. It also allows predictions to

be made about human behaviour based on the behaviour of the model. There-

fore, the experimental hypotheses developed in the present research should be

evaluated through systematic and empirical attempts to refute them based on

comparisons of the behaviour of the implemented models with the human be-

haviour for which they are intended to account. Part of the contribution made

by the present research is the development of a methodology for evaluating hy-

potheses about music cognition within a computational framework (see Chap-

ter 9). The fields of AI and cognitive science are themselves young disciplines

and their application to the musical domain is an even less developed area of

investigation: research programmes in music cognition are still in their infant

years. The evaluation by falsification of theories in the Lakatosian protective

belt of these programmes is crucial so as to build up a theoretical hard core as

these theories continue to go unrefuted. Only in this manner can the field begin

to build predictive and progressive research programmes.

There are two general approaches to the implementation of cognitive theo-

ries of musical competence:

The first is the knowledge engineering approach, where rules and

knowledge are explicitly coded in some logic or grammar . . . The

second is the empirical induction [or machine learning] approach,

where a theory is developed through an analysis of existing compo-

sitions.

(Conklin & Witten, 1995, pp. 51–52)

A number of issues arise from the practical difficulties involved in knowledge

engineering (Toiviainen, 2000). First, the knowledge and processing involved

in many aspects of music cognition are simply not available to conscious in-

trospection. Second, for any reasonably complex domain, it will be practically

impossible to capture all the exceptions to any logical system of music descrip-

tion (Conklin & Witten, 1995). An underspecified rule base will not only fail to
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describe the genre adequately but will also suffer from bias introduced by the

selection of rules by the knowledge engineer:

the ad hoc nature of rule revision is disconcerting: how can the

researcher have any confidence that the revisions are the best to

propose in the circumstances?

(Marsden, 2000, p. 18)

As discussed in §1.2, the use of expert music-theoretic knowledge in the de-

velopment of cognitive theories of music perception has been criticised on pre-

cisely these grounds.

In the case of a machine learning approach, it is possible to precisely specify

the source of the knowledge acquired by the model and the corpus of mu-

sic over which it may account for observed musical and cognitive phenomena.

Since the model acquires its knowledge through exposure to existing music, this

approach also offers the possibility of a much more parsimonious account of the

influences of (culturally situated) experience on music cognition (see §1.2). It is

also important to note that any complete cognitive model of cognitive process-

ing in music perception and composition will also describe how these cognitive

skills are acquired and developed (Bharucha & Todd, 1989; Marsden, 2000).

The knowledge engineering approach fails to address these issues and often

results in inflexible systems which are unable to generalise their knowledge to

novel situations. For these reasons, a machine learning approach to the mod-

elling of music and music cognition is adopted in the current research.

2.7 Summary

Methodological and epistemological issues relevant to the present research

have been discussed in this chapter. The epistemological nature of scientific

knowledge and the distinction between empirical and speculative disciplines

was addressed in §2.2 while in §2.3 three branches of AI were introduced along

with their characteristic motivations and methodologies. This research falls

into the cognitive-scientific tradition of AI research and in §2.4, the dominant

methodologies in cognitive science were reviewed. Section 2.5 contained a dis-

cussion of methodological concerns which arise specifically in relation to the

study of music from the perspective of science and AI. Finally, in §2.6 appro-

priate methodologies were defined for achieving the objectives of the current

research (see §1.4) based on the issues raised in the foregoing sections.



CHAPTER 3

BACKGROUND AND RELATED WORK

3.1 Overview

This chapter contains the background to the modelling techniques used in the

present research as well as reviews of previous research which has applied them

and related techniques to modelling music and music cognition. In general, the

goal of building a computational model of a musical corpus is to develop a

grammar which accepts and is capable of assigning structural descriptions to

any sequence of symbols in the language used to represent the corpus. How-

ever, it is important to be careful when selecting computational methods for

both representation and inference since these decisions involve making as-

sumptions about the language in which the corpus is expressed and can impose

methodological constraints on the research strategy. In §3.2, context free, finite

state and finite context grammars are introduced in terms of the Chomsky con-

tainment hierarchy (Hopcroft & Ullman, 1979) and discussed in terms of the

languages they can generate, their assumptions and the methodological con-

straints they impose. In §3.3, previous research on the application of context

free (and higher) grammars to the representation and modelling of music is

discussed. The application of finite context (or n-gram) grammars and neural

networks to modelling music is reviewed in §3.4 and §3.5 respectively. Finally,

in §3.6, the application of statistical modelling techniques to various experi-

mentally observed phenomena in music perception is discussed.

27
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3.2 Classes of Formal Grammar

A formal grammar G is a structural description of a formal language consisting

of a set of sequences (or strings) composed from some alphabet of symbols

(Hopcroft & Ullman, 1979). A grammar itself consists of a tuple (V, T, S, P )

where:

• V is a finite set of symbols whose elements are called non-terminal sym-

bols or variables;

• T is a finite set of symbols, disjoint from V , whose elements are called

terminal symbols or constants;

• S ∈ T is a distinguished symbol called the initial symbol;

• P is a set of rewrite rules, or productions, which represent legal trans-

formations of one sequence of terminal and non-terminal symbols into

another such sequence.

The language L(G) generated by a grammar G is the subset of T ∗ which may be

rewritten from S in zero or more steps using the productions in P . A sequence

is accepted by a grammar G if it is a member of L(G).

Noam Chomsky introduced a containment hierarchy of four classes of for-

mal grammar in terms of increasing restrictions placed on the form of valid

rewrite rules (Hopcroft & Ullman, 1979). In the following description, a ∈ T ∗

denotes a (possibly empty) sequence of terminal symbols, A,B ∈ V denote

non-terminal symbols, α ∈ (V ∪ T )+ denotes a non-empty sequence of termi-

nal and non-terminal symbols and β, β′ ∈ (V ∪ T )∗ denote (possibly empty)

sequences of terminal and non-terminal symbols.1

Type 0 (Unrestricted): grammars in this class place no restrictions on their

rewrite rules:

α → β

and generate all languages which can be recognised by a universal Turing

machine (the recursively enumerable languages).

Type 1 (Context Sensitive): grammars in this class are restricted only in that

there must be at least one non-terminal symbol on the left hand side of

1See Appendix A for a summary of the notational conventions used in this dissertation.
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the rewrite rule and the right hand side must contain at least as many

symbols as the left hand side:

βAβ′ → βαβ′

and generate all languages which can be recognised by a linear bounded

automaton.

Type 2 (Context Free): grammars in this class further restrict the left hand

side of their rewrite rules to a single non-terminal symbol:

A → α

and generate all languages which can be recognised by a non-deterministic

pushdown automaton.

Type 3 (Finite State or Regular): grammars in this class restrict their rewrite

rules further still by allowing only a single terminal symbol, optionally

accompanied by a single non-terminal, on the right hand side of their

productions:

A → aB (right linear grammar) or

→ Ba (left linear grammar)

A → a

and generate all languages which can be recognised by a finite state au-

tomaton.

The languages generated by each class of grammar form proper subsets of the

languages generated by classes of grammar higher up in the hierarchy. How-

ever, as we move up the hierarchy, the complexity of recognition and parsing

increases in tandem with the increased expressive power of each class of gram-

mar. In particular, while context free grammars (and those higher in the hierar-

chy) are capable of capturing phenomena, such as embedded structure, which

cannot be captured by finite state grammars, they also bring with them many

problems of intractability and undecidability, especially in the context of gram-

mar induction (Hopcroft & Ullman, 1979). It is common, therefore, to try to

use a grammar which is only as expressive as the language seems to require.

Context free grammars are typically constructed by hand on the basis of

expert knowledge of the language. While methods exist which are, in theory,

capable of unsupervised offline learning of probabilistic context free grammars
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from unannotated corpora, in practice these methods are subject to limitations

which make this task extremely difficult (Manning & Schütze, 1999). Finite

state grammars are attractive because they have linear complexity and, unlike

context free grammars, are unambiguous with respect to derivation, since each

intermediate production has precisely one non-terminal symbol. A Finite State

Automaton (FSA) is a quintuple (T,Q, q0, Qf , δ) where:

• T is a finite set of input symbols;

• Q is a finite set of states;

• q0 ∈ Q is the initial state;

• Qf ⊂ Q is the set of final states (or accepting states);

• δ is the state transition function: δ : Q× T → Q.

The FSA is Markovian if, for any state, there is at most one transition for each

input symbol. In a probabilistic FSA, δ is defined by a probability distribution

over T such that the probabilities of transitions from any given state sum to

unity. A Markovian probabilistic FSA is also called a Markov chain.

There is an interesting sub-class of grammar contained within the class of

finite state grammars which are known as finite context grammars (Bell et al.,

1990; Bunton, 1996). Finite context grammars have productions which are

restricted to follow the form (Conklin, 1990, p. 40):

tj(j−n)+1 ∈ T ∗ → tj(j−n)+2

In finite context automata, the next state is completely determined by testing

a finite portion of length n − 1 of the end of the already processed portion of

the input sequence (Bunton, 1996).2 The sequence tj(j−n)+1 is called an n-gram

which consists, conceptually, of an initial subsequence, tj−1
(j−n)+1, of length n− 1

known as the context and a single symbol extension, tj , called the prediction.

The quantity n− 1 is the order of the n-gram rewrite rule.

A finite context model, or n-gram model, is a database of n-grams with

associated frequency counts. The order of an n-gram model is equal to the

maximum order n-gram in the database. While there are no existing algorithms

for the online induction of finite state models (which are not also finite context

2We restrict this discussion to a particular subclass of finite context grammar in which the test

is made for membership of a singleton set of sequences and the rewrite rule represents a single

symbol extension of the context sequence (Bunton, 1996).



3.3 GRAMMARS AS REPRESENTATIONS OF MUSICAL STRUCTURE 31

models) while processing an input sequence, it is relatively straightforward to

incrementally construct finite context models online by adding new n-grams

to the database or incrementing the frequency counts of existing n-grams as

new symbols are encountered (Bell et al., 1990). Given a sequence of input

symbols, the frequency counts associated with n-grams can be used to return a

distribution over T conditioning the estimated probability of a given symbol in

the sequence in the context of the n − 1 preceding symbols. See Chapter 6 for

a more detailed discussion of inference using n-gram models.

3.3 Grammars as Representations of Musical Structure

The notion of a musical grammar forms one of the central ideas in music re-

search: “The idea that there is a grammar of music is probably as old as the

idea of a grammar itself” (Steedman, 1996, p. 1). Many different types of for-

mal grammar have been applied to many different kinds of problem (including

algorithmic composition, musicological analysis and cognitive modelling) in a

wide range of musical genres (see Roads, 1985a; Sundberg & Lindblom, 1991,

for reviews). Many of these attempts to use grammars to characterise musical

styles have used some form of context free grammar. This is, in part, because

hierarchical phrase structure is held to be an important feature of (Western

tonal) music and, more importantly, the way we perceive music (e.g., Deutsch &

Feroe, 1981; Lerdahl, 1988b; Lerdahl & Jackendoff, 1983; Palmer & Krumhansl,

1990).

An example of a computational model following this approach is presented

by Johnson-Laird (1991) who used grammatical formalisms to investigate com-

putational constraints on the modelling of improvisational competence in jazz

music. Using a corpus of jazz improvisations as examples, Johnson-Laird draws

various conclusions concerning what has to be computed to produce acceptable

rhythmic structure, chord progressions and melodies in the jazz idiom. These

conclusions are stated in terms of constraints imposed on the underlying al-

gorithms generating an improvisation. For example, the analysis suggests that

while a finite state grammar (or equivalent procedure) can adequately compute

the melodic contour, onset and duration of the next note in a set of Charlie

Parker improvisations, its pitch is determined by harmonic constraints derived

from a context free grammar modelling harmonic progressions.

Steedman (1984, 1996) describes the use of a context free grammar to de-

scribe chord progressions in jazz twelve-bar blues. His goal is to account for the

observation that many different chord sequences are perceived by musicians to
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be instances of the twelve bar form. In order to achieve this, Steedman devel-

oped a categorical grammar (a type of context free grammar) from a theory

of tonal harmony due to Longuet-Higgins (1962a,b). Steedman (1996) sug-

gests that this representation “bears a strong resemblance to a ‘mental model’

in the sense of Johnson-Laird (1983) . . . [in that] it builds directly into the rep-

resentation some of the properties of the system that it represents” (Steedman,

1996, pp. 310–311). He concludes that this computational theory, although

less ambitious than that of Johnson-Laird (1991), allows a more elegant de-

scription of improvisational competence since it does not rely on substitution

into a previously prepared skeleton. However, in using the grammar to gener-

ate structural descriptions of blues chord progressions, Steedman was forced to

introduce implicit meta-level conventions not explicit in the production rules of

the grammar (Wiggins, 1998).

The Generative Theory of Tonal Music (GTTM) of Lerdahl & Jackendoff (1983)

also warrants discussion since it is probably the best known effort to develop a

comprehensive method for the structural description of tonal music. Although

it is not a grammar per se, it is heavily inspired in many respects by Chomskian

grammars. It is, for example, founded on the assumption that a piece of music

can be partitioned into hierarchically organised segments which may be derived

through the recursive application of the same rules at different levels of the hi-

erarchy. Specifically, the theory is intended to yield a hierarchical, structural

description of any piece of Western tonal music which corresponds to the final

cognitive state of an experienced listener to that composition.

According to GTTM, a listener unconsciously infers four types of hierarchi-

cal structure in a musical surface: first, grouping structure which corresponds to

the segmentation of the musical surface into units (e.g., motives, phrases and

sections); second, metrical structure which corresponds to the pattern of pe-

riodically recurring strong and weak beats; fourth, time-span reduction which

represents the relative structural importance of pitch events within contextu-

ally established rhythmic units; and finally, prolongational reduction reflecting

patterns of tension and relaxation amongst pitch events at various levels of

structure. According to the theory, grouping and metrical structure are largely

derived directly from the musical surface and these structures are used in gen-

erating a time-span reduction which is, in turn, used in generating a prolonga-

tional reduction. Each of the four domains of organisation is subject to well-

formedness rules that specify which hierarchical structures are permissible and

which themselves may be modified in limited ways by transformational rules.

While these rules are abstract in that they define only formal possibilities, pref-
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erence rules select which well-formed or transformed structures actually apply

to particular aspects of the musical surface. Time-span and prolongational re-

duction additionally depend on tonal-harmonic stability conditions which are

internal schemata induced from previously heard musical surfaces.

When individual preference rules reinforce one another, the analysis is sta-

ble and the passage is regarded as stereotypical whilst conflicting preference

rules lead to an unstable analysis causing the passage to be perceived as am-

biguous and vague. In this way, according to GTTM, the listener unconsciously

attempts to arrive at the most stable overall structural description of the musical

surface. Experimental studies of human listeners have found support for some

of the preliminary components of the theory including the grouping structure

(Deliège, 1987) and the metrical structure (Palmer & Krumhansl, 1990).

Roads (1985a) discusses several problems with the use of context free gram-

mars for implementing computational theories of music. In particular, he ar-

gues that is not clear that the strict hierarchy characteristic of context free

grammars is reconcilable with the ambiguity inherent in music. Faced with

the need to consider multiple attributes occurring in multiple overlapping con-

texts at multiple hierarchical levels, even adding ambiguity to a grammar is

unlikely to yield a satisfactory representation of musical context. The use of

context sensitive grammars can address these problems to some extent but, as

discussed in §3.2, these also bring considerable additional difficulties in terms

of efficiency and complexity.

There are, however, several methods of adding some degree of context

sensitivity to context free grammars without adding to the complexity of the

rewrite rules. An example is the Augmented Transition Network (ATN) which

extends a recursive transition network (formally equivalent to a context free

grammar) by associating state transition arcs (rewrite rules) with procedures

which perform the necessary contextual tests. Cope (1992a,b) describes the

use of ATNs to rearrange harmonic, melodic and rhythmic structures in EMI, a

simulation of musical thinking in composition. Another example is provided by

the pattern grammars developed by Kippen & Bel (1992) for modelling impro-

visation in North Indian tabla drumming.

However, Roads (1985a) notes, more generally, that musical structure does

not yield readily to sharply defined syntactic categories and unique structural

descriptions of context free grammars, concluding that:

In nearly every study [of the application of grammars to musical

tasks] the rewrite rule by itself has been shown to be insufficient as

a representation for music.
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(Roads, 1985a, p. 429)

In conclusion, it is not clear that the power of a context free or context sen-

sitive grammar necessarily brings significant advantages in representing and

modelling music. A further problem with the use of such grammars for the

computational modelling of music is methodological. Although the induction

of context free grammars from unannotated corpora is an ongoing topic of re-

search (Manning & Schütze, 1999), the significant challenges posed by this

task mean that, in practice, these grammars are generally hand constructed

(see §3.2) and, therefore, require a knowledge engineering approach to mod-

elling music. Several reasons were discussed in §2.6 for strongly preferring an

machine learning approach to modelling music and music cognition over the

knowledge engineering approach.

3.4 Finite Context Models of Music

N -gram models have been used for music related tasks since the 1950s when

they were investigated as tools for composition and analysis (see, e.g., Brooks

Jr. et al., 1957; Hiller & Isaacson, 1959; Pinkerton, 1956). Since extensive

reviews of this early research exist (Ames, 1987, 1989; Hiller, 1970), we shall

focus here on more recent developments in which n-gram models have been

applied to a number of musical research tasks including both the development

of practical applications and theoretical research. In the former category, we

may cite models for computer-assisted composition (Ames, 1989; Assayag et al.,

1999; Hall & Smith, 1996), machine improvisation with human performers

(Lartillot et al., 2001; Rowe, 1992) and music information retrieval (Pickens

et al., 2003) and in the latter, stylistic analysis of music (Dubnov et al., 1998;

Ponsford et al., 1999) and cognitive modelling of music perception (Eerola,

2004b; Ferrand et al., 2002; Krumhansl et al., 1999, 2000). In this section, the

most relevant aspects of this research to the current work are reviewed with

an emphasis on modelling techniques rather than application domain. Many

of the interesting aspects of this work reflect attempts to address the limited

expressive capacity of n-gram models (see §3.2).

Ponsford et al. (1999), for example, have applied simple trigrams and tetra-

grams to the modelling of harmonic movement in a corpus of 84 seventeenth

century sarabandes. The objective was to examine the adequacy of simple n-

gram models for the description and generation of harmonic movement in the

style. The sarabandes were represented in a CHARM-compliant representation

scheme (see §5.2.2) and higher order structure was represented in the corpus
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through the annotation of events delimiting bars, phrases and entire pieces. A

number of pieces were generated within predefined templates (with annotated

start, end, bars and phrases) using sequential random sampling of chords from

the models with an initial context of length n. Ponsford et al. (1999) concluded

with an informal stylistic analysis, according to which the generated harmonies

were “characteristic of the training corpus in terms of harmony transitions, the

way in which pieces, phrases and bars begin and end, modulation between keys

and the relation between harmony change and metre” (Ponsford et al., 1999,

p. 169). The generation of features such as enharmony, which was not present

in the corpus, and weak final cadences was attributed mainly to the use of low

order models.

The research most closely related to the present work is that of Darrell

Conklin (Conklin, 1990; Conklin & Witten, 1995) who used complex statisti-

cal models (see Chapters 6 and 7) to model the soprano lines of 100 of the

chorales harmonised by J. S. Bach. A number of strategies were employed

to address the problems of imposing a fixed, low order-bound noted by Pons-

ford et al. (1999). In particular, Conklin & Witten combined the predictions

of all models with an order less than a fixed threshold in order to arrive at a

final prediction (see §6.2.3). Conklin & Witten also combined the predictions

of models derived from the entire corpus with transitory models constructed

dynamically for each individual composition (see §6.2.4). One of the central

features of this work was the development of a framework to extend the appli-

cation of n-gram modelling techniques to multiple attributes, or viewpoints, of

a melodic sequence (see §5.2.3). Amongst other things, this framework allows

an n-gram model to take advantage of arbitrary attributes derived from the ba-

sic representation language, disjunctions of conjunctions of such attributes and

contexts representing non-adjacent attributes in a sequence (e.g., using bars,

phrases and pieces to denote structurally salient segmentation points as did

Ponsford et al., 1999).

Conklin & Witten (1995) developed a number of multiple viewpoint systems

of the chorale melodies and evaluated them using a number of methods. First,

split-sample validation (see §6.3.2) with a training set of 95 compositions and

a test set of five compositions was used to compare the performance of the dif-

ferent systems in predicting existing unseen melodies. The performance metric

was the cross entropy (see §6.2.2) of the test set given the model. The second

means of evaluation was a generate-and-test approach similar to that used by

Ponsford et al. (1999) from which Conklin & Witten concluded that the gener-

ated compositions seemed to be “reasonable”. Finally, Witten et al. (1994) con-
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ducted an empirical study of the sequential chromatic pitch predictions made

by human listeners on the same test set of compositions (see §8.7.1). The en-

tropy profiles derived from the experimental results for each composition were

strikingly similar in form to those generated by the model developed by Conklin

& Witten (1995) – the events about which the model was uncertain also proved

difficult for humans to predict.

Hall & Smith (1996) have extended the approach used by Conklin & Witten

(1995) to a corpus of 58 twelve-bar blues compositions. The aim was to de-

velop a compositional tool that would automatically generate a blues melody

when supplied with a twelve-bar blues harmonic structure. In order to model

pitch, monogram, digram and trigram models were derived from 48 compo-

sitions in the corpus.3 Separate digram and trigram models were derived for

each individual chord occurring in the corpus. Rhythm was represented us-

ing an alphabet of short rhythmic patterns (e.g., two semiquavers followed by

a quaver) and monogram, digram and trigram models were derived from the

training set over this alphabet. When generating rhythms, each generated pat-

tern was screened by a set of symbolic constraints for stylistic suitability. The

model was evaluated by asking 198 human subjects to judge which of a pair of

compositions (of which one was from the corpus and the other generated by

the program) was computer generated (see also §9.2.3). The data consisted of

the ten remaining compositions in the corpus and ten compositions randomly

selected from the model’s output all of which were played to the subjects over a

standard harmonic background. Statistical analysis of the results demonstrated

that the subjects were unable to distinguish reliably between the human and

computer generated compositions.

Reis (1999) has extended the work of Conklin & Witten (1995) in a differ-

ent direction through the incorporation of psychological constraints in n-gram

models. In particular, Reis argues that storing all n-grams (up to a global order

bound) occurring in the data is highly inefficient and unlikely to accurately de-

pict the manner in which humans represent melodies. Reis describes a model

which segments the data according to perceptual cues such as contour changes

or unusually large pitch or duration intervals. The order of the n-grams stored

by the model is then determined by the number of events occurring since the

previous segmentation point. In the case of ambiguity (e.g., the various seg-

mentation cues do not converge to a single point), all suggested segmentation

possibilities are stored. If a novel n-gram is encountered during prediction,

the distribution delivered by the variable order model is smoothed with a uni-

3Monogram, digram, trigram and tetragram models refer to zeroth, first, second and third

order n-gram models respectively.
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form distribution over the alphabet. The model also incorporates perceptually

guided predictions for events beyond the immediately succeeding one on the

basis that humans are often able to anticipate musical events more than one

step ahead (e.g., in the case of repeating motifs).

The performance of the model was evaluated on the chorale dataset used by

Conklin & Witten (1995) and German folk melodies from the Essen Folk Song

Collection (see Chapter 4) using entropy as the performance metric with a split

sample experimental design. The results demonstrated that the model failed

to outperform that of Conklin & Witten (1995). In spite of this, Reis’s work

is useful since it addresses the question of which segmentation and modelling

strategies work best when model size is limited. In particular, Reis reports the

results of an investigation of the predictions of the model when the (perceptu-

ally guided) contexts were shifted. On a set of 205 German folk songs he found

that while shifts of between one and ten notes always reduced performance

relative to non-shifted contexts, shifts of one note and shifts greater than six

produced better prediction than other shifts. Reis suggests that the relatively

good performance using single note shifts may be explained by a degree of un-

certainty as to exactly where a grouping boundary occurs (i.e., is a large melodic

interval included in the preceding group or at the beginning of the following

group). The improved performance with longer shifts was attributed to the fact

that the average length of the suggested segments was 6.7 notes. Regarding

multiple-step-ahead prediction, Reis found that predictions made further in ad-

vance lead to lower prediction performance and suggested that this was due to

the lack of matching contexts for these higher order predictions.

Cypher (Rowe, 1992) is an interactive music system designed as a composi-

tional tool whose compositional module uses an n-gram model. While Cypher

does not have cognitive aspirations, it does use perceptual cues, such as dis-

continuities in pitch, duration, dynamics and tempo, to determine phrasing

boundaries. Events occurring on metric pulses are also given more weighting

as segmentation points. These various cues are combined using a predefined

weighting to give a value for each event. If this value exceeds a certain thresh-

old, the event is classed as a segmentation boundary. The order of the model is

given by the number of events that have occurred since the previous segmen-

tation point. In contrast to the work of Reis (1999), Cypher employs a priori

tonal knowledge to aid segmentation and a fixed weighting in the combination

of perceptual cues to arrive at one ambiguous segmentation.

More distantly related approaches are also relevant here since they have

been used to tackle the same basic task – the prediction of an event given
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a context of immediately preceding events. Assayag, Dubnov and their col-

leagues (Assayag et al., 1999; Dubnov et al., 1998; Lartillot et al., 2001) have

experimented with using an incremental parsing (IP) algorithm based on the

Ziv-Lempel dictionary compression algorithm (Ziv & Lempel, 1978) in the mod-

elling of musical styles. The incremental parsing algorithm adaptively builds a

dictionary of sequences as follows. For each new event, it appends the event

to the current contender for addition to the dictionary (initially the empty se-

quence). If the resulting sequence occurs in the dictionary, the count associated

with that dictionary entry is incremented; otherwise the sequence is added to

the dictionary and the current contender is reset to the empty sequence. The

algorithm then progresses to the next input event. During prediction, an order

bound is specified and Maximum Likelihood estimates (see §6.2.1) are used

to predict events in the current context. When the context does not appear

in the dictionary, the longest suffix of that context is tried. The IP algorithm

has been used successfully, with certain improvements, for the classification of

polyphonic music by stylistic genre (Dubnov et al., 1998) and for polyphonic

improvisation and composition (Assayag et al., 1999; Lartillot et al., 2001).

Lartillot et al. (2001) have also experimented with another technique for

constructing variable order n-gram models called Prediction Suffix Trees (PST).

The algorithm for constructing a PST, originally developed by Ron et al. (1996)

and used by Lartillot et al. (2001), is offline and operates in two stages. In

the first stage, a suffix tree is constructed from all subsequences of the input

sequence less than a global order bound. In the second stage, each node in

the tree is examined and pruned unless for some symbol in the alphabet, the

estimated probability of observing that symbol at the node exceeds a threshold

value and is significantly different from the estimated probability of encoun-

tering that symbol after the longest suffix of the sequence represented by that

state. Lartillot et al. (2001) have derived PSTs from music in a range of different

styles and generated new pieces with some success.

Triviño-Rodriguez & Morales-Bueno (2001) have developed an extended

PST model which can compute next symbol probabilities on the basis of a num-

ber of event attributes (cf. Conklin & Witten, 1995). These Multiattribute Pre-

diction Suffix Graphs (MPSGs) were used to model the chorale melodies used

as data by Conklin & Witten (1995) in terms of chromatic pitch, duration and

key signature. New chorale melodies were generated from the model using

sequential random sampling. A Kolmogorov-Smirnov test failed to distinguish

the monogram and digram distributions of pitches in the generated pieces from

those in the training corpus. Furthermore, Triviño-Rodriguez & Morales-Bueno
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(2001) performed a listening test, with 52 subjects, each of whom was asked

to listen to one generated melody and one melody from the training set and

classify them according to whether or not they were generated by the model

(see also §9.2.3). The results showed that the listeners were able to correctly

classify melodies in just 55% of cases.

3.5 Neural Network Models of Music

Mozer (1994) argues that the use of n-gram models (such as those described

in §3.4) suffer from two fundamental problems in terms of modelling music:

first, non-consecutive events cannot be predicted without knowledge of the

intervening notes; and second, the symbolic representation used does not facil-

itate generalisation from one musical context to perceptually similar contexts.

In order to overcome these problems, Mozer developed a model based on a

Recurrent Artificial Neural Network (RANN - Elman, 1990) and used psychoa-

coustic constraints in the representation of pitch and duration. In particular,

the networks operated over multidimensional spatial representations of pitch

(which emphasised a number of pitch relations including pitch height, pitch

chroma and fifth relatedness, Shepard, 1982) and duration (emphasising such

relations as relative duration and tuplet class).

In contrast to n-gram models, which acquire knowledge through unsuper-

vised induction, these neural networks are trained within a supervised regime

in which the discrepancy between the activation of the output units (the ex-

pected next event) and the desired activation (the actual next event) is used to

adjust the network weights at each stage of training.4 When trained and tested

on sets of simple artificial pitch sequences with a split-sample experimental

paradigm, the RANN model outperformed digram models. In particular, the

use of cognitively motivated multidimensional spatial representations led to

significant benefits (over a local pitch representation) in the training of the net-

works. However, the results were less than satisfactory when the model was

trained on a set of melodic lines from ten compositions by J. S. Bach and used

to generate new melodies: “While the local contours made sense, the pieces

were not musically coherent, lacking thematic structure and having minimal

phrase structure and thematic organisation” (Mozer, 1994, p. 273). The neural

network architecture appeared unable to capture the higher level structure in

these longer pieces of music.

4Page (1999) criticises RANNs as models of melodic sequence learning for a variety of reasons

including their use of supervised learning.
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One approach to addressing the apparent inability of RANNs to represent re-

cursive constituent structure in music involves what is called auto-association.

An auto-associative network is simply one which is trained to reproduce on its

output layer a pattern presented to its input layer, generally forming a com-

pressed representation of the input on its hidden layer. For example, training

a network with eight-unit input and output layers separated by a three-unit

hidden layer with the eight 1-bit-in-8 patterns typically results in a 3-bit bi-

nary code on the hidden units (Rumelhart et al., 1986). Pollack (1990) in-

troduced an extension of auto-association called Recursive Auto-Associative

Memory (RAAM) which is capable of learning fixed-width representations for

compositional tree structures through repeated compression. The RAAM ar-

chitecture consists of two separate networks: first, an encoder network which

constructs a fixed-dimensional code by recursively processing the nodes of a

symbolic tree from the bottom up; and second, a decoder network which re-

cursively decompresses this code into its component parts until it terminates in

symbols, thus reconstructing the tree from the top down. The two networks are

trained in tandem as a single auto-associator.

Large et al. (1995) examined the ability of RAAM to acquire reduced repre-

sentations of Western children’s melodies represented as tree structures accord-

ing to music-theoretic predictions (Lerdahl & Jackendoff, 1983). It was found

that the trained models acquired compressed representations of the melodies

in which structurally salient events are represented more efficiently (and repro-

duced more accurately) than other events. Furthermore, the trained network

showed some ability to generalise beyond the training examples to variant and

novel melodies although, in general, performance was affected by the depth of

the tree structure used to represent the input melodies with greater degrees of

hierarchical nesting leading to impaired reproduction of input melodies. How-

ever, the certainty with which the trained network reconstructed events corre-

lated well with music-theoretic predictions of structural importance (Lerdahl

& Jackendoff, 1983) and cognitive representations of structural importance as

assessed by empirical data on the events retained by trained pianists across

improvised variations on the melodies.

Other researchers have sought to address the limitations of neural network

models of music by combining them with symbolic models (Papadopoulos &

Wiggins, 1999). HARMONET (Hild et al., 1992) is an example of such an ap-

proach. The objective of this research was to approximate the function mapping

chorale melodies onto their harmonisation using a training set of 400 four-part

chorales harmonised by J. S. Bach. The problem was approached by decom-
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posing it into sub-tasks: first, generating a skeleton structure of the harmony

based on local context; second, generating a chord structure consistent with

the harmonic skeleton; and finally, adding ornamental quavers to the chord

skeleton. Neural networks were used for the first and third sub-tasks and a

symbolic constraint satisfaction approach was applied to the second sub-task.

Hild et al. (1992) found that this hybrid approach allowed the networks to

operate within structural constraints, relieving them of the burden of learning

structures which may be easily expressed symbolically. The resulting harmoni-

sations were judged by an audience of professional musicians to be on the level

of an improvising organist. Furthermore, independent support has been found

for the predictions made by the model. For example, Hörnel & Olbrich (1999)

used HARMONET to predict that a certain chorale harmonisation (attributed to

Bach) had not been composed by Bach himself since it coincided to a greater

degree with the analysis of an earlier style of harmonisation than with the anal-

ysis of Bach’s own chorale harmonisations. This prediction was confirmed in

the musicological literature.

In an extension to this research, Hörnel (1997) examined the modelling of

melodic variation in chorales harmonised by J. Pachelbel. The learning task

was performed in two steps. First, given an input melody, HARMONET was

used to invent a chorale harmonisation of the melody. In the second stage, a

multi-scale neural network was used to provide melodic variations for one of

the voices. The latter task was considered at two different scales: in the first

stage, a neural network learns the structure of melodies in terms of sequences of

four note motif classes while in the second stage, another neural network learns

the implementation of abstract motif classes as concrete notes, depending on

the generated harmonic context. The abstract motif classes were discovered by

classifying melodic motifs in the training set with an unsupervised clustering

algorithm. A representation was developed for motifs in which a note is repre-

sented by its interval to the first motif note in terms of interval size, direction

and octave. In informal stylistic analyses of the melodic variations generated

by the system, Hörnel (1997) concluded that the modelling of abstract motif

classes significantly aided the network in producing harmonically satisfying and

coherent variations.

3.6 Statistical Modelling of Music Perception

The n-gram and neural network models described in §3.4 and §3.5 acquire

knowledge about a musical style by inducing statistical regularities in existing
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corpora of music in that style. They can use this acquired knowledge to model

novel works in the style (either in a synthetic or analytical capacity) in terms

of the estimated probabilities of events occurring in a given musical context.

Meyer (1956, 1957) argues that humans also induce statistical knowledge of

a musical style through listening to music in that style and, furthermore, that

they bring this acquired knowledge to bear when listening to novel pieces in

the style (see also Chapter 8). Furthermore, there is experimental evidence to

support the hypothesis that humans internalise a complex system of regularities

about music in a given stylistic tradition.

Krumhansl & Kessler (1982) derived the perceived strength of scale de-

grees as experimentally quantified key profiles using a probe tone experimen-

tal paradigm. Ten musically trained Western listeners were asked to supply

ratings of how well a variable probe tone fitted, in a musical sense, with a

antecedent musical context. The probe tones in Krumhansl & Kessler’s exper-

iments were all 12 tones of the chromatic scale which were presented in a

variety of contexts, including complete diatonic scales, tonic triads and a num-

ber of chord cadences in both major and minor keys and using a variety of tonal

centres. The results exhibited high consistency across contexts and both inter-

and intra-subject consistency were also high. Furthermore, substantially the

same patterns were found for the different major and minor contexts once the

ratings had been transposed to compensate for the different tonics. Krumhansl

& Kessler (1982) derived quantitative profiles for the stability of tones in major

and minor keys from the experimental data. Since these profiles substantially

conform to music-theoretic accounts of decreasing relative stability from the

tonic, through the third and fifth scale degrees, the remaining diatonic scale

degrees and finally the non-diatonic tones, they have been cited as evidence for

a perceived tonal hierarchy of stability (Krumhansl, 1990).

Krumhansl (1990, ch. 3) reports a number of case studies in which the key

profiles of Krumhansl & Kessler (1982) are found to exhibit strong correlations

with the monogram distributions of tones in a variety of musical styles includ-

ing the vocal melodies in songs and arias composed by Schubert, Mendelssohn,

Schumann, Mozart, J. A. Hasse and R. Strauss (Knopoff & Hutchinson, 1983;

Youngblood, 1958) and the melodies of nursery tunes (Pinkerton, 1956). In a

further study, Krumhansl (1990) found an even stronger relationship between

the key profiles and the monogram distribution of duration/pitch pairs reported

in a polyphonic analysis of the first of Schubert’s Moments Musicaux, op. 94,

no. 1, (Hughes, 1977). Finally, Krumhansl (1990) argues that the statistical

usage of tones in existing musical traditions is the dominant influence on per-
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ceived tonal hierarchies, the influence of factors such as acoustic consonance

being rather small, suggesting that tonal hierarchies are primarily acquired

through learning.5

As discussed in §8.2.3 and §8.3.2, experimental research using fixed low-

order n-grams has demonstrated the sensitivity of listeners to statistical regular-

ities in music and the influence of these regularities on segmentation (Ferrand

et al., 2002; Saffran et al., 1999), stylistic judgements (Vos & Troost, 1989)

and expectation for forthcoming tones in a variety of melodic contexts (Eerola

et al., 2002; Krumhansl et al., 1999; Oram & Cuddy, 1995). In a cross-cultural

context, Castellano et al. (1984) collected the probe tone ratings of Indian and

Western listeners in the context of North Indian rāgs and found that the re-

sponses of both groups of listeners generally reflected the monogram distribu-

tion of tones in the musical contexts.

Research has also addressed the question of whether statistical knowledge

is acquired and employed in the perception of harmonic relations. Bharucha

(1987), for example, developed a connectionist model of harmony based on a

sequential feed-forward neural network similar to those used by Mozer (1994).

The model accurately predicts a range of experimental findings including mem-

ory confusions for target chords following a context chord (Bharucha, 1987)

and facilitation in priming studies (Bharucha & Stoeckig, 1986, 1987). In these

latter studies, target chords which are musically related to a prior context chord

were found to be processed more quickly and accurately than unrelated target

chords. Speed and accuracy of judgements varied monotonically with the dis-

tance, around the circle of fifths, of the chord from the context inducing chord

even when harmonic spectra shared by the context and target chord were re-

moved. The network model learnt the regularities of typical Western chord

progressions through exposure and the representation of chord proximity in

the circle of fifths arose as an emergent property of the interaction of the net-

work with its environment.

3.7 Summary

In this chapter, the background to the modelling techniques used in the current

research has been presented and previous research which has applied them

5Krumhansl (1990) reviews a case study conducted by L. K. Miller (referred to in Miller,

1987) of a developmentally disabled boy who, in spite of being musically untrained, exhibited a

striking ability to reproduce previously unheard melodies on the piano. When asked to reproduce

short preludes, the renditions he produced, while they deviated considerably from the originals,

preserved almost exactly the monogram distribution of tone frequencies in the original prelude.
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and related techniques to modelling music and music cognition has been re-

viewed and discussed. In §3.2, context free, finite state and finite context

grammars were introduced in terms of the Chomsky containment hierarchy

and discussed in terms of the languages they can generate, their assumptions

and the methodological constraints they impose. In §3.3, previous research

on the application of context free (and higher) grammars to music was sum-

marised and discussed. In particular, while context free (and higher) grammars

can be useful in identifying computational constraints on musical competence,

they suffer from the problems of inadequate modelling of musical context and

the difficulty of adopting a machine learning approach (advocated in §2.4).

The application of finite context (or n-gram) grammars and neural networks to

modelling music was reviewed in §3.4 and §3.5 respectively. While these mod-

els also suffer from an inability to adequately model musical languages, they

have advantages in terms of being relatively straightforward to induce from a

corpus of data and several approaches to addressing their inherent limitations

have been discussed. Finally, in §3.6, research was reviewed which demon-

strates the utility of statistical modelling techniques in accounting for a variety

of experimentally observed phenomena in music perception.



CHAPTER 4

MUSIC CORPORA

4.1 Overview

In this chapter, issues concerning the selection of data are discussed and the

corpora of music used in the present research are described.

4.2 Issues Involved in Selecting a Corpus

There are several criteria that should be borne in mind when choosing a cor-

pus of data for a machine learning approach to modelling music. First, various

pragmatic requirements must be met. The compositions should be easily acces-

sible in some electronic format and should be out of copyright. Furthermore,

it should be possible to derive all the required information from the original

electronic format and transfer this information into the representation scheme

used (see §5.3) in a relatively straightforward manner.

Apart from purely pragmatic factors, several issues arise from the focus of

the present research on statistical induction of regularities in the selected cor-

pora. First, a corpus should be large enough to support the induction of statis-

tical and structural regularities in the music from which it is comprised. Sec-

ond, if the music making up a corpus (regardless of its size) exhibits extreme

structural diversity then that corpus will afford few regularities which may be

exploited in training the models. The structural coherence of a corpus is also

important in evaluating compositions generated by a statistical model trained

on that corpus (see Chapter 9). Judging the success of a generated composi-

45
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tion in the context of the stylistic norms of the corpus will be very much harder

when the corpus exhibits high degrees of diversity and irregularity amongst

the individual compositions from which it is comprised. The risk of choosing

corpora which exhibit little structural coherence may be potentially reduced by

selecting compositions for inclusion in a given corpus according to a common

historical period, geographical region, culturally or socially defined musical tra-

dition, specific composer and so on. Third, in order to ensure the ecological va-

lidity of the research, that is to ensure that the results pertain to a “real-world”

phenomenon, a corpus should consist of entire compositions drawn from exist-

ing musical traditions. Finally, a corpus should be stylistically simple enough to

enable modelling the data in a relatively complete manner but should exhibit

enough complexity to require more than a trivial modelling approach.

4.3 The Datasets

Several corpora of musical data have been chosen to satisfy the criteria dis-

cussed in §4.2. In order to reduce the complexity of the task while working

with compositions drawn from existing musical traditions, all the datasets se-

lected contain purely monophonic compositions (see §1.4). Stylistically the

datasets chosen consist of folk and hymn music and were all obtained in the

**kern format (Huron, 1997) from the Centre for Computer Assisted Research in

the Humanities (CCARH) at Stanford University, California (see http://www.

ccarh.org) and the Music Cognition Laboratory at Ohio State University (see

http://kern.humdrum.net).

The datasets used in the current research are as follows (see Table 4.1 for

a summary). The first is a collection of 152 folk songs and ballads from Nova

Scotia, Canada collected between 1928 and 1932 by Helen Creighton (1966).

The dataset was encoded in the **kern format by Craig Sapp and is freely

available from the Music Cognition Laboratory at Ohio State University. The sec-

ond dataset used is a subset of the chorale melodies harmonised by J. S. Bach

(Riemenschneider, 1941). A set of 185 chorales (BWV 253 to BWV 438) has

been encoded by Steven Rasmussen and is freely available in the **kern format

from CCARH. The remaining datasets come from the Essen Folk Song Collection

(EFSC – Schaffrath, 1992, 1994) which consists of a large number of (mostly)

European and Chinese folk melodies collected and encoded under the supervi-

sion of Helmut Schaffrath at the University of Essen in Germany between 1982

and 1994. A dataset containing 6251 compositions in the collection encoded in

the **kern format is published and distributed by CCARH (Schaffrath, 1995)
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ID Description Melodies Events E/M Pitches

1 Canadian folk ballads 152 8553 56.270 25

2 Chorale melodies 185 9227 49.876 21
3 Alsatian folk songs 91 4496 49.407 32

4 Yugoslavian folk songs 119 2691 22.613 25
5 Swiss folk songs 93 4586 49.312 34

6 Austrian folk songs 104 5306 51.019 35

7 German folk songs (kinder) 213 8393 39.403 27
8 Chinese folk songs 237 11056 46.650 41

9 German folk songs (fink) 566 33087 58.457 37

Total 1760 87395 49.656 45

Table 4.1: Melodic datasets used in the present research; the columns headed E/M and
Pitches respectively indicate the mean number of events per melody and the number

of distinct chromatic pitches in the dataset.

while an additional dataset of 2580 Chinese folk melodies is available on re-

quest from the Music Cognition Laboratory at Ohio State University. The six

datasets from the EFSC used in the present research contain respectively 91

Alsatian folk melodies, 119 Yugoslavian folk melodies, 93 Swiss folk melodies,

104 Austrian folk melodies, 213 German folk melodies (dataset kinder), 566

German folk melodies (dataset fink) and 237 Chinese folk melodies (selected

from dataset shanxi). See Appendix B for an example of the **kern encoding

of one of the folk songs from the EFSC.

Each dataset is assigned a positive integer as an identifier as shown in Ta-

ble 4.1 and will be referred to henceforth by this identifier. Table 4.1 also

contains more detailed information about each dataset, including the number

of melodies and events contained in the dataset as well as the mean number

of events per melody. Since the present research focuses on the pitch structure

of the melodies in the nine corpora, Table 4.1 also lists the number of distinct

chromatic pitches from which each dataset is composed.

4.4 Summary

In this chapter, issues concerning the selection of data were discussed and the

corpora of music used in the present research were described.
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CHAPTER 5

THE REPRESENTATION OF MUSICAL STRUCTURE

5.1 Overview

This chapter presents the representation scheme used in the current research.

The manner in which knowledge is represented is crucial to the success of an

AI system. As an example, consider simple arithmetic where some calculations

will be extremely easy using a decimal representation but harder when using

the Roman numeral system, while for other calculations the converse will be

true (Marr, 1982). The choice of an appropriate representation scheme is de-

pendent on the type of information processing that is to be carried out and

“search can be reduced or avoided by selecting an appropriate problem space”

(Newell & Simon, 1976, p. 125). Furthermore, since the present research is

cognitive-scientific, the representation scheme should also be constrained by

current understanding of human cognitive representations of music. Following

Harris et al. (1991), the musical surface (Jackendoff, 1987) is taken to corre-

spond to the lowest level of musical detail which is of interest; in this case,

the discrete properties of discrete musical events at the note level. Lower-level

acoustic phenomena are not considered in this research. This decision may be

justified by noting that many aspects of music theory, perception and compo-

sition operate on musical phenomena defined at this level (Balzano, 1986b;

Bharucha, 1991; Krumhansl, 1990; Lerdahl, 1988a).

Wiggins et al. (1993) introduce two orthogonal dimensions along which

representation systems for music may be classified: expressive completeness and

structural generality. The former refers to the range of raw musical data that
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can be represented while the latter refers to the range of high-level structures

that may be represented and manipulated. For example, waveforms have high

expressive completeness but low structural generality while traditional scores

have high structural generality but restricted expressive completeness. Differ-

ent tasks will place different emphasis on each of the properties; archiving, for

example, places a stress on accuracy of storage and recall, and requires high

expressive completeness, while for analysis and composition, structural gener-

ality is more important. Of primary concern in the present research is to choose

a representation scheme with high structural generality. In particular, a signif-

icant challenge faced in modelling musical phenomena arises from the need

to represent and manipulate many different features of the musical surface in

tandem.

The chapter is organised as follows. Section 5.2 contains a review of ex-

isting frameworks for the symbolic representation of music which form the ba-

sis for the representation scheme used in the current research. These include

the Generalised Interval Systems of Lewin (1987), CHARM (Harris et al., 1991;

Smaill et al., 1993; Wiggins et al., 1989) and the multiple viewpoints framework

(Conklin, 1990; Conklin & Witten, 1995). The representation scheme used in

the present research draws on ideas from CHARM and, especially, the multiple

viewpoints framework both of which draw on different aspects of Lewin’s Gen-

eralised Interval Systems. The preprocessing of the data (described in Chapter

4) and the basic event representation employed in the current research are pre-

sented in §5.3. Finally, in §5.4 the multiple viewpoint framework developed

in the current research is described in detail and the individual attribute types

implemented are motivated in terms of previous research on music cognition

and the computational modelling of music.

5.2 Background

5.2.1 Generalised Interval Systems

Lewin (1987) takes as his goal the formal description of various kinds of mu-

sical space and, in particular, the precise characterisation of various distance

metrics between points in such spaces. He develops a mathematical model,

called a Generalised Interval System or GIS, to describe our intuitions about the

relationships between points in musical spaces and discusses two methods for

deriving new GISs from existing ones.

Formally, a GIS is an ordered triple (S, IVLS , int) where S is a set of ele-

ments defining the musical space, IVLS is a mathematical group consisting of a
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set of intervals between the elements of S and an associative, binary operation

∗ on this set, and int : S × S → IVLS is a function mapping pairs of elements

in S onto intervals in IVLS , subject to Conditions 5.1 and 5.2.

∀p, q, r ∈ S, int(p, q) ∗ int(q, r) = int(p, r) (5.1)

∀p ∈ S, i ∈ IVLS ,

∃q1 ∈ S : int(p, q1) = i ∧

∀q2 ∈ S, int(p, q2) = i⇒ q1 = q2

(5.2)

Together with the group structure of IVLS , Condition 5.1 ensures the existence

of an identity interval e ∈ IVLS such that ∀p ∈ S, int(p, p) = e and the existence

of an inverse interval for each element in IVLS such that ∀p, q ∈ S, int(p, q) =

int(q, p)−1. Condition 5.2, on the other hand, ensures that the space S is large

enough to contain all theoretically conceivable elements: if we can conceive of

an element p ∈ S and an interval i ∈ IVLS then we can conceive of a unique

element q which lies the interval i from p. Of the many different GISs discussed

by Lewin (1987), we shall consider three examples respectively involving a

pitch space, a space of temporal points and a space of event durations.

GIS 2.1.2 In this GIS, S is an equal-tempered chromatic scale extended in-

finitely up and down, IVLS is the group of integers under addition and the

function int(p, q), given any two pitches p and q, returns the number of semi-

tones up from p to q. A negative member of IVLS indicates a downward inter-

val of the specified number of semitones.

GIS 2.2.1 In this GIS, S is a set of regularly spaced time points extending

indefinitely both forwards and backwards, IVLS is the group of integers under

addition and int(p, q) is the difference in terms of temporal units between p and

q.

GIS 2.2.3 In this GIS, S is a set of durations measuring a temporal span in

time units, IVLS is some multiplicative group of positive real numbers and

int(p, q) is the quotient of the durations p and q, (i.e., q
p
). For example, if p

spans four time units and q spans three time units int(p, q) = 3
4 . The elements

of IVLS will depend on the proportions amongst durations that we wish to

allow.
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Having considered some examples of GISs, we can now appreciate Lewin’s

argument that a GIS is capable of capturing many of our basic intuitions about

musical spaces. Thus to the extent that we intuit such musical spaces, we also

intuit intervals in connexion with them. The use of a mathematical group to

represent these intervals captures the following intuitions:

• the intervals can be composed or combined to generate other intervals

(see Condition 5.1);

• this composition of intervals is associative, a ∗ (b ∗ c) = (a ∗ b) ∗ c;

• there exists an identity interval I such that a ∗ I = I ∗ a = a;

• each interval has an inverse interval such that int(p, q) = int−1(q, p);

• if we can conceive of a point p ∈ S and an interval a ∈ IVLS then the

musical space S must contain the point that lies the interval a from p (see

Condition 5.2).

These properties are logically implied by the group structure of IVLS and Con-

ditions 5.1 and 5.2.

Lewin (1987) provides formal accounts of two ways in which new GIS struc-

tures may be created from existing ones. The first of these involves the con-

struction of a quotient GIS formed by defining and applying a congruence to an

existing GIS. Let (S1, IVLS 1, int1) be a GIS and CONG be any congruence on

IVLS1. An equivalence relation EQUIV is induced on S1 by declaring s, s′ ∈ S1

to be equivalent whenever int1(s, s
′) is congruent to the identity I in IVLS 1.

Let S2 be the quotient space S1 \ EQUIV and IVLS 2 be the quotient group

IVLS1 \CONG . The function int2 : S2×S2 → IVLS 2 is well defined by the fol-

lowing method: given equivalence classes p, q ∈ S2, the value int2(p, q) is that

member of IVLS2 to which int1(q1, q2) belong whenever q1 and q2 are members

of p and q respectively. Furthermore, (S2, IVLS 2, int2) is itself a GIS.

To give an example of the construction of a quotient GIS, let (S1, IVLS 1, int1)

be GIS 2.1.2 described above and CONG be the relation on IVLS 1 that makes

a congruent to a′ whenever the intervals differ by any integral multiple of 12

semitones. Then the quotient GIS (S2, IVLS 2, int2) constructed by the above

method has these components: S2 is the set of 12 pitch-classes, IVLS2 is the set

of integers under mod12 addition and int2(p, q) is the reduction modulo 12 of

the integer int1(p1, q1) where p1 and q1 are any pitches belonging to the pitch

classes p and q respectively.

The second means of deriving new GIS structures involves the construc-

tion of a product GIS from two existing GISs. Given GIS1 = (S1, IVLS 1, int1)
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and GIS2 = (S2, IVLS 2, int2), the direct product of GIS1 and GIS2, denoted by

GIS1 ⊗ GIS2, is that GIS3 = (S3, IVLS 3, int3) constructed as follows:

• S3 = S1 × S2;

• IVLS3 = IVLS 1 ⊗ IVLS 2;

• int : S3 × S3 → IVLS3 is given by the rule: int3((p1, p2), (q1, q2)) =

(int1(p1, q1), int2(p2, q2)).

As an example, let GIS1 be GIS 2.2.1 and GIS2 be GIS 2.2.3, as described above.

Then GIS3 = GIS1 ⊗ GIS2 consists of:

• S3 = S1 × S2; we can conceive of a point (t, d) in this space modelling

an event that begins at time-point t and extends for a duration of d time-

points thereafter;

• IVLS3 = IVLS1 ⊗ IVLS 2; each interval consists of a pair (a1, a2) where

a1 represents the number of time-units between two time-points and a2

represents a quotient of two durations;

• int3((t, d), (t1, d1)) = (int1(t, t1), int2(d, d1)); if int3((t, d), (t1, d1)) = (a, b)

this tells us that (t1, d1) occurs a time units after (t, d) and lasts for b times

the duration of (t, d).

In further developments of the approach, Lewin (1987) defines formal gener-

alised analogues of transposition and inversion operations using GIS structures

and eventually incorporates GISs into a more general formulation using trans-

formational networks or graphs.

5.2.2 CHARM

CHARM (Common Hierarchical Abstract Representation for Music) is intended

to provide a logical specification of an abstract representation of music for use

in a wide range of areas including composition, analysis and archiving. An

abstract, logical scheme allows the flexible representation of many different

kinds of musical structure at appropriate levels of generality for any particular

task (Wiggins et al., 1989), independent of the particular style, tonal system,

tradition or application under consideration (Smaill et al., 1993).
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5.2.2.1 Representing Events

The fundamental level of representation in CHARM is the event which in gen-

eral corresponds to the musical note; the internal structure of individual tones

and timbres is not represented (Harris et al., 1991; Wiggins & Smaill, 2000).

Attributes such as pitch and duration are not represented in a continuous fash-

ion due to practical considerations (Wiggins et al., 1993). Although CHARM

may represent performed, perceived or transcribed musical objects, the origi-

nal formulation focused on performed musical objects since scores were viewed

as performance instructions which may have several different interpretations

(Harris et al., 1991; Wiggins et al., 1993). Consequently, features such as time

signatures and key signatures were not explicitly represented.

Specification The internal structure of an event is represented by abstract

data types for pitch (and pitch interval), time (and duration), amplitude (and

relative amplitude) and timbre. Therefore, the abstract event representation is

the Cartesian product:

Pitch × Time × Duration × Amplitude × Timbre

Since all of these attributes (except timbre) have the same internal structure,

we shall only consider the representation of Time. The objects of interest are

points in time and time-intervals (or durations) and the Time and Duration

types are associated with sets containing possible values for these event at-

tributes (Wiggins et al., 1989). The abstract data-type for Duration is associated

with:

• a distinguished symbol for the zero duration;

• an operation adddd : Duration ×Duration → Duration and its inverse

subdd;

• an ordering given by the typed equivalents of arithmetic comparison func-

tions (e.g., ≤, ≥, =, 6=).

such that these make it a linearly ordered Abelian group. To allow the compu-

tation of durations from pairs of times, times from pairs of times (and pairs of

durations) and so on, the specification requires the existence of functions addxy

and subxy where x and y are one of {t, d}:
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adddd : Duration×Duration→ Duration

addtd : T ime×Duration→ T ime

subdd : Duration×Duration→ Duration

subtd : T ime×Duration→ T ime

subtt : T ime× T ime→ Duration

The function subtt allows us to compute the time interval (duration) between

two time points such that:

• subtt(p, q) = 0⇐ p = q;

• subtt(p, q) + subtt(q, r) = subtt(p, r);

• subtt(p, q) = −subtt(q, p).

Formally, this means that Time is a commutative GIS in the sense of Lewin

(1987) with extra properties. According to Harris et al. (1991), the abstract

data types for the other event attributes (except timbre) have the same proper-

ties modulo renaming.

Implementation All events must be associated with a unique identifier and a

tuple of event attributes making event tuples of the form:

event(Identifier,Pitch,Time,Duration,Amplitude,Timbre)

Each data type X (pitch, pitch interval, time, duration and so on) must have an

associated unary selector function getX which returns the appropriate compo-

nent of the event tuple associated with the identifier provided as an argument.

There must also be a unary selector function putEvent which returns the identi-

fier associated with any event tuple passed as an argument (Harris et al., 1991).

These functions are intended to be used with a database in which the events

are stored.

5.2.2.2 Representing Higher-order Structures

Harris et al. (1991) note that while representation schemes for music must

allow higher-level forms to be introduced hierarchically, they must not impose

any one set of groupings on the user and should ideally allow the simultaneous

assignment of different higher-level structures to any set of musical events.
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This allows for both the representation of different structural interpretations as

well as the separation of distinct types of information about any set of events.

In the CHARM specification, this is achieved through the use of constituents

which define higher-level groupings of events without committing the user to

any particular hierarchy.

Specification At the abstract level, a constituent is defined by a pair of the

form (properties, particles). The Particles of a constituent consist of the set of

events and sub-constituents from which it is formed. A sub-constituent of a con-

stituent is one of its particles or a sub-constituent of one of them such that no

constituent may be a constituent of itself. The constituent structure of a musical

piece is, therefore, a directed acyclic graph (Harris et al., 1991). The proper-

ties of a constituent allow the logical specification of the structural relationship

between its particles in terms of the membership of (user-defined) classes. The

properties component of a constituent is a pair of the form (spec, env) where

spec is a logical specification for the defining structural property of the con-

stituent and env is (a possibly empty) set of values for event-like information

concerning Time, Pitch etc. associated directly with the constituent.

Three very general types of constituent are given as examples by Harris et al.

(1991): collection constituents, stream constituents and slice constituents. The

first of these places no constraints on the structural relationships between its

particles. The second, however, restricts a constituent to particles in which no

particle starts between the onset and offset of any other particle (e.g., a melodic

phrase):

stream ⇔ ∀p1 ∈ particles,¬∃p2 ∈ particles,

p1 6= p2 ∧

GetT ime(p1) ≤ GetT ime(p2) ∧

GetT ime(p2) < addtd(GetT ime(p1), GetDuration(p1))

The third type, on the other hand, requires that some point in time is common

to every particle in the constituent:

slice ⇔ ∃t ∈ T ime,∀p ∈ particles,

GetT ime(p) ≤ t ∧

t ≤ addtd(GetT ime(p), GetDuration(p))
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The user is free to define other kinds of constituent appropriate to the kinds of

musical groupings being studied.

Implementation A constituent is defined as the tuple:

constituent(Identifier,Properties,Definition,

Particles,Description)

where:

• the identifier is a unique identifier for the constituent;

• the properties or structural type defines the externally available proper-

ties of the constituent type which are derived from the externally defined

interface functions;

• the definition or musical type defines the intrinsic musical properties of a

constituent;

• the particles component contains a list of the particles of the constituent;

• the description is an arbitrary structure defined by the user for annotation

of useful information.

As with events, each constituent must have associated selector functions which

access the appropriate component of a constituent tuple. There must also be

a function putConstituent analogous to the putEvent function. As with events,

these selector functions are intended to be used with a database of constituent

objects (Harris et al., 1991). Smaill et al. (1993) argue that the small atomic set

of interface functions they have defined for the pitch and time data types are

sufficient to allow the construction of more complex operations for manipulat-

ing musical material in a wide range of musical tasks. Examples of such opera-

tions include the dilation of the interval structure between events, replacement

of events by sub-constituents, blanking out of material and distinguishing voices

in polyphonic music.

Wiggins et al. (1993) argue that the CHARM system scores well on both

expressive completeness and structural generality. Regarding the latter, the

use of constituents allows the explicit representation of any structural prop-

erty of music at any level of abstraction and a precise characterisation of the

relationships between such structures (for example, multiple views of any mu-

sical structure may be easily defined). Furthermore, the use of abstract data

types facilitates the construction of functions for manipulating these musical
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structures. In terms of expressive completeness, the abstraction away from im-

plementational detail resulting from the use of abstract data types frees the

system from any particular style, tonal system, tradition or application as long

as the mathematical specifications are followed. Finally, this abstraction from

detail also facilitates the common use of a general and expressive representa-

tion scheme for many different applications.

5.2.3 Multiple Viewpoint Representations of Music

While CHARM emphasises the internal structure of Lewin’s GISs and introduces

constituents for the flexible representation of groupings of events, other repre-

sentation schemes emphasise Lewin’s use of quotient and product GISs to allow

the observation of a musical object from multiple viewpoints (Conklin & Cleary,

1988; Ebcioǧlu, 1988). In this section, we review the representation language

of the multiple viewpoint framework as developed by Conklin (1990, see also

Conklin & Witten, 1995). The specific motivation in the development of the

framework was to extend the application of statistical modelling techniques

to domains, such as music, where events have an internal structure and are

richly representable in languages other than the basic event language. Here,

the framework is discussed only insofar as it applies to monophonic music; see

Conklin (2002) for extensions to accommodate the representation of homo-

phonic and polyphonic music.

Like CHARM, the multiple viewpoints framework takes as its musical sur-

face sequences of musical events which roughly correspond to individual notes

as notated in a score. Each event consists of a finite set of descriptive variables

or basic attributes each of which may assume a value drawn from some finite

domain or alphabet. Each attribute describes an abstract property of events

and is associated with a type, τ , which specifies the properties of that attribute

(see Table 5.1). Each type is associated with a syntactic domain, [τ], denoting

the set of all syntactically valid elements of that type. Each type is also sup-

plied with an informal semantics by means of an associated semantic domain,

[[τ]], which denotes set of possible meanings for elements of τ and a function,

[[·]]τ : [τ] → [[τ]], which returns the semantic interpretation of any element of

type τ . The Cartesian product of the domains of n basic types τ1, . . . , τn is

referred to as the event space, ξ:

ξ = [τ1] × [τ2] × . . . × [τn]

An event e ∈ ξ is an instantiation of the attributes τ1, . . . , τn and consists of an
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Symbol Interpretation Example

τ A typed attribute cpitch

[τ ] Syntactic domain of τ {60, . . . , 72}
〈τ 〉 Type set of τ {cpitch}
[[τ ]] Semantic domain of τ {C4,C♯4,. . . ,B4,C5}

[[.]]τ : [τ ] → [[τ ]] Semantic interpretation of [τ ] [[60]]cpitch = C4

Ψτ : ξ∗ ⇀ [τ ] see text see text

Table 5.1: Sets and functions associated with typed attributes.

n-tuple in the event space. The event space ξ, therefore, denotes the set of all

representable events and its cardinality, |ξ|, will be infinite if one or more of

the attribute domains [τ1],. . . ,[τn] is infinite. Attribute types appear here in

typewriter font in order to distinguish them from ordinary text.

A viewpoint modelling a type τ is a partial function, Ψτ : ξ∗ ⇀ [τ ],

which maps sequences of events onto elements of type τ .1 Each viewpoint

is associated with a type set 〈τ〉 ⊆ {τ1, . . . , τn}, stating which basic types the

viewpoint is derived from and is, therefore, capable of predicting (Conklin,

1990). For ease of exposition, a viewpoint will sometimes be referred to by the

type it models. A collection of viewpoints forms a multiple viewpoint system.

The nature of several distinct classes of viewpoint is now defined.

Basic Viewpoints For basic types, those associated with basic attribute do-

mains, Ψτ is simply a projection function (Conklin, 1990) and 〈τ〉 is a singleton

set containing the basic type itself. An example of a basic type is one that repre-

sents the chromatic pitch of an event in terms of MIDI note numbers (cpitch;

see Table 5.1).

Derived Viewpoints A type that does not feature in the event space but which

is derived from one or more basic types is called a derived type. The function

Ψτ acts as a selector function for events, returning the appropriate attribute

value when supplied with an event sequence (Conklin, 1990). Since the func-

tion is partial the result may be undefined (denoted by ⊥) for a given event se-

quence. Many of the derived types implemented by Conklin (1990) are inspired

by the construction of quotient GISs developed by Lewin (1987) and reviewed

in §5.2.1. The motivation for constructing such types is to capture and model

1While viewpoints were defined by Conklin & Witten (1995) to additionally comprise a sta-

tistical model of sequences in [τ ]∗, here we consider viewpoints to be a purely representational

formalism and maintain a clear distinction between our representation language and our mod-

elling strategies.
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the rich variety of relational and descriptive terms in a musical language (Con-

klin, 1990). A viewpoint modelling a derived type is called a derived viewpoint

and the types from which it is derived, and which it is capable of predicting,

are given by the type set for that viewpoint. An example of a derived type is

one which represents melodic intervals in the chromatic pitch domain (see GIS

2.1.2 discussed in §5.2.1). Given the basic type cpitch shown in Table 5.1, the

derived viewpoint cpint (Conklin, 1990) is defined by the function:

Ψcpint(e
j
1) =







⊥ if j = 1,

Ψcpitch(e
j
1)−Ψcpitch(e

j−1
1 ) otherwise.

(5.3)

Linked Viewpoints A system of viewpoints modelling primitive types will

have limited representational and predictive power due to its inability to repre-

sent any interactions between those individual types (Conklin & Witten, 1995).

Linked viewpoints are an attempt to address this problem and were motivated

by the direct product GISs described by Lewin (1987) and reviewed in §5.2.1.

A product type τ = τ1 ⊗ . . . ⊗ τn between n constituent types τ1, . . . , τn has

the following properties:

[τ ] = [τ1] × . . . × [τn]

〈τ〉 =

n
⋃

k=1

〈τk〉

[[τ ]] = [[τ1]] and . . . and [[τn]]

Ψτ (e
j
1) =







⊥ if Ψτi(e
j
1) is undefined for any i ∈ {1, . . . , n}

Ψτ1(e
j
1), . . . ,Ψτn(e

j
1) otherwise.

A linked viewpoint is one which models a product type. Linked viewpoints add

to the representation language the ability to represent disjunctions of conjunc-

tions of attribute values (as opposed to simple disjunctions of attribute values).

To give an example, it was found by Conklin & Witten (1995) that a viewpoint

linking melodic pitch interval with inter-onset interval (cpint⊗ioi) proved

useful in modelling the chorale melodies harmonised by J. S. Bach. This find-

ing suggests that these two attribute types are correlated in that corpus.

Test Viewpoints A test viewpoint models a Boolean-valued attribute type and

is used to define locations in a sequence of events (Conklin & Anagnostopoulou,

2001) specifically those which are used in the construction of threaded view-
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points (as discussed below). The name derives from the fact that these types

perform a Boolean-valued test at a given event location. An example is the fib

viewpoint defined by Conklin (1990) as follows:

Ψfib(e
j
1) =







T if Ψposinbar(e
j
1) = 1,

F otherwise
(5.4)

where posinbar is a derived type giving the relative position of an event in the

bar (e.g., [[1]]posinbar = the first event in the current bar). Figure 7.2 illustrates

the representation of a melodic fragment in terms of the fib attribute.

Threaded Viewpoints Types whose values are only defined at certain points

in a piece of music (e.g., the first event in each bar) are called threaded types

and viewpoints modelling these types are called threaded viewpoints. Threaded

viewpoints model the value of a base viewpoint at temporal or metric locations

where a specified test viewpoint returns true and are undefined otherwise (Con-

klin & Anagnostopoulou, 2001). The base viewpoint may be any primitive or

linked viewpoint. Threaded viewpoints were developed to take advantage of

structure emerging from metrical grouping and phrasing in music. The syn-

tactic domain of a threaded viewpoint is the Cartesian product of the domains

of the base viewpoint and a viewpoint, ioi, representing inter-onset intervals

(Conklin & Anagnostopoulou, 2001). The latter component of a threaded view-

point element represents the timescale of the element: the inter-onset interval

between that element and its (possibly) non-adjacent predecessor. A periodic

threaded type threads a sequence at periods of a fixed number of events; most

useful threaded types, however, will be aperiodic. To take an example, consider

the thrbar viewpoint which is constructed from the base viewpoint cpint and

the test viewpoint fib (Conklin & Witten, 1995). This viewpoint represents

melodic intervals between the first events in each consecutive bar and is un-

defined at all other locations in a melodic sequence. Its viewpoint elements

consist of pairs of cpint and ioi elements corresponding to the pitch inter-

val between the first events in two successive bars and the inter-onset interval

between those events.

It is clear from the above that any sequence of musical events can be viewed

as a set of derived sequences – one for each primitive type (i.e., all but product

types) used. This set of sequences is represented in a solution array (Ebcioǧlu,

1988). For n primitive viewpoints τ1, . . . , τn and a basic event sequence ej1, the

solution array is an n×j matrix where location (k, l) holds the value Ψτk(e
l
1) if it
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is defined or else ⊥ (Conklin & Witten, 1995). Product types do not need to be

represented explicitly in the solution array since they can be derived from their

constituent rows. For a system of n primitive types, 2n distinct multiple view-

point systems can be formed while this increases to nn once linked viewpoints

with any number of constituents are allowed (Conklin & Witten, 1995). Given

this exponential relationship between the number of primitive viewpoints and

the space of possible viewpoint systems, multiple viewpoint systems have typ-

ically been hand-constructed through the use of expert domain-specific knowl-

edge to define a restricted set of basic, derived, linked, test and threaded types

which are expected to be useful in modelling a given musical genre (Conklin,

1990; Conklin & Witten, 1995).

5.3 The Musical Surface

As discussed in §4.2, the electronic format in which the selected musical corpora

is encoded should contain all the required information. All the datasets used in

the present research were originally encoded in the **kern format. This section

introduces the basic event space making up the musical surface assumed in the

present research as well as the preprocessing of the original data into this basic

representation scheme.

The **kern representation format is one of several in the humdrum syntax

(Huron, 1997). It is designed to encode the syntactic information conveyed by

a musical score (as opposed to orthographic information, on the one hand, and

performance information on the other) for analytic purposes. Consequently,

the **kern scheme allows encoding of pitch (e.g., concert pitch, accidentals,

clefs, key signatures, harmonics, glissandi and so on), duration (e.g., canonic

musical duration, rests, augmentation dots, grace notes, time signature and

tempo), articulation (e.g., fermata, trills, accents), timbre (e.g., instrument and

instrument class) and many other structural components of a score (e.g., phrase

markings, bar lines, repetitions, bowing information, beaming and stem direc-

tion). Appendix B presents an example of a **kern file from the EFSC (see

Chapter 4).

The original data were preprocessed into an event based format similar

to those used by the CHARM and multiple viewpoints frameworks (see §5.2).

Since the data used in this research is purely monophonic, all compositions are

represented as CHARM stream constituents. The preprocessed data were used

to construct a CHARM-compliant relational database in which event attributes,

events, compositions and datasets are associated with unique identifiers and
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selector functions. In other respects, the representation scheme is closely based

on the multiple viewpoints framework (see §5.2.3).

The basic event space ξ of the preprocessed data is the Cartesian product of

the domains of nine basic types (each of which is specified in full below):

[onset] × [deltast] × [dur] × [barlength] × [pulses]

× [cpitch] × [keysig] × [mode]

× [phrase]

An event is represented as an instantiation of the component attribute dimen-

sions of ξ. Attribute types are atomic and lack the explicit internal structure

of CHARM attributes. It was felt that this increased the flexibility of attribute

types, in keeping with the multiple viewpoints approach. These basic attribute

types are summarised in the upper section of Table 5.2 which shows for each

type τ , an informal description of its semantic interpretation function [[·]]τ , the

syntactic domain [τ] and the type set 〈τ〉. Note that the syntactic domains given

for each attribute type are theoretical. For a given attribute type, the syntac-

tic domain used is typically a subset of that shown in Table 5.2. In particular,

the domains of basic types are generated through simple analysis of the basic

elements actually occurring in the datasets involved in each experiment. The

basic attribute types are described in detail below. Appendix B shows a melody

from the EFSC represented both in standard music notation and as viewpoint

sequences for each of the attribute types making up the basic event space used

in the present research.

The onset time of an event is represented by the attribute type onset. The

domain of onset values [onset] is Z∗, the set of non-negative integers. The

user may define the granularity of the time representation by setting the time-

base during preprocessing to any appropriate positive integer. The timebase

corresponds to the number of time units in a semibreve thereby limiting the

granularity of the time representation to a minimum unit inter-onset interval

that may be represented. Some example timebases are shown in Table 5.3

with their associated granularities. Since both demisemiquaver and semiquaver

triplet durations occur in the datasets all preprocessing was carried out using a

timebase of 96 (the LCM of 24 and 32). Following Conklin (1990, p. 83), the

first time point of any composition is zero corresponding to the beginning of the

first bar whether complete or incomplete. Thus, the first event in a composition

may have a non-zero onset due to an opening anacrusis as in the case of the
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τ [[·]]τ [τ] 〈τ〉

onset event onset time Z∗ {onset}
deltast rest duration Z∗ {deltast}
dur event duration Z+ {dur}
barlength bar length Z∗ {barlength}
pulses metric pulses Z∗ {pulses}
cpitch chromatic pitch Z {cpitch}
keysig key signature {-7,-6,. . . ,6,7} {keysig}
mode mode {0,9} {mode}
phrase phrasing {-1,0,1} {phrase}

cpitch-class pitch class {0,. . . ,11} {cpitch}
cpint pitch interval Z {cpitch}
cpcint pitch class interval {0,. . . ,11} {cpitch}
contour pitch contour {-1,0,1} {cpitch}
referent referent or tonic {0,. . . ,11} {keysig}
inscale (not) in scale {T,F} {cpitch}
cpintfref cpint from tonic {0,. . . ,11} {cpitch}
cpintfip cpint from first in piece [cpint] {cpitch}
cpintfib cpint from first in bar [cpint] {cpitch}
cpintfiph cpint from first in phrase [cpint] {cpitch}
posinbar event position in bar Z∗ {onset}
ioi inter-onset interval Z+ {onset}
dur-ratio duration ratio Q+ {dur}

tactus (not) on tactus pulse {T,F} {onset}
fib (not) first in bar {T,F} {onset}
fiph (not) first in phrase {T,F} {phrase}
liph (not) last in phrase {T,F} {phrase}

phraselength length of phrase Z+ {phrase,onset}
thrtactus cpint at metric pulses [cpint] × Z+ {cpitch,onset}
thrbar cpint at first in bar [cpint] × Z+ {cpitch,onset}
thrfiph cpint at first in phrase [cpint] × Z+ {cpitch,onset}
thrliph cpint at last in phrase [cpint] × Z+ {cpitch,onset}

Table 5.2: The basic, derived, test and threaded attribute types used in the present

research.

melody shown in Figure B.1 whose first event is a crotchet anacrusis with an

onset time of 48 since the melody is in 3/4 metre.

Rests are not explicitly encoded, which means that the inter-onset interval

between two events may be longer than the duration of the first of these events

(Conklin, 1990). The temporal interval, in terms of basic time units, between

the end of one event and the onset of the next (i.e., a rest) is represented by the

attribute deltast where [[0]]deltast = no rest preceding an event. As an example

of this attribute, since the melody shown in Figure B.1 contains no rests, the

deltast attribute is zero for all events. While [onset] is potentially infinite,
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Timebase Granularity

1 Semibreve

2 Minim

4 Crotchet

6 Crotchet triplet

8 Quaver

12 Quaver triplet

16 Semiquaver

24 Semiquaver triplet

32 Demisemiquaver

Table 5.3: Example timebases and their associated granularities.

[deltast] is not. Following Conklin (1990), instead of placing an arbitrary

bound on [onset], onset is modelled indirectly using deltast which assumes

a finite domain corresponding to the set of deltast values occurring in the

corpus. The duration of an event is represented in terms of basic time units by

the attribute dur. The melody shown in Figure B.1 provides a clear example

of the representation of event duration with its alternating pattern of crotchets

and minims.

Since these attributes are defined in terms of basic time units, they are de-

pendent on the chosen timebase. For example, with a timebase of 96, [[24]]dur

= crotchet, while with a timebase of 48, [[24]]dur = minim. As another example,

with a timebase of 96, [[12]]deltast = quaver, indicating that an event is followed

by a quaver rest. For the datasets used in the present research, [[dur]] ranges

from a demisemiquaver to a breve while [[deltast]] ranges from a semiqua-

ver rest to the combined duration of adjoining semibreve and dotted minim

rests. Note that tied notes are collapsed during preprocessing into a single

event whose onset corresponds to the onset of the first note of the tie and

whose duration corresponds to the sum of the durations of the notes marked as

tied.

Time signatures are represented in terms of two event attributes. The at-

tribute barlength is a non-negative integer representing the number of time

units in a bar. As an example, Conklin (1990) assumed a timebase of 16, with

the result that [[16]]barlength = 4/4 time signature and [[12]]barlength = 3/4 time

signature. The 100 chorales studied by Conklin (1990) only contained these

two time signatures. In the case of the datasets used for the present research,

the situation is more complicated due to the presence of compound metres. For

example, given a timebase of 96 as used in this research, [[72]]barlength could
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indicate either 3/4 or 6/8 time. As a result, the attribute type pulses, which

is a non-negative integer derived from the numerator of the time signature, is

used to represent the number of metric pulses in a bar. For example, since the

melody shown in Figure B.1 is in 3/4 metre for its entire length, the values of

the barlength and pulses attributes are 78 and 3 for all events in the melody.

A product type pulses⊗barlength could be used to represent the time signa-

ture of a given score. Note that either of these attributes may assume a value

of zero if the time signature is unspecified in the **kern representation (a *MX

token) although this eventuality never arises in the selected datasets.

The chromatic pitch of an event is represented as an integer by the event

attribute cpitch. The mapping from concert pitch in **kern to cpitch is

defined such that cpitch conforms to the MIDI standard (Rothstein, 1992),

i.e., [[60]]cpitch = C4 or middle C. In the datasets as a whole, [cpitch] =

{47,48,. . . ,90,91} which means that [[cpitch]] ranges from B2 to G6. Table 4.1

shows the cardinality of [cpitch] individually for each of the datasets used.

Key signatures are represented by the attribute type keysig which may as-

sume values in the set {−7,−6, . . . , 0, . . . , 6, 7} (following Conklin, 1990, p. 84)

and represents the key signature in terms of number of sharps or flats as fol-

lows:

keysig =











sharps if sharps > 0

−flats if flats > 0

0 otherwise

In the datasets used in the present research, [keysig] = {-5,-4,. . . ,3,4} where,

for example, [[-5]]keysig = 5 flats, [[4]]keysig = 4 sharps and [[0]]keysig = no sharps

or flats. The mode of a piece is represented by the event attribute mode where,

in theory, [mode] = {0,1,. . . ,11}. In the datasets used in this research, however,

[mode] = {0,9} where [[0]]mode = major and [[9]]mode = minor, reflecting the fact

that the minor mode corresponds to rotation of the pitch class set corresponding

to its relative major scale by 9 semitones (see Balzano, 1982). As an example,

since the melody shown in Figure B.1 has a single key signature consisting

of a single sharpened F, the value of the keysig attribute is 1 for all events.

Furthermore, since the **kern source for this melody, shown in Appendix B,

indicates (via the token *G:) that it is in the key of G major, the value of the

mode attribute is 0 for all events in the melody (see Figure B.1). Although

this scheme allows for the representation of the Church modes, they cannot

be represented in the **kern format. This basic attribute is included in order

to allow the calculation of the tonic which is not possible using the keysig
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attribute in isolation and which is useful in modelling the effects of tonality

(see §5.4.1).

Finally, phrase level features are represented by the event attribute phrase

whose domain [phrase] = {-1,0,1} where: [[1]]phrase = the event is the first

in a phrase; [[-1]]phrase = the event is the last in a phrase; and [[0]]phrase = the

event is neither the first nor the last in a phrase. The value is derived directly

from the original **kern encodings of the EFSC, where phrases are grouped by

braces (i.e., {}) in the **kern format. As an illustration of this aspect of the

preprocessing, consider the melody shown in Appendix B. The braces in the

**kern source indicates that the melody consists of a single phrase. Accord-

ingly, the phrase attribute assumes values of zero for all events in the melody

with the exception of the first, which assumes a value of 1 indicating that it is

the first event in a phrase, and the last, which assumes a value of -1 indicating

that it is the last event in a phrase (see Figure B.1). The phrase markings in the

EFSC were taken from the form of the text, and nested or overlapping phrases

(denoted by &{ and &} in the **kern format) do not appear in the datasets cho-

sen for this research. Following Conklin (1990, p. 84), fermata (signified by a

semi-colon in the **kern format) are also used as indicators for phrase endings

in the case of Dataset 2 (see Figure 8.6). In such cases, events immediately

following an event under a fermata are assumed to represent the start of a new

phrase. The first event in a piece is considered to represent an implicit phrase

beginning.

A few general points are worth noting about the preprocessing. First, repeti-

tions of musical material are not explicitly expanded – the sections follow each

other as they are encoded in the original **kern file. A second issue regards the

representation of time signatures, key signatures and phrase boundaries. In its

original formulation, the CHARM specification focused on performed musical

objects and did not include such information as time signature, key signature

or phrasing (see §5.2.2). However, since the musical works to be represented

in the current research are composed rather than performed objects, time sig-

nature (barlength), key signature (keysig) and phrase boundaries (phrase)

are explicitly represented. Conklin (1990, p. 82) notes that there are two al-

ternative possibilities for representing such features: first, to prefix complete

sequences with appropriate identifiers; and second, to include them as event

attributes (as shown in Figure B.1). Conklin argues that the latter approach

is to be preferred on the grounds that it makes for a parsimonious multiple

viewpoint framework:

• it ensures that no special circumstances have to be provided for the pre-
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diction of these features;

• it allows these attributes to be linked with other attributes of event se-

quences;

• it allows for the encoding of compositions which change key or time sig-

nature.

For these reasons, time signature, key signature, mode and phrase boundaries

are represented as attributes of events. Finally, while other attributes of events,

such as tempo and dynamics, can be represented in **kern and other Hum-

drum representations, these do not appear in the datasets used and were not

included.2

5.4 The Multiple Viewpoint Representation

In addition to the basic viewpoints described in §5.3, a number of derived,

test, threaded and linked viewpoints have been developed in the present re-

search. These viewpoints are primarily motivated by concerns with modelling

pitch structure (see §1.4). The perception of pitch itself can only be explained

using a multidimensional representation in which a number of perceived equiv-

alence relations are honoured (Shepard, 1982). In the perception of melodies,

more generally, research has demonstrated that pitch is only one of several

interacting musical dimensions that impinge upon our perceptions (Balzano,

1986a; Boltz, 1993; Schmuckler & Boltz, 1994; Tekman, 1997; Thompson,

1993, 1994).

The approach adopted here for capturing such phenomena has been to im-

plement a handful of viewpoints (see §5.2.3) corresponding to melodic dimen-

sions that are considered to be relevant on the basis of previous research in

music perception and the computational modelling of music. Note, however,

that the implemented viewpoints are not intended to represent an exhaustive

coverage of the space of possible psychological and computational hypotheses

regarding the representation of music. For example, it might be expected that

a derived viewpoint modelling inter-onset interval ratio would be more rele-

vant to the examination of melody perception in Chapter 8 than a viewpoint

modelling duration ratio (dur-ratio, see §5.4.1) although this hypothesis has

2Tempo, for example, is encoded as crotchet beats per minute in the **kern format and is

signified by the token *MM. A notable limitation of the **kern format is its inability to repre-

sent musical dynamics. Several other Humdrum representations permit the representation of

dynamics (e.g., the **dyn, **dynam and **db representations).
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not been examined in the present research. The possibility of automatically

constructing derived, threaded and linked viewpoints on the basis of objective

criteria is discussed in §10.3.

The derived, test, threaded and product types implemented and used in the

present research – many of which are inspired by those developed by Conklin &

Witten (1995) – are described and justified in this section. Table 5.2 contains a

summary of these types, showing, respectively, derived, test and threaded types

in its second, third and fourth vertical sections. Note that not all of these types

will be useful for modelling pitch structure: some simplify the expression of

more useful types while others will only be useful when linked with attribute

types derived from cpitch. The product types used in the present research are

summarised in Table 5.4 and discussed in detail in §5.4.4.

5.4.1 Derived Types

As noted above, studies of pitch perception alone reveal evidence of the repre-

sentation of multiple interacting dimensions. In particular, the perceived rela-

tion between two pitches reflects the interaction of a number of different equiv-

alence relations, of which the most influential is octave equivalence (Balzano,

1982; Krumhansl, 1979; Krumhansl & Shepard, 1979; Shepard, 1982). For ex-

ample, Krumhansl & Shepard (1979) carried out a probe tone experiment (see

§3.6) in which the contexts consisted of the first seven notes of an ascending

or descending major scale and the probe tones were selected from the set of

13 diatonic pitches in the range of an octave above and below the first tone

of the context. The results revealed that all subjects gave the highest rating to

the tonic, its octave neighbour and the tones belonging to the scale while an

effect of pitch height was only found in the case of the least musical subjects. In

fact, the octave appears to be “a particularly privileged interval” in the musics

of most cultures (Sloboda, 1985, p. 254). In view of these findings, a derived

type cpitch-class was created to represent pitch class or chroma in which,

for example, C4 is equivalent to C3 and C5. As described in §5.2.1, this type is

constructed by applying the following congruence relation to cpitch (Conklin,

1990; Lewin, 1987):

i ≡ j ←→ (i− j) mod 12 = 0

from which it is evident that [cpitch-class] = {0,1,. . . ,10,11}.

In addition to the psychological existence of equivalence relations on pitch

itself, there is also evidence that the interval structure of melodies is encoded,
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retained and used in recognition memory for melodies (Dowling, 1978; Dowl-

ing & Bartlett, 1981). For example, Dowling & Bartlett (1981) conducted ex-

periments in which subjects listened to a melody and, after an interval, were

asked to detect copies of input melodies (targets) as well as related items which

replicated the contour and rhythm of the target but differed in terms of pitch

interval. The results demonstrated substantial retention of pitch interval infor-

mation over retention periods of several minutes. On the basis of evidence such

as this, a derived type cpint was developed to represent chromatic pitch inter-

val. The viewpoint Ψcpint() is defined in Equation 5.3 and [cpint] = Z. From

a computational perspective, modelling pitch interval enables representation of

the equivalence of melodic structures under transposition. Figure 7.2 illustrates

the representation of a melodic fragment in terms of the cpint attribute.

Two further derived types were developed in order to represent more ab-

stract properties of pitch intervals. The first, cpcint represents octave equiv-

alent pitch class interval and its derivation from cpint is similar to that of

cpitch-class from cpitch. Thus, for example, [[0]]cpcint = unison, [[4]]cpcint =

major third, [[7]]cpcint = perfect fifth and so on. The perceptual motivations for

using cpcint are similar to those for cpitch-class. The second derived type,

contour is an even more abstract type representing pitch contour where:

Ψcontour(e
j
1) =



















−1 if Ψcpitch(e
j
1) < Ψcpitch(e

j−1
1 )

0 if Ψcpitch(e
j
1) = Ψcpitch(e

j−1
1 )

1 if Ψcpitch(e
j
1) > Ψcpitch(e

j−1
1 )

It is evident from this definition that [contour] = {-1,0,1} where: [[1]]contour =

ascending interval; [[0]]contour = unison; and [[-1]]contour = descending interval.

It has been demonstrated that listeners are highly sensitive to contour infor-

mation in recognition memory for melodies (Deutsch, 1982; Dowling, 1978,

1994). Furthermore, it has proved fruitful to represent pitch class interval and

pitch contour in research on musical pattern matching and discovery (Cam-

bouropoulos, 1996; Conklin & Anagnostopoulou, 2001).

Scale degree (or diatonic pitch) is a highly influential property of music

both at the perceptual level (Balzano, 1982; Krumhansl, 1979) and at the ana-

lytical level (Cambouropoulos, 1996; Meredith, 2003). However, derived types

for diatonic pitch name and accidentals were not included in the present re-

search due to the fact that while chromatic pitch is easily and reliably derivable

from the pitch names used in traditional Western staff notation, the converse
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is not true. The development of reliable style-independent algorithms for pitch

spelling is the subject of ongoing research (see, e.g., Meredith, 2003).

Another set of derived types included in the present research were designed

to represent relative pitch structure and, in particular, structures defined and

perceived in relation to an induced tonal centre. For our purposes, tonality in-

duction refers to the process by which a listener infers a tonal reference pitch

(the tonal centre) and perceives other tones in relation to this pitch (Vos, 2000).

Research has demonstrated that induced tonality has a significant impact on

such aspects of music perception as recognition memory for melodies (Cohen

et al., 1977; Dowling, 1978) and the ratings of tones in key-defining contexts

(Krumhansl, 1979; Krumhansl & Shepard, 1979). In general, there is a wealth

of evidence that listeners implicitly induce a tonality which guides their expec-

tations for and interpretations of subsequent musical structures (Krumhansl,

1990).

In order to model the effects of tonality, a derived type called referent has

been developed which represents the referent or tonic at a given moment in

a melody. This type is derived from the basic type keysig and uses the basic

type mode to disambiguate relative major and minor keys. The viewpoint for

referent is defined as follows:

Ψreferent(e
j
1) = Ψmode(e

j
1) +



















(Ψkeysig(e
j
1)× 7) mod 12 if Ψkeysig(e

j
1) > 0

(Ψkeysig(e
j
1)×−5) mod 12 if Ψkeysig(e

j
1) < 0

0 otherwise

assuming that middle C is represented by an integer multiple of 12 (e.g., 0 12

24 36 48 60 and so on).

While the referent type is not, in and of itself, very useful for modelling

pitch, it allows the derivation of other types which are relevant to modelling

the influences of tonality on pitch. The derived type cpintfref, for example,

represents the pitch interval of a given event from the tonic. The domain of this

type, [cpintfref] = {0,1,. . . ,10,11} where, for example, [[0]]cpintfref = tonic,

[[4]]cpintfref = mediant, [[7]]cpintfref = dominant and so on. This viewpoint is

motivated by the hypothesis that melodic structure is influenced by regularities

in pitch defined in relation to the tonic. Figure 7.2 illustrates the representa-

tion of a melodic fragment in terms of the cpintfref attribute. The referent

attribute type also allows the derivation of the Boolean valued type inscale

(Conklin & Witten, 1995) which represents whether or not an event is in the

appropriate major or natural minor diatonic scale constructed on the referent.
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Note that inscale is not classified as a test type since it has not been used to

construct any threaded types in the present research (see §5.2.3).

For a listener, identifying a tonal centre may, in turn, involve identification

of the most important or salient pitch or pitches based on information about du-

ration, repetition, intensity, induced metric structure and prominence in terms

of primacy or recency (Cohen, 2000). While tonality induction has been a cen-

tral topic in music perception, research has tended to focus on melodic and

harmonic influences with other factors (including metre and rhythm) receiving

relatively little attention (Krumhansl, 1990; Vos, 2000). However, with short

melodic contexts, such as those used in the current research, it is quite possi-

ble that the induced tonality will reflect the influence of pitches other than the

actual tonic which are salient for a number of other reasons. In order to accom-

modate the representation of melodic structures in relation to other influences

on pitch salience, a number of derived types have been developed which are

analogous to cpintfref. The first of these, cpintfip represents the pitch in-

terval of an event from the first event in the piece. The motivation for using this

type is to capture the effects of primacy on perceptual and structural salience

(Cohen, 2000). These effects are exploited in some computational models of

tonality induction (Longuet-Higgins & Steedman, 1971).3 The second type is

cpintfib which represents the pitch interval of an event from the first event

in the current bar. The motivation for using this type is to capture the effects

of metric salience on relative pitch structure (see also §5.4.3). The final type is

cpintfiph which represents the pitch interval of an event from the first event

in the current phrase. The motivation for using this type is to capture the effects

of phrase level salience on relative pitch structure (see also §5.4.3).

Another set of derived types was developed to represent the temporal organ-

isation of melodies. Lee (1991) argues that musical events may be temporally

organised in at least two different ways: first, using grouping structure; and

second, using metrical structure. The first of these describes how events are

grouped into various kinds of perceptual unit such as motifs, phrases, sections,

movements and so on. The second concerns the manner in which a listener

arrives “at a particular interpretation of a sequence, given that any sequence

could be the realisation of an indefinite number of metrical structures” (Lee,

1991, p. 62).

3In the context of metre induction, Lee (1991) has demonstrated that listeners prefer metrical

interpretations in which the pulse begins on the first event of a rhythmic sequence and are

subsequently reluctant to revise this interpretation (although they may do so in the interest of

obtaining a pulse at some level of metrical structure whose interval is in a preferred range of

300 to 600ms).
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Regarding the perception of metrical structure, Povel & Okkerman (1981)

have shown that in the absence of any other accent information (e.g., dynamics)

relatively long events and those initiating a cluster of events are perceived as

salient. Povel & Essens (1985) demonstrated that patterns in which these per-

ceptually salient events coincide with the beats of a particular metre are learnt

more quickly and are more accurately reproduced than patterns for which this

is not the case.

In an experiment which demonstrated that sequences which do not strongly

induce a clock (those whose perceived accents do not coincide with the beats of

any metre) are harder for subjects to reproduce, Povel & Essens (1985) found

that the trend reached a plateau beyond a certain point. They propose that

clock induction in these sequences is so weak that no internal clock is induced

at all. Instead they argue that in these cases the subjects had to rely on grouping

strategies to find metrical structure in the sequences. The comments of the

subjects seemed to support this conjecture as do the results of fMRI studies

(e.g., Brochard et al., 2000) and neuropsychological research (e.g., Liegeoise-

Chauvel et al., 1998; Peretz, 1990).

Lerdahl & Jackendoff (1983) have suggested a number of preference rules

which they claim characterise the manner in which humans establish local

grouping boundaries through the perception of salient distinctive transitions at

the musical surface (see also §3.3). The boundaries between groups are defined

by the existence of perceived accents in the musical surface and, according to

the theory, the existence of such accents depends on two principles: event prox-

imity and event similarity. Examples of the former principle include rules which

state that segmentation occurs at the end of slurs or rests and after a prolonged

sound amongst shorter ones. Examples of the latter principle include rules

which state that segmentation occurs at large pitch intervals and large changes

in the length of events. Deliège (1987) has found empirical evidence that both

musicians and non-musicians use these principles in segmenting the musical

surface into groups.

In order to represent the influence of rhythmic accents on metrical and

grouping structure, a number of attribute types have been derived from onset

and dur. In addition to the basic types dur and deltast, the derived type ioi

represents absolute time intervals, specifically the inter-onset interval between

an event and its predecessor. The viewpoint for ioi is defined as follows:

Ψioi(e
j
1) =







⊥ if j = 1

Ψonset(e
j
1)−Ψonset(e

j−1
1 ) otherwise
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This derived type is similar to GIS 2.2.1 described by Lewin (1987) which was

used as an example in §5.2.1. Figure 7.2 illustrates the representation of a

melodic fragment in terms of the ioi attribute.

As noted above, perceived rhythmic accents may also be determined by

relative, as well as absolute, time intervals (e.g., durations). In order to model

relative durations, the derived type dur-ratio, representing the ratio of the

duration of one event to that of the event preceding it, was introduced. The

viewpoint for dur-ratio is defined as follows:

Ψdur-ratio(e
j
1) =







⊥ if j = 1

Ψdur(e
j
1)

Ψdur(e
j−1
1 )

otherwise

Accordingly, [[2]]dur-ratio indicates that the duration of an event is twice that of

its predecessor and [[12 ]]dur-ratio indicates that the duration of an event is half

that of its predecessor. Duration ratios enable the representation of equiva-

lences of rhythmic figures under augmentation or diminution (Cambouropou-

los et al., 1999). This derived type is similar to GIS 2.2.3 described by Lewin

(1987) which was used as an example in §5.2.1. Evidently, the types onset,

duration, deltast and others derived from these cannot be used to predict

pitch directly. However, such types can be used fruitfully as components in

product types for representing the interaction of pitch and time based attributes

in melodic structures (see §5.4.4).

Finally, the derived type posinbar represents the sequential position of an

event in the current bar as a positive integer. Its primary function is to facilitate

the expression of the test type fib (see §5.4.2) and the threaded type thrbar

which is derived from fib (see §5.4.3).

5.4.2 Test Types

In addition to these derived types, a number of test types (see §5.2.3) have been

derived from features, such as time signature and phrasing boundaries, which

are explicitly encoded in the original **kern data. The purpose of these types

is to represent events which are salient in terms of metrical or phrase structure.

In §5.4.1, a number of derived types were developed to represent some of the

musical primitives which determine the perceptual salience of events. The per-

ception of temporal organisation in music, as determined by both metrical and

grouping structure, depends on the perception of such events.

Metric structure in Western music is typically associated with at least two

nested time periods (Jones, 1987): first, the tactus level or beat period; and
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second, the bar. Palmer & Krumhansl (1990) have investigated the perceptual

validity of such metric hierarchies using an extension of the probe tone method-

ology (see §3.6) to rhythmic context and probe tones. Subjects were asked to

rate a series of probe tones inserted at various temporal locations into a metrical

context based on a variety of different time signatures. The responses obtained

demonstrated that listeners represent multiple temporal periodicities which are

sensitive to the time signature and which coincide with music-theoretic predic-

tions. Furthermore, the depth of the hierarchy tended to increase with musical

training.

Two test types have been implemented to represent salience arising from

the two most influential metrical time periods, the tactus and the bar. First, the

type tactus represents whether or not an event occurs on a tactus pulse in the

metric context defined by the current key signature. This type is derived from

onset using barlength and pulses as follows:

Ψtactus(e
j
1) =







T if Ψonset(e
j
1) mod

Ψbarlength(e
j
1)

Ψpulses(e
j
1)

= 0

F otherwise

The derivation of this type illustrates the utility of representing both the numer-

ator and denominator of the time signature as basic types. The second type,

fib represents whether or not an event is the first event in a bar as described

in §5.2.3.

Two more test types, fiph and liph (derived trivially from phrase) were

developed to distinguish events which may be salient by virtue of, respectively,

opening and closing a phrase.

5.4.3 Threaded Types

Threaded types represent the values of other types at periodic intervals defined

by the value of a given test viewpoint and are elsewhere undefined (see §5.2.3).

Their purpose is to allow the representation of higher level structure within the

multiple viewpoints framework. Four threaded types have been developed in

the present research corresponding to the four test types described in §5.4.2.

In order to represent the influence of metrical organisation on higher level

pitch structure, two threaded types were created which represent pitch inter-

vals between events occurring on tactus beats (thrtactus) and the first event

in each bar (thrbar). In research using a multiple viewpoint framework for

pattern discovery in Dataset 2, Conklin & Anagnostopoulou (2001) found sig-

nificant repeated patterns in a threaded type similar to thrtactus. In addition
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τ1 τ2

cpitch ⊗ dur

cpitch ⊗ ioi

cpitch ⊗ dur-ratio

cpint ⊗ dur

cpint ⊗ ioi

cpint ⊗ dur-ratio

contour ⊗ dur

contour ⊗ ioi

contour ⊗ dur-ratio

cpintfref ⊗ dur

cpintfref ⊗ ioi

cpintfref ⊗ dur-ratio

cpintfref ⊗ fib

cpintfref ⊗ cpintfip

cpintfref ⊗ cpint

cpintfiph ⊗ contour

cpintfib ⊗ barlength

Table 5.4: The product types used in the present research.

to higher level structure defined by metric hierarchies, two threaded types were

developed to represent the influence of phrasing on higher level pitch organisa-

tion. The threaded types thrfiph and thrliph model pitch intervals between,

respectively, the first and last events in each successive phrase.

A threaded type represents both the value of a base viewpoint and the in-

terval in basic time units over which that value is defined (see §5.2.3). Note

that while the timescale of thrtactus elements will remain constant, as long

as the time signature remains constant, the timescale of thrbar will vary de-

pending on whether or not the events involved are preceded by rests. Like-

wise, the timescales of thrliph and thrfiph elements will vary depending on

the number of events in the current and previous phrases. The role of the

type phraselength is to facilitate calculating the timescale for thrfiph and

thrliph.

5.4.4 Product Types

This section introduces the product types used in the present research. Given

the set of basic, derived and test types shown in Table 5.2, it will be clear that

the theoretical space of possible product types is very large indeed. In order to

prune this space to a more manageable size, the present research only considers
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a small set of links between two component types which are motivated on the

basis of previous research in music perception and the computational modelling

of music. Note, however, that the selected linked types are not intended to

represent an exhaustive coverage of the space of possible psychological and

computational hypotheses regarding the representation of music. This issue

is discussed further in §10.3 which includes some recommendations for the

development of the representation scheme in future research, in particular in

terms of the automatic construction of derived, threaded and linked types.

As noted above, pitch is only one of several interacting influences on our

perception of music. The theory of dynamic attending (Jones, 1981, 1982, 1987,

1990; Jones & Boltz, 1989) proposes that tonal-harmonic, melodic and tempo-

ral structure interact to dynamically guide the listener’s attention to salient

events as a piece of music proceeds. In particular, according to the theory, tem-

poral accents (as discussed in §5.4.1) and melodic accents combine to yield

higher order joint accent structure (Jones, 1987). Experimental research has

confirmed that joint accent structure influences the ability to detect deviant

pitch changes (Boltz, 1993), judgements of melodic completion (Boltz, 1989a),

estimates of a melody’s length (Boltz, 1989b), recognition memory for melodies

(Jones, 1987) and the reproduction of melodies (Boltz & Jones, 1986). In ad-

dition, viewpoints linking melodic attribute types (e.g., cpint) with rhythmic

attribute types (e.g., dur) have proved important in computational analysis, in-

cluding pattern discovery (Conklin & Anagnostopoulou, 2001) and statistical

prediction (Conklin & Witten, 1995), of the chorale melodies harmonised by J.

S. Bach (Dataset 2).

In order to represent regularities in joint melodic and rhythmic structure, a

number of product types (see §5.2.3) were constructed reflecting the conjunc-

tion of several simple dimensions of pitch structure (cpitch, cpint, contour

and cpintfref) and some simple defining dimensions of rhythmic accents

(dur, ioi and dur-ratio). As an illustration of the use of linked features

to represent joint rhythmic and melodic structure, Figure 7.2 shows the repre-

sentation of a melodic fragment in terms of the product type cpint⊗ioi. In

order to represent regularities in joint melodic and tonal-harmonic structure,

the product types cpintfref⊗cpintfip and cpintfref⊗cpint were created.

These types have proved useful in previous research on the statistical predic-

tion of melodies (Conklin, 1990; Conklin & Witten, 1995) which also motivated

the inclusion of the linked types cpintfiph⊗contour, cpintfib⊗barlength

(Conklin, 1990) and cpintfref⊗fib (Conklin & Witten, 1995).
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5.5 Summary

In this chapter, the scheme used in the present research for the symbolic rep-

resentation of music has been presented. In §5.2, a number of existing frame-

works, on which the current representation scheme is based, were discussed.

The preprocessing of the data (described in Chapter 4) and the basic event

representation employed in this research were presented in §5.3. Finally, in

§5.4 the multiple viewpoint framework developed in the current research was

described in detail. The individual attribute types developed have been moti-

vated in terms of previous research on music cognition and the computational

modelling of music.



CHAPTER 6

A PREDICTIVE MODEL OF MELODIC MUSIC

6.1 Overview

In this chapter, the performance of a range of statistical models is investigated

in an application-independent prediction task using a variety of monophonic

music data (see §4.3). The objective is to undertake an empirical investigation

of several methods for addressing the limitations of finite context grammars

for modelling music (see §6.2). These methods include, in particular, a tech-

nique for combining the predictions of n-gram models called Prediction by Par-

tial Match (PPM), originally developed by Cleary & Witten (1984), which forms

the central component in some of the best performing data compression algo-

rithms currently available (Bunton, 1997). Outside the realm of data compres-

sion, PPM has been used to model natural language data (Chen & Goodman,

1999) and music data (Conklin & Witten, 1995). Since its introduction, a great

deal of research has focused on improving the compression performance of PPM

models and the specific aim in this chapter is to evaluate the performance of

these improved techniques in predicting the datasets described in §4.3.

The research contained in this chapter and Chapter 7 may be classified as

basic AI in the sense discussed in §2.3. The goal is to develop powerful statisti-

cal models of melodic structure which have the potential for simulating intelli-

gent behaviour in the context of some of the specific musical tasks cited in §3.4.

The chapter is organised as follows. In §6.2, n-gram modelling is introduced

and the PPM scheme is described in detail. The information-theoretic perfor-

mance metrics used in the present research are also discussed. Much of the

79
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background for the present research is drawn from the fields of statistical lan-

guage modelling (Manning & Schütze, 1999) and text compression (Bell et al.,

1990) since research in these fields is at a more mature stage of development

than in the musical domain. However, as demonstrated in this chapter, practical

techniques and methodologies from these fields can be usefully applied in the

modelling of music. The empirical methodology employed in the experiments

is discussed in §6.3, which also contains a summary of the cross product of PPM

features to be evaluated. Finally, the results of the experiments are presented

in §6.4 and discussed in §6.5. The predictive systems developed in this chapter

are applied to the task of modelling a single event attribute, chromatic pitch. In

Chapter 7, the prediction performance of these models is examined within the

multiple viewpoint framework presented in §5.4.

6.2 Background

6.2.1 Sequence Prediction and N-gram Models

For the purpose of describing the models developed in the present research,

the acquisition of knowledge about melodic music will be characterised as a

problem of learning to predict sequences (Dietterich & Michalski, 1986). The

objects of interest are sequences of event attributes of a given type τ where

each symbol in a given sequence ej1 is drawn from the finite alphabet [τ] as

described in Chapter 5. For the purposes of exposition we assume here a one-

dimensional event space ξ = [τ ]. The goal of sequence learning is to derive from

example sequences a model which, supplied with a sequence ej1, estimates the

probability function p(ei|e
i−1
1 ) for all i ≤ j. It is often assumed in statistical

modelling that the probability of the next event depends only on the previous

n− 1 events, for some n ∈ Z+:

p(ei|e
i−1
1 ) ≈ p(ei|e

i−1
(i−n)+1)

An example of such a model is the n-gram model introduced in §3.4 where the

quantity n − 1 represents the order of the model. Since the use of fixed order

n-grams imposes assumptions about the nature of the data (see §6.2.3.6), the

selection of an appropriate n is an issue when designing and building n-gram

models. If the order is too high, the model will overfit the training data and fail

to capture enough statistical regularity; low order models, on the other hand,

suffer from being too general and failing to represent enough of the structure
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present in the data. The optimal order for an n-gram model depends on the

nature of the data to which it is applied and, in the absence of specific a priori

knowledge about that data, can only be determined empirically.

An n-gram parameter is the probability of the prediction occurring immedi-

ately after the context. The parameters are typically estimated on some corpus

of example sequences. There are several different means of estimating n-gram

parameters, the simplest of which is the Maximum Likelihood (ML) method

which estimates the parameters as:

p(ei|e
i−1
(i−n)+1) =

c(ei|e
i−1
(i−n)+1

)
∑

e∈[τ ] c(e|e
i−1
(i−n)+1)

where c(g) denotes the frequency count for n-gram g. In n-gram modelling, the

probability of a sequence of events is expressed, following the chain rule, as the

product of the estimated probabilities of the events (conditional on the identity

of the previous n− 1 events) from which it is composed:

p(ej1) =

j
∏

i=1

p(ei|e
i−1
(i−n)+1).

When n > i, at the beginning of the sequence for example, padding symbols

must be introduced to provide the necessary contexts.

Fixed order ML models will run into trouble if, as a result of data sparseness,

they encounter as-yet-unseen n-grams during prediction. In particular, if the

model encounters a novel n-gram context or a symbol which has not previously

appeared after an existing context (the zero-frequency problem – see Witten &

Bell, 1991), the ML estimate will be zero. In these situations, the estimated

probability of a novel n-gram will be too low and consequently the estimated

probability of n-grams with non-zero counts will be too high. Additionally, the

information-theoretic performance measures used in the present research (see

§6.2.2) require that every symbol is predicted with non-zero probability.

In statistical language modelling, a set of techniques known collectively as

smoothing are commonly used to address these problems. The central idea of

smoothing is to adjust the ML estimates in order to generate probabilities for

as-yet-unencountered n-grams. This is typically achieved by combining the dis-

tributions generated by an h-gram model with some fixed global order bound

h with distributions less sparsely estimated from lower order n-grams (where

n < h). Most existing smoothing techniques can be expressed using the frame-
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work described in Equation 6.1 (Kneser & Ney, 1995).

p(ei|e
i−1
(i−n)+1) =

{

α(ei|e
i−1
(i−n)+1) if c(ei|e

i−1
(i−n)+1) > 0

γ(ei|e
i−1
(i−n)+1)p(ei|e

i−1
(i−n)+2) if c(ei|e

i−1
(i−n)+1) = 0

(6.1)

For a given context ei−1
(i−n)+1, if a given symbol ei occurs with a non-zero count

(i.e., c(ei|e
i−1
(i−n)+1) > 0) then the estimate α(ei|e

i−1
(i−n)+1) is used; otherwise, we

recursively backoff to a scaled version of the (n−2)th order estimate p(ei|e
i−1
(i−n)+2)

where the scaling factor γ(ei|e
i−1
(i−n)+1) is chosen to ensure that the conditional

probability distribution over the alphabet sums to unity:
∑

e∈[τ ] p(e|e
i−1
(i−n)+1) =

1. The recursion is typically terminated with the zeroth order model or by

taking a uniform distribution over [τ]. The various smoothing algorithms

differ in terms of the techniques employed for computing α(ei|e
i−1
(i−n)+1) and

γ(ei|e
i−1
(i−n)+1).

An alternative to backoff smoothing is interpolated smoothing in which

the probability of an n-gram is always estimated by recursively computing a

weighted combination of the (n − 1)th order distribution with the (n − 2)th

order distribution as described in Equation 6.2.

p(ei|e
i−1
(i−n)+1) = α(ei|e

i−1
(i−n)+1) + γ(ei−1

(i−n)+1)p(ei|e
i−1
(i−n)+2) (6.2)

Detailed empirical comparisons of the performance of different smoothing tech-

niques have been conducted on natural language corpora (Chen & Goodman,

1999; Martin et al., 1999). One of the results of this work is the finding that,

in general, interpolated smoothing techniques outperform their backoff coun-

terparts. Chen & Goodman (1999) found that this performance advantage is

restricted, in large part, to n-grams with low counts and suggest that the im-

proved performance of interpolated algorithms is due to the fact that low order

distributions provide valuable frequency information about such n-grams.

6.2.2 Performance Metrics

There exist many (more or less application dependent) ways of assessing the

quality of an n-gram model and the ultimate evaluation metric can only be

the impact it has on a specific application. Here, however, the objective is to

examine the performance of such models in an application-neutral manner. It

is common in the field of statistical language modelling to use information-

theoretic, in particular entropy-based, measures to evaluate statistical models
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of language. These metrics have been employed in the current research and

they are briefly introduced below.

Given a probability mass function p(a ∈ A) = p(X = a) of a random vari-

able X distributed over a discrete alphabet A such that the individual probabil-

ities are independent and sum to unity, entropy is defined according to Equa-

tion 6.3.

H(p) = H(X ) = −
∑

a∈A

p(a) log2 p(a) (6.3)

Shannon’s fundamental coding theorem (Shannon, 1948) states that entropy

provides a lower bound on the average number of binary bits per symbol re-

quired to encode an outcome of the variable X . The corresponding upper

bound, Hmax shown in Equation 6.4, occurs in the case where each symbol

in the alphabet has an equal probability of occurring, ∀a ∈ A, p(a) = 1
|A| .

Hmax(p) = Hmax(A) = log2 |A| (6.4)

Under this interpretation, entropy is a measure of the information content of

an outcome of X such that less probable outcomes convey more information

than more probable ones. A complementary quantity, redundancy provides a

measure of how much non-essential information is contained in an observed

outcome. The redundancy R of a sequence is defined as:

R(p) = 1−
H(p)

Hmax(p)
. (6.5)

A redundancy of zero implies maximum uncertainty and information content

in an observed outcome of X while greater values (to a maximum of one) in-

dicate increasing degrees of predictable information in the outcome. Entropy

has an alternative interpretation in terms of the degree of uncertainty that is in-

volved in selecting a symbol from an alphabet: greater entropy implies greater

uncertainty.

In practice, the true probability distribution of a stochastic process is rarely

known and it is common to use a model to approximate the probabilities ex-

pressed in Equation 6.3. Cross entropy is a quantity which represents the di-

vergence between the entropy calculated from these estimated probabilities

and the source entropy. Given a model which assigns a probability of pm(aj1)
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to a sequence aj1 of outcomes of X , if some assumptions are made about the

stochastic process which generated the sequence, the cross entropy Hm(pm, aj1)

of model m with respect to event sequence aj1 may be calculated as shown in

Equation 6.6.1

Hm(pm, aj1) = −
1

j
log2 pm(aj1)

= −
1

j

j
∑

i=1

log2 pm(ai|a
i−1
1 ) (6.6)

Cross entropy approaches the true entropy of the sequence as the length of the

sequence (j) increases.

Since Hm(pm, aj1) provides an estimate of the number of binary bits required

on average to encode a symbol in aj1 in the most efficient manner and there exist

techniques, such as arithmetic coding (Witten et al., 1987), which can produce

near-optimal codes, cross entropy provides a direct performance metric in the

realm of data compression. However, cross entropy has a wider use in the

evaluation of statistical models. Since it provides a measure of how uncertain

a model is, on average, when predicting a given sequence of events, it can be

used to compare the performance of different models on some corpus of data.

In statistical language modelling, cross entropy measures are commonly used:

For a number of natural language processing tasks, such as speech

recognition, machine translation, handwriting recognition, steno-

type transcription and spelling correction, language models for which

the cross entropy is lower lead directly to better performance.

(Brown et al., 1992, p. 39).

A related measure, perplexity, is also frequently used in statistical language

modelling. The perplexity Perplexitym(pm, aj1) of model m on sequence aj1 is

defined as:

Perplexitym(pm, aj1) = 2Hm(pm,a
j
1) (6.7)

Perplexity provides a crude measure of the average size of the set of symbols

1In particular, it is standard to assume that the process is stationary and ergodic (Manning &

Schütze, 1999). A stochastic process is stationary if the probability distribution governing the

emission of symbols is stationary over time (i.e., independent of the position in the sequence) and

ergodic if sufficiently long sequences of events generated by it can be used to make inferences

about its typical behaviour.
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from which the next symbol is chosen – lower perplexities indicate better model

performance.

6.2.3 The PPM Algorithm

6.2.3.1 Overview

Prediction by Partial Match (Cleary & Witten, 1984) is a data compression

scheme of which the central component is an algorithm for performing backoff

smoothing of n-gram distributions. Variants of the PPM scheme have consis-

tently set the standard in lossless data compression since its original introduc-

tion (Bunton, 1997). Several of these variants will be described in terms of

Equations 6.1 and 6.2 where the recursion is terminated with a model which

returns a uniform distribution over [τ]. This model is usually referred to as the

order minus-one model and allows for the prediction of events which have yet

to be encountered.

6.2.3.2 The Zero-frequency Problem and Escaping

In this section, the calculation of the probability estimates α() and γ() in Equa-

tions 6.1 and 6.2 in PPM models is discussed. The problem is usually char-

acterised by asking how to estimate the escape probability γ(ei|e
i−1
(i−n)+1

) which

represents the amount of probability mass to assign to events which are novel

in the current context ei−1
(i−n)+1. The probability estimate α(ei|e

i−1
(i−n)+1) is then

set such that the estimated distributions sum to unity. As noted by Witten &

Bell (1991), there is no sound theoretical basis for choosing these escape proba-

bilities in the absence of a priori knowledge about the data being modelled. As

a result, although several schemes exist, their relative performance on any par-

ticular real-world task can only be determined experimentally. In the following

discussion, t(eji ) denotes the total number of symbol types, members of [τ], that

have occurred with non-zero frequency in context eji ; and tk(e
j
i ) denotes the

total number of symbol types that have occurred exactly k times in context eji .

Method A (Cleary & Witten, 1984) assigns a frequency count of one to sym-

bols that are novel in the current context ei−1
(i−n)+1 and adjusts α(ei|e

i−1
(i−n)+1)

accordingly:
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γ(ei|e
i−1
(i−n)+1) =

1
∑

e∈[τ ] c(e|e
i−1
(i−n)+1) + 1

α(ei|e
i−1
(i−n)+1) =

c(ei|e
i−1
(i−n)+1)

∑

e∈[τ ] c(e|e
i−1
(i−n)+1) + 1

As the number of occurrences of the context increases, γ(ei|e
i−1
(i−n)+1) decreases

and α(ei|e
i−1
(i−n)+1) approaches the ML estimate.

Method B (Cleary & Witten, 1984) classifies a symbol occurring in a given

context as novel unless it has already occurred twice in that context. This has

the effect of filtering out anomalies and is achieved by subtracting one from the

symbol counts when calculating α(ei|e
i−1
(i−n)+1). In addition, the appearance of

the type count t(ei−1
(i−n)+1) in the numerator of γ(ei|e

i−1
(i−n)+1) has the effect that

the escape probability increases as more types are observed.

γ(ei|e
i−1
(i−n)+1) =

t(ei−1
(i−n)+1)

∑

e∈[τ ] c(e|e
i−1
(i−n)+1)

α(ei|e
i−1
(i−n)+1) =

c(ei|e
i−1
(i−n)+1) − 1

∑

e∈[τ ] c(e|e
i−1
(i−n)+1)

Method C (Moffat, 1990) was designed to combine the more attractive ele-

ments of methods A and B. It is a modified version of method A in which the

escape count increases as more types are observed (as in method B).

γ(ei|e
i−1
(i−n)+1) =

t(ei−1
(i−n)+1)

∑

e∈[τ ] c(e|e
i−1
(i−n)+1

) + t(ei−1
(i−n)+1

)

α(ei|e
i−1
(i−n)+1) =

c(ei|e
i−1
(i−n)+1

)
∑

e∈[τ ] c(e|e
i−1
(i−n)+1) + t(ei−1

(i−n)+1)

One particular smoothing technique called Witten-Bell smoothing, often used

in statistical language modelling, is based on escape method C (Manning &

Schütze, 1999).

Method D (Howard, 1993) modifies method B by subtracting 0.5 (instead of

1) from the symbol count when calculating α(ei|e
i−1
(i−n)+1).
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γ(ei|e
i−1
(i−n)+1) =

1
2t(e

i−1
(i−n)+1)

∑

e∈[τ ] c(e|e
i−1
(i−n)+1)

α(ei|e
i−1
(i−n)+1) =

c(ei|e
i−1
(i−n)+1)−

1
2

∑

e∈[τ ] c(e|e
i−1
(i−n)+1)

Method AX (Moffat et al., 1998) is motivated by the assumption that novel

events occur according to a Poisson process model. On this basis, Witten & Bell

(1991) have suggested method P which uses the following escape probability:

γ(ei|e
i−1
(i−n)+1) =

t1(ei|e
i−1
(i−n)+1)

∑

e∈[τ ] c(e|e
i−1
(i−n)+1)

−
t2(ei|e

i−1
(i−n)+1)

(
∑

e∈[τ ] c(e|e
i−1
(i−n)+1))

2
. . .

and method X which approximates method P by computing only the first term:

γ(ei|e
i−1
(i−n)+1) =

t1(ei|e
i−1
(i−n)+1)

∑

e∈[τ ] c(e|e
i−1
(i−n)+1)

However, both of these methods suffer from the fact that when t1(ei|e
i−1
(i−n)+1) =

0 or t1(ei|e
i−1
(i−n)+1) =

∑

e∈[τ ] c(e|e
i−1
(i−n)+1), the escape probability will be zero

(or less) or one respectively. One solution to this problem, suggested by Moffat

et al. (1998) and dubbed method AX (for Approximate X), is to add one to the

counts and use the singleton type count in method C.

γ(ei|e
i−1
(i−n)+1) =

t1(e
i−1
(i−n)+1) + 1

∑

e∈[τ ] c(e|e
i−1
(i−n)+1) + t1(e

(i−n)+1
i−1 ) + 1

α(ei|e
i−1
(i−n)+1) =

c(ei|e
i−1
(i−n)+1)

∑

e∈[τ ] c(e|e
i−1
(i−n)+1) + t1(e

i−1
(i−n)+1) + 1

These methods are based on similar principles to Katz backoff (Katz, 1987) one

of the more popular smoothing techniques used in statistical language process-

ing.

These various escape methods have been subjected to empirical evaluation

in data compression experiments. In general, A and B tend to perform poorly

(Bunton, 1997; Moffat et al., 1994; Witten & Bell, 1991), while D tends to
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slightly outperform C (Bunton, 1997; Moffat et al., 1994) and methods based

on P (e.g., AX) tend to produce the best results (Moffat et al., 1994; Teahan &

Cleary, 1997; Witten & Bell, 1991).

6.2.3.3 Exclusion

Exclusion (Cleary & Witten, 1984) is a technique for improving the probabilities

estimated by PPM based on the observation that events which are predicted at

higher order contexts do not need to be included in the calculation of lower

order estimates. Exclusion of events which have already been predicted in a

higher level context will have no effect on the outcome (since they have already

been predicted) and doing so reclaims a proportion of the overall probability

mass that would otherwise be wasted. Unless explicitly stated otherwise, it is

henceforth assumed that exclusion is enabled in all models discussed.

6.2.3.4 Interpolated Smoothing

The difference between backoff and interpolated smoothing was discussed in

§6.2.1 where both kinds of smoothing were expressed within the same frame-

work. While the original PPM algorithm uses a backoff strategy (called blend-

ing), Bunton (1996, 1997) has experimented with using interpolated smooth-

ing within PPM. The approach is best described by rewriting Equation 6.2 such

that:

α(ei|e
i−1
(i−n)+1

) = λ(ei−1
(i−n)+1

) ·
count(ei, e

i−1
(i−n)+1)

count(ei−1
(i−n)+1)

γ(ei|e
i−1
(i−n)+1) = (1− λ)(ei−1

(i−n)+1)

where:

count(ei, e
i−1
(i−n)+1) =

{

c(ei|e
i−1
(i−n)+1) + k if c(ei|e

i−1
(i−n)+1) > 0

0 otherwise

count(ei−1
(i−n)+1) =

∑

e∈[τ ]: e is not excluded

count(e, ei−1
(i−n)+1)

and k is the initial event frequency count and a global constant (ideally k =

0). The resulting smoothing mechanism is described in Equation 6.8 which

computes the estimated probability of an n-gram consisting of a context s and

a single event prediction e where su(eji ) = eji+1.
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p(e|s) =







λ(s) · count(e,s)
count(s) + (1− λ(s)) · p(e|su(s)) if su(s) 6= ε

1
|[τ ]|+1−t(ε) otherwise

(6.8)

When using the interpolated smoothing described in Equation 6.8, it is diffi-

cult to ensure that the conditional probability distribution computed sums to

unity. A simple, though computationally expensive, solution to this problem is

to compute the entire distribution and then renormalise its component proba-

bilities such that they do sum to unity.

As noted by Bunton (1996, ch. 6), methods A through D may be described

using a single weighting function λ : [τ ]∗ → [0, 1), defined as follows:

λ(ei−1
(i−n)+1) =

count(ei−1
(i−n)+1)

count(ei−1
(i−n)+1) +

t(ei−1
(i−n)+1

)

d(ei−1
(i−n)+1

)

if we allow the escape method to determine the values of k and a variable

d(ei−1
(i−n)+1) as follows:

A : d(ei−1
(i−n)+1) = t(ei−1

(i−n)+1), k = 0;

B : d(ei−1
(i−n)+1) = 1, k = −1;

C : d(ei−1
(i−n)+1) = 1, k = 0;

D : d(ei−1
(i−n)+1) = 2, k = −

1

2
.

Furthermore, method AX may be described within the same framework as fol-

lows:

λ(ei−1
(i−n)+1) =

count(ei−1
(i−n)+1)

count(ei−1
(i−n)+1) +

t1(e
i−1
(i−n)+1

)

d(ei−1
(i−n)+1

)

d(ei−1
(i−n)+1

) = 1

k = 0

Bunton (1996) observes that the key difference between escape methods A

through D is the relative emphasis placed on lower and higher order distribu-
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tions. More emphasis is placed on higher order distributions as both k and

d(ei−1
(i−n)+1) increase in numerical value. Thus, while method B places the low-

est relative emphasis on higher order distributions, method A tends to place

the greatest emphasis on higher order distributions (depending on the value

of d(ei−1
(i−n)+1) = t(ei−1

(i−n)+1)). Methods C, D and AX fall in between these ex-

tremes of emphasis and consistently outperform A and B in data compression

experiments.

Blending drops a term of Equation 6.8 for events which are not novel by as-

suming that p(ei|e
i−1
(i−n)+2) = 0. As discussed in in §6.2.1, this is true of backoff

versions of interpolated smoothing methods in general. Bunton notes that, as a

consequence, the estimates for novel events are slightly inflated while the esti-

mates for events which are not novel are slightly deflated. Replacing blending

with interpolated smoothing remedies this and yields significant and consistent

improvements in compression performance (Bunton, 1996, 1997).

6.2.3.5 Update Exclusion

Update exclusion (Moffat, 1990) is a modified strategy for updating the n-gram

counts in PPM models. When using the original PPM model with blending and

exclusion, the probability of an event which is not novel in a given context, will

be estimated in that context alone without blending the estimate with lower

order estimates. Update exclusion refers to a counting strategy in which the

event counts are only incremented if an event is not predicted in a higher order

context. This has the effect that the counts more accurately reflect which events

are likely to have been excluded in higher order contexts. The use of update

excluded counts tends to improve the data compression performance of PPM

models (Bell et al., 1990; Bunton, 1997; Moffat, 1990).

6.2.3.6 Unbounded Length Contexts

One of the goals of universal modelling is to make minimal assumptions about

the nature of the stochastic processes (or source) responsible for generating ob-

served data. As discussed in §6.2.1, n-gram models make assumptions about a

source to the effect that the probability of an event depends only on the previ-

ous n− 1 events. Cleary & Teahan (1997) describe an extension to PPM, called

PPM*, which eliminates the need to impose an arbitrary order bound. The pol-

icy used to select a maximum order context can be freely varied depending on

the situation.

A context eji is said to be deterministic when it makes exactly one predic-

tion: t(eji ) = 1. Cleary & Teahan (1995) have found that for such contexts the
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observed frequency of novel events is much lower than expected based on a

uniform prior distribution. As a consequence, the entropy of the distributions

estimated in deterministic contexts tend to be lower than in non-deterministic

contexts. Since an event will have occurred at least as many times in the lowest

order matching deterministic context as any of the other matching determinis-

tic contexts, this context will yield the lowest-entropy probability distribution

(Bunton, 1997). Cleary & Teahan (1997) exploit this in PPM* by selecting

the shortest deterministic matching context if one exists or otherwise selecting

the longest matching context. Unfortunately, the original PPM* implementa-

tion provided (at best) modest improvement in compression performance over

the original order bounded PPM. When combined with interpolated smooth-

ing and update exclusion, however, PPM* does outperform the corresponding

order bounded PPM models in data compression experiments (Bunton, 1997).

Furthermore, Bunton (1997) describes an information-theoretic state selection

mechanism which yields additional improvements in the compression perfor-

mance of PPM* models.

As noted by Bunton (1997), PPM*’s state selection mechanism interferes

with the use of update excluded frequency counts since PPM* does not always

estimate the probability distribution using the frequency data from the maxi-

mum order matching context. The solution is to use full counts to compute

probabilities for the selected context and update excluded counts thereafter for

the lower order contexts (see Bunton, 1996, 1997, for further details).

6.2.3.7 Implementation Issues

Since PPM* does not impose an order bound, all subsequences of the input

sequence must be stored, which makes for increased demands on computa-

tional resources. Suffix-tree representations provide a space-efficient means of

achieving this end (Bunton, 1996; Larsson, 1996). In the present research,

PPM models have been implemented as suffix trees using the online construc-

tion algorithm described by Ukkonen (1995). The application of this algorithm

to the construction of PPM models was first described by Larsson (1996) and

the construction developed independently by Bunton (1996) is similar to the

Ukkonen-Larsson algorithm in many respects. In addition to being online, these

algorithms have linear time and space complexity and, as demonstrated by Bun-

ton (1996), the resulting models have optimal space requirements (in contrast

to the original PPM* implementation). Since the suffix trees developed in the

present research are constructed from more than one sequence, they are in fact

generalised suffix trees which require only minor modifications to Ukkonen’s
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suffix tree construction algorithm (Gusfield, 1997). The existence of path com-

pressed nodes in suffix trees complicates the storage of frequency counts and

their use in prediction. In the present research, these complications were ad-

dressed by following the strategies for initialising and incrementing the counts

developed by Bunton (1996).

6.2.4 Long- and Short-term Models

In data compression, a model which is initially empty is constructed incremen-

tally as more of the input data is seen. However, experiments with PPM us-

ing an initial model that has been derived from a training text demonstrate

that pre-training the model, both with related and with unrelated texts, sig-

nificantly improves compression performance (Teahan, 1998; Teahan & Cleary,

1996). A complementary approach is often used in the literature on statistical

language modelling where improved performance is obtained by augmenting

n-gram models derived from the entire training corpus with cache models which

are constructed dynamically from a portion of the recently processed text (Kuhn

& De Mori, 1990).

Conklin (1990) has employed similar ideas with music data by using both

a long-term model (LTM) and a short-term model (STM). The LTM parameters

are estimated on the entire training corpus and new data is added to the model

after it is predicted on a composition-by-composition basis. The STM, on the

other hand, is constructed online for each composition in the test set and is

discarded after the relevant composition has been processed. The predictions

of both models are combined to provide an overall probability estimate for the

current event. The motivation for doing so is to take advantage of recently oc-

curring n-grams whose structure and statistics may be specific to the individual

composition being predicted.

Let τb be the basic event attribute currently under consideration and [τb] =

{t1, t2, . . . , tk} its domain. In this chapter, τb = cpitch, a basic attribute repre-

senting chromatic pitch (see §5.3). Let M be a set {ltm, stm} containing the

LTM and STM, and pm(t) be the probability assigned to symbol t ∈ [τb] by model

m ∈M . Perhaps the simplest method of combining distributions is to compute

the arithmetic mean of the estimated probabilities for each symbol t ∈ [τb] such

that:

p(t) =
1

|M |

∑

m∈M

pm(t)
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This combination technique may be improved by weighting the contributions

made by each of the models such that:

p(t) =

∑

m∈M wmpm(t)
∑

m∈M wm

A method for calculating the weights, wm, is described by Conklin (1990). It is

based on the entropies of the distributions generated by the individual models

such that greater entropy (and hence uncertainty) is associated with a lower

weight. The weight of model m is calculated as shown in Equation 6.9.

wm = Hrelative(pm)−b (6.9)

The relative entropy Hrelative(pm) of a model is given by:

Hrelative(pm) =

{

H(pm)/Hmax(pm) if Hmax([τb]) > 0

1 otherwise

where H and Hmax are as defined in Equations 6.3 and 6.4 respectively. The

bias b ∈ Z+ is a parameter giving an exponential bias towards models with

lower relative entropy. Note that when b = 0, the weighted arithmetic scheme is

equivalent to its unweighted counterpart since all models are assigned an equal

weight of one. This weighting mechanism is described in more detail by Conklin

(1990) who used the weighted arithmetic mean for combining both viewpoint

predictions and the predictions of the long- and short-term models (see §7.3).

Conklin & Witten (1995) used this method for combining viewpoint predictions

only. In both cases, the combined use of long- and short-term models yields

better prediction performance than either the LTM or STM used individually

(Conklin, 1990).2

6.3 Experimental Methodology

6.3.1 Model Parameters

A PPM model has been implemented in Common Lisp such that each of the vari-

ant features described in §6.2.3 may be independently selected. The following

shorthand will be used to describe the cross product of model parameters:

2Other combination techniques are discussed in §7.3.
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Model type: indicated by ’LTM’ and ’STM’ for the long- and short-term models

respectively while ’LTM+’ indicates a long-term model in which new data

is added to the LTM online as each new event is predicted;3

Escape method: indicated explicitly by ’A’, ’B’, ’C’, ’D’ or ’X’ (the latter as a

shorthand for method AX);

Order bound: indicated by an integer or ’*’ if unbounded;

Update exclusion: the use of update excluded counts is indicated by ’U’ – up-

date excluded counts are disabled by default;

Interpolated smoothing: PPM’s blending is the default while the use of inter-

polated smoothing is indicated by an ’I’.

Thus, for example, a PPM long-term model with escape method C, unbounded

order, update exclusion enabled and interpolated smoothing is denoted by

’LTMC*UI’. When it is clear which model is being referred to, we shall, for

the sake of readability, drop the model type. When combined with a short-term

model with the same parameters, the model would be denoted by ’LTMC*UI—

STMC*UI’ (for readability the two models are separated by a dash). It will be

clear that the space of possible parameterisations of the model is very large

indeed (even when the range of possible order bounds is limited). As a conse-

quence of this large parameter space, the techniques have been applied incre-

mentally, typically taking the best performing model in one experiment as the

starting point for the next. Note that while the resulting models should reflect

local optima in the parameter space, they are not guaranteed to be globally

optimal.

Conklin & Witten (1995) used a PPM model to predict 100 chorale melodies

harmonised by J. S. Bach (see §3.4). Note that this dataset is almost disjoint

from Dataset 2 used in this research (see §4.3). The escape method used was

B and both long- and short-term models were employed. The global order

bounds of the LTM and STM were set at 3 and 2 respectively and the predic-

tions combined using a Dempster-Shafer scheme (see §6.2.4 and §7.3). This

model is described in the current scheme as LTMB3—STMB2. A multiple view-

point system consisting of cpitch alone yielded a cross entropy of 2.05 bits per

event. Using the weighted arithmetic combination method described in §6.2.4

for combining viewpoint predictions, Conklin & Witten (1995) were able to ob-

tain cross entropy measures as low as 1.87 bits per event using more complex

3In the present research, new data is added to the LTM on an event-by-event basis rather than

the composition-by-composition basis adopted by Conklin (1990).
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multiple viewpoint systems. On the basis of empirical results and theoretical

considerations discussed in §6.2, the following predictions are made regarding

model performance: the combined use of an STM and LTM will yield improved

performance over either model used in isolation; the use of PPM* with inter-

polated smoothing will yield performance improvements over order-bounded

PPM models using blending; using update excluded counts will improve per-

formance over the standard counting strategy; and finally, escape methods C,

D or AX will result in performance improvements over methods A and B.

6.3.2 Performance Evaluation

Many methods have been used to evaluate the performance of statistical models

of music, some of which have been described in §3.4: the analysis-by-synthesis

method used by Hall & Smith (1996) and Triviño-Rodriguez & Morales-Bueno

(2001); comparison of human and machine prediction performance (Witten

et al., 1994); single-sample Bayesian methods such as Minimum Description

Length (Conklin, 1990); and the resampling approach using entropy as a mea-

sure of performance as used by Conklin & Witten (1995) and Reis (1999).

The latter approach is followed here for two reasons: first, entropy has an un-

ambiguous interpretation in terms of model uncertainty on unseen data (see

§6.2.2); and second, entropy bears a direct relationship to performance in data

compression, correlates with the performance of n-gram models on a range

of practical natural language tasks (Brown et al., 1992) and is widely used in

both these fields (see §6.2.2). These factors support its use in an application-

independent evaluation such as this.

Conklin & Witten (1995) used a split-sample (or held-out) experimental

paradigm in which the data is divided randomly into two disjoint sets, a train-

ing set and a test set. The n-gram parameters are then estimated on the training

set and the cross entropy of the test set given the resulting model is computed

using Equation 6.6 (see §6.2.2). Conklin & Witten divided their set of 100

chorale melodies into a training set of 95 melodies and a test set of 5 melodies.

Although commonly used, split-sample validation suffers from two major dis-

advantages: first, it reduces the amount of data available for both training and

testing; and second, with small datasets it provides a biased estimate of the

true entropy of the corpus. A simple way of addressing these limitations is to

use k-fold cross-validation (Dietterich, 1998; Kohavi, 1995a; Mitchell, 1997) in

which the data is divided into k disjoint subsets of approximately equal size.

The model is trained k times, each time leaving out a different subset to be

used for testing and an average of the k cross entropy values thus obtained is
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Training set Test set

ID Mean Compositions Mean Events Mean Compositions Mean Events

1 136.8 7697.7 15.2 855.3
2 166.5 8304.3 18.5 922.7

3 81.9 4046.4 9.1 449.6

4 107.1 2421.9 11.9 269.1
5 83.7 4127.4 9.3 458.6

6 93.6 4775.4 10.4 530.6
7 191.7 7553.7 21.3 839.3

8 213.3 9950.4 23.7 1105.6

Table 6.1: The average sizes of the resampling sets used for each dataset.

then computed.

The data used in the experiments consisted of Datasets 1–8 (see Chapter 4).

These experiments were carried out with a single viewpoint system consisting

of a viewpoint for the basic type cpitch alone (the extension of the model to

multiple viewpoint systems is presented in Chapter 7). Since the datasets used

are quite small and initial experiments demonstrated a fairly large variance in

the entropies computed from different validation sets, 10-fold cross-validation

over each dataset was used in all experiments. The value of k = 10 is chosen as

a commonly used compromise between the bias associated with low values of k

and the high variance associated with high values of k (Kohavi, 1995b, ch. 3).

The average sizes of the training and test sets for each dataset are shown in Ta-

ble 6.1. Since the 10-fold partitioning of each dataset was achieved randomly,

there is no reason to expect that the results will be different with alternative

partitions. In machine learning research, differences in model performance

as assessed by resampling techniques, such as cross-validation, are often anal-

ysed for significance using statistical tests such as the t test (Dietterich, 1998;

Mitchell, 1997). This approach is followed in §6.4.4 where the overall per-

formance improvements obtained using the methods described in §6.2.3 are

examined in relation to an emulation of the model developed by Conklin &

Witten (1995).

6.4 Results

6.4.1 Global Order Bound and Escape Method

The first experiments address the question of how the performance of PPM

models is affected by changes in the global order bound. Both the LTM and STM
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have been examined independently with all five escape methods using global

order bounds ranging from zero to 14. The results for the LTM and STM are

shown in Figures 6.1 and 6.2 respectively. The general U-shape of the curves

is quite typical; while increasing the global order bound provides the model

with more specific contextual information with which to make its predictions,

the higher order contexts are also more likely to fail to produce a prediction.

Therefore, the model will escape down to lower order models more frequently,

thereby wasting more of the probability mass available on apportioning escape

probabilities. As the global order bound is increased beyond a certain point

this negative influence tends to dominate and performance decreases (Teahan,

1998).

Note, however, the relatively shallow degradation of performance of the

STM (as compared with the LTM) as the global order bound is increased be-

yond its optimal value. It seems likely that due to the short length of most of

the compositions in the datasets (see Chapter 4), the models rarely encounter

matching contexts longer than about five events and, as a consequence, increas-

ing the global order bound beyond this value has little effect on model perfor-

mance. Figures 6.1 and 6.2 also reveal, for the LTM and STM respectively,

that escape methods A and B perform relatively poorly and escape method C

outperforms the others. It seems likely that the especially poor performance

of method B with the STM arises from the small amount of data available for

training combined with the fact that method B classifies a symbol as novel un-

less it has occurred twice in a given context (see §6.2.3.2). As a consequence

of the poor performance of methods A and B, which corroborates findings in

data compression experiments (Bunton, 1997), these two escape methods are

not considered further in the present research.

The results also show some interesting trends regarding global order bound.

As discussed in §6.2.3.6, the optimal global order bound to use is highly depen-

dent on the amount and character of the data being used (Bunton, 1997). Using

the present corpus of melodies Figures 6.1 and 6.2 demonstrate, respectively,

that the LTM operates best with a global order bound of two, regardless of the

escape method used, while the STM performs best with a global order bound of

five with escape methods D and C and a global order bound of four with escape

method AX.
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Figure 6.1: The performance of the LTM with varying escape method and global order bound.
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Figure 6.2: The performance of the STM with varying escape method and global order bound.
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Dataset C2 C2U C2I C2UI D2 D2U D2I D2UI X2 X2U X2I X2UI

1 2.933 2.959 2.904 3.127 2.935 2.951 2.885 2.967 2.913 2.928 2.887 2.908

2 2.585 2.595 2.563 2.748 2.577 2.581 2.547 2.608 2.557 2.562 2.544 2.554

3 3.216 3.204 3.110 3.417 3.252 3.208 3.142 3.220 3.207 3.161 3.166 3.129
4 2.882 2.890 2.804 3.179 2.892 2.881 2.791 2.954 2.880 2.870 2.824 2.829

5 3.276 3.248 3.192 3.483 3.315 3.250 3.220 3.278 3.312 3.231 3.277 3.201
6 3.470 3.480 3.385 3.708 3.526 3.485 3.431 3.509 3.518 3.455 3.485 3.429

7 2.620 2.665 2.613 2.897 2.622 2.654 2.599 2.731 2.608 2.642 2.596 2.633

8 3.123 3.157 3.083 3.423 3.137 3.145 3.094 3.203 3.121 3.123 3.111 3.111

Average 3.013 3.025 2.957 3.248 3.032 3.019 2.964 3.059 3.014 2.997 2.986 2.974

Table 6.2: Performance of the LTM with a global order bound of two.

Dataset C5 C5U C5I C5UI D5 D5U D5I D5UI X4 X4U X4I X4UI

1 3.017 3.046 2.988 2.993 3.068 3.048 3.049 2.995 3.081 3.070 3.029 2.983
2 3.170 3.209 3.138 3.149 3.218 3.214 3.194 3.153 3.198 3.204 3.162 3.121
3 3.120 3.141 3.106 3.104 3.175 3.140 3.171 3.107 3.197 3.178 3.156 3.106

4 3.463 3.488 3.466 3.463 3.498 3.491 3.516 3.470 3.440 3.467 3.432 3.411
5 3.146 3.178 3.134 3.142 3.196 3.176 3.194 3.147 3.214 3.207 3.175 3.139

6 3.264 3.281 3.255 3.252 3.316 3.280 3.317 3.257 3.343 3.317 3.303 3.255
7 2.735 2.759 2.701 2.706 2.780 2.755 2.755 2.704 2.841 2.856 2.755 2.742

8 3.434 3.437 3.426 3.406 3.504 3.446 3.504 3.417 3.511 3.466 3.485 3.402

Average 3.169 3.192 3.152 3.152 3.220 3.194 3.213 3.156 3.228 3.220 3.187 3.145

Table 6.3: Performance of the STM with a global order bound of five (escape methods C and D) or four (escape method AX).
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6.4.2 Interpolated Smoothing and Update Exclusion

The objective in the next experiments was to investigate the effects of using up-

date excluded counts and interpolated smoothing on the performance of PPM

models with optimal global order bounds as determined in the previous exper-

iment. In these experiments, the STM and LTM were examined with escape

methods C, D and AX using global order bounds of two for the LTM and five

(escape methods C and D) or four (escape method AX) for the STM. The use

of update excluded counts and interpolated smoothing were applied to these

models both individually and in combination. The results for the LTM and STM

are shown in Tables 6.2 and 6.3 respectively.

Consider first the results for the LTM shown in Table 6.2. Perhaps the most

striking result is that interpolated smoothing applied in isolation improves per-

formance for all datasets and escape methods. The best performing models on

any given dataset use interpolated smoothing in isolation and, as in the previ-

ous experiment, escape method C tends on average to outperform methods D

and AX. The results for update exclusion are, in general, more equivocal. Using

update exclusion in isolation improves average model performance for escape

methods D and AX but not for C (although the margin is small and performance

is improved for Datasets 2 and 4). The combination of update exclusion and

interpolated smoothing tends to impair performance, compared with the per-

formance of models using either technique in isolation, for escape methods C

and D; the slight average performance improvement with escape method AX

derives from the improved performance on Datasets 2, 4 and 5.

The results for the STM, shown in Table 6.3, demonstrate that interpolated

smoothing applied in isolation tends to improve performance though with less

consistency across datasets and escape methods than it does with the LTM. By

contrast, update exclusion (applied in isolation) improves average performance

when used with escape methods D and AX but impairs performance with escape

method C. Even more striking is the finding that the best average performance

for each of the three escape methods is obtained using a combination of interpo-

lated smoothing and update exclusion. However, the improvement over models

using interpolated smoothing in isolation is much more pronounced for escape

methods D and AX than for C where improvement is obtained for Datasets 2,

3, 5 and 7 only. The model with best average performance uses escape method

AX with update exclusion and interpolated smoothing.
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Dataset C* C*U C*I C*UI D* D*U D*I D*UI X* X*U X*I X*UI

1 3.094 3.236 2.861 3.234 3.180 3.247 2.930 3.098 3.072 3.153 2.933 2.993

2 2.669 2.843 2.444 2.869 2.708 2.839 2.473 2.724 2.648 2.812 2.477 2.651
3 3.336 3.407 3.115 3.470 3.454 3.424 3.230 3.308 3.320 3.315 3.230 3.166

4 2.937 3.032 2.721 3.188 3.004 3.040 2.761 2.998 2.965 3.028 2.809 2.862

5 3.176 3.199 3.010 3.316 3.293 3.205 3.119 3.147 3.263 3.176 3.187 3.056
6 3.515 3.550 3.340 3.645 3.665 3.562 3.486 3.488 3.606 3.482 3.542 3.370

7 2.604 2.779 2.428 2.926 2.681 2.780 2.468 2.739 2.614 2.748 2.480 2.593

8 3.318 3.449 3.105 3.556 3.395 3.434 3.188 3.347 3.298 3.348 3.189 3.205

Average 3.081 3.187 2.878 3.275 3.172 3.191 2.957 3.106 3.098 3.133 2.981 2.987

Table 6.4: Performance of the LTM with unbounded order.

Dataset C* C*U C*I C*UI D* D*U D*I D*UI X* X*U X*I X*UI

1 3.008 3.046 2.983 2.991 3.060 3.055 3.045 3.000 3.063 3.060 3.020 2.977
2 3.170 3.211 3.139 3.150 3.223 3.226 3.201 3.161 3.191 3.194 3.162 3.117
3 3.105 3.135 3.097 3.098 3.161 3.144 3.162 3.109 3.168 3.157 3.140 3.090
4 3.459 3.491 3.463 3.465 3.495 3.500 3.514 3.477 3.430 3.465 3.427 3.411
5 3.136 3.180 3.126 3.144 3.186 3.190 3.188 3.158 3.194 3.203 3.165 3.137

6 3.254 3.279 3.248 3.249 3.306 3.286 3.311 3.261 3.317 3.301 3.289 3.244
7 2.721 2.753 2.693 2.701 2.767 2.759 2.748 2.707 2.814 2.837 2.742 2.731
8 3.432 3.446 3.426 3.414 3.506 3.469 3.508 3.437 3.501 3.467 3.482 3.406

Average 3.161 3.192 3.147 3.152 3.213 3.203 3.210 3.164 3.210 3.211 3.179 3.139

Table 6.5: Performance of the STM with unbounded order.
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6.4.3 Comparing PPM and PPM* Models

The objective in the next set of experiments was to investigate the effect of

using update excluded counts and interpolated smoothing with (unbounded

order) PPM* models with a view to comparing the unbounded models with

their order-bounded counterparts. As in the previous experiments, the STM and

LTM were tested with escape methods C, D and AX and were examined with

update excluded counts and interpolated smoothing enabled both individually

and in combination. The results for the LTM and STM are shown in Tables 6.4

and 6.5 respectively and exhibit broadly similar patterns to the corresponding

order bounded results shown in Tables 6.2 and 6.3.

The results for the LTM shown in Table 6.4 demonstrate that, as in the order

bounded experiment, interpolated smoothing (applied in isolation) universally

improves performance. The use of update exclusion (applied in isolation) tends

to impair performance, the only exceptions being when it was used in combina-

tion with escape methods D and AX on Datasets 2, 4 and 5. In combination with

interpolated smoothing, update exclusion also tends to impair performance, the

only exceptions being when it was used in combination with escape method

AX on Datasets 2, 4 and 5. The trend for escape method C to outperform the

other methods was stronger here than in the order bounded experiment and the

best performing model on all datasets used interpolated smoothing and escape

method C. Although the use of unbounded orders fails to consistently improve

performance when the default blending scheme is used, the combination with

interpolated smoothing does lead to consistent performance improvements over

the corresponding order bounded models.

The results for the STM shown in Table 6.5 demonstrate that, as in the

case of the order bounded STM results, interpolated smoothing applied in iso-

lation tends to improve performance. The effect of update exclusion, both in

isolation and in combination with interpolated smoothing, tends to be highly

dependent both on the dataset and the escape method used. As in the order

bounded experiment, escape methods D and AX tend to combine more fruit-

fully with update exclusion than method C. The models with best average per-

formance for the former escape methods are obtained with a combination of

update exclusion and interpolated smoothing. As in the order bounded exper-

iment, the model with best average performance uses escape method AX with

update exclusion and interpolated smoothing and this model outperforms its

order-bounded counterpart.
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STMC*I LTMC*I LTM+C*I LTM+C*I—STMC*I

Dataset b=0 b=1 b=2 b=3 b=4 b=5 b=6 b=16 b=32

1 2.983 2.861 2.655 2.495 2.475 2.468 2.469 2.474 2.482 2.491 2.564 2.608

2 3.139 2.444 2.375 2.396 2.363 2.347 2.342 2.342 2.346 2.352 2.412 2.455

3 3.097 3.115 2.712 2.554 2.541 2.540 2.548 2.559 2.571 2.584 2.677 2.730

4 3.463 2.721 2.602 2.619 2.597 2.588 2.589 2.595 2.604 2.614 2.714 2.791

5 3.126 3.010 2.621 2.484 2.461 2.454 2.457 2.465 2.474 2.485 2.560 2.610

6 3.248 3.340 2.833 2.659 2.649 2.651 2.661 2.675 2.690 2.706 2.816 2.880

7 2.693 2.428 2.237 2.153 2.120 2.106 2.102 2.104 2.109 2.116 2.176 2.212

8 3.426 3.105 2.881 2.694 2.680 2.681 2.691 2.705 2.720 2.735 2.841 2.902

Average 3.147 2.878 2.614 2.507 2.486 2.479 2.482 2.490 2.500 2.510 2.595 2.648

Table 6.6: Performance of the best performing long-term, short-term and combined models with variable bias.
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6.4.4 Combining the Long- and Short-term Models

The objective of the next experiment was to examine the combined perfor-

mance of the LTM and STM whose predictions were combined as described in

§6.2.4. In general, the approach followed in these experiments has been to se-

lect the best performing models at any given stage for further experimentation.

Accordingly, the LTMC*I model was chosen for use in these experiments (see

§6.4.3). However, although the STMX*UI model was found to perform opti-

mally in isolation (see §6.4.3), in a preliminary series of informal pilot experi-

ments it was found that an STMC*I model yielded slightly better performance

than a STMX*UI model in combination with the LTMC*I model. This finding in

combination with the principle of Ockham’s razor (the LTM and STM both use

the same escape method) led us to select an STMC*I model over an STMX*UI

model for use in these experiments.4

The results of this experiment are shown in Table 6.6. The first two columns

respectively show the performance of the STMC*I and LTMC*I models used in

isolation. The third column demonstrates the improved performance afforded

by an LTM+C*I model in which events are added online to the LTM as they are

predicted (see §6.2.4). The remainder of Table 6.6 shows the results obtained

by combining the STMC*I model with the LTM+C*I model with a range of

different values for the weighting bias b. As can be seen, a combined LTM—

STM model is capable of outperforming both of its constituent models. The

results also demonstrate that optimal average performance is achieved with

the bias set to two.

4However, in the context of the multiple viewpoint system presented in Chapter 7 the

STMX*UI model was found to improve performance over the STMC*I model.
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LTM+B3— LTM+C3— LTM+C*— LTM+C*I—

Dataset STMB2 STMC2 STMC* STMC*I

1 2.905 2.613 2.562 2.468

2 2.676 2.488 2.460 2.347

3 2.997 2.689 2.616 2.540

4 2.934 2.698 2.665 2.588

5 2.974 2.640 2.495 2.454

6 3.233 2.819 2.698 2.651

7 2.555 2.270 2.158 2.106

8 3.111 2.796 2.793 2.681

Average 2.923 2.627 2.556 2.479

Table 6.7: Performance improvements to an emulation of the model used by Conklin
& Witten (1995).

6.4.5 Overall Performance Improvements

To illustrate more clearly the performance improvements obtained with the

PPM variants discussed in this chapter, a final experiment was conducted in

which escape method C, unbounded orders and interpolated smoothing were

successively applied to an emulation of the model used by Conklin & Wit-

ten (1995) which is described in this framework as LTM+B3—STMB2 (see

§6.3).5 The results are shown in Table 6.7. Paired t tests confirmed the signifi-

cance of the improvements afforded by incrementally applying escape method

C [t(79) = 31.128, p < 0.001], unbounded orders [t(79) = 9.018, p < 0.001]

and interpolated smoothing [t(79) = 18.281, p < 0.001]. The tests were per-

formed over all 10 resampling sets of each dataset (n = 80) although, for

reasons of space, Table 6.7 contains just the aggregate means for each of the

eight datasets. The combined effect of the techniques applied in the LTMC*I—

STMC*I model (shown in the final column of Table 6.7) is a 15% improvement

in average model performance over the LTMB+3—STMB2 model used by Con-

klin & Witten (shown in in the first data column of Table 6.7).

5At the time of writing, there was insufficient information to enable a precise replication of

the experiments described by Conklin & Witten (1995). Any discrepancy between the results

reported here for Dataset 2 and those of Conklin & Witten may be attributed to several factors:

first, the use by Conklin & Witten of a smaller, almost disjoint set of chorale melodies; second, the

smaller pitch alphabet derived from this dataset; third, the use here of ten-fold cross-validation

with an average of 18.5 compositions in the test set compared with the split sample paradigm

employed by Conklin & Witten with a training set of 95 and test set of 5 compositions; and

finally, the use of a Dempster-Shafer scheme by Conklin & Witten (see §7.3) for combining the

predictions of the LTM and STM as compared with the weighted average employed here.
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6.5 Discussion and Conclusions

Before discussing the results presented in §6.4, some words on the methodol-

ogy employed are in order. The goal was to conduct an empirical test of the

hypothesis that a number of techniques improve the prediction performance of

PPM models on monophonic music data. This task has been approached by

using cross entropy of the models as the performance metric and applying ten-

fold cross validatory resampling on eight monophonic datasets. Since these ex-

periments were concerned with optimising average performance over all eight

datasets, the best performing models selected in some experiments (e.g., the

global order bound experiments described in §6.4.1) will not necessarily cor-

respond to the best performing models on any single dataset. However, these

best performing models inspire increased confidence that the model will per-

form well on a new dataset without requiring further empirical investigation of

that dataset: i.e., less information about the dataset is needed in advance to be

confident of improved performance on that dataset.

The variant techniques have been applied incrementally, typically by tak-

ing the best performing model in a given experiment as the starting point for

the next experiment. For example, in §6.4.4, the LTM and STM which yielded

best performance independently were selected as the models to combine. Al-

though there is no guarantee that the resulting model reflects the global op-

timum in the space of possible LTM and STM parameterisations, the objective

was to demonstrate that some variant techniques can improve the performance

of PPM models and consequently, the relative performance of the PPM variants

is of more interest than their absolute performance. In this regard, it has been

demonstrated that the combined use of three variant techniques affords signif-

icant and consistent performance improvements of 15% on average over the

model used by Conklin & Witten (1995). The implications of the experimental

results are now discussed in more detail for each of the variant techniques in

turn.

Escape Method As noted in §6.2.3.2, there is no principled means of selecting

the escape method (the probability to assign to events which have never arisen

in a given context before) in the absence of a priori knowledge about the data.

In the experiments reported here, escape methods A and B were consistently

outperformed by C, D and AX and C fairly consistently outperformed both D and

AX (although method AX performed well with the short-term model). These

results are broadly in agreement with those obtained in data compression ex-

periments (Bunton, 1996; Moffat et al., 1994; Witten & Bell, 1991). Escape
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method C is the most commonly used method when Witten-Bell smoothing is

used in statistical language modelling (Manning & Schütze, 1999).

Interpolated Smoothing The use of interpolated smoothing consistently im-

proves model performance (by comparison with PPM’s default blending strat-

egy) regardless of the dataset and combination with other variant techniques.

This is consistent with results obtained in experiments in data compression

(Bunton, 1997) and on natural language corpora (Chen & Goodman, 1999).

The reason appears to derive from the fact that backoff smoothing (of which

blending is an example) consistently underestimates the probabilities of non-

novel events (Bunton, 1997) for which the low order distributions provide valu-

able information. For natural language corpora, this effect is particularly strong

for n-grams with low frequency counts (Chen & Goodman, 1999).

Update Exclusion While update exclusion generally improves the performance

of PPM models in data compression experiments (Bunton, 1997; Moffat, 1990),

the results in these experiments were more equivocal. In general, the effects of

update exclusion appeared to be highly sensitive to factors such as the dataset,

escape method and model type (LTM or STM). In particular, escape methods

AX, D and C respectively benefited less from the use of update excluded counts.

Furthermore, the LTM appeared to benefit rather less from update exclusion

than did the STM. Finally, when update exclusion did improve average perfor-

mance, it tended to be the result of improvements on a restricted set of datasets.

These findings are not entirely without precedent. The results presented by

Bunton (1997) demonstrate that, although it improves average compression

performance, update exclusion impairs performance for some of the test files

and that escape method C benefits slightly less from the use of update excluded

counts than method D.

Unbounded Orders The use of unbounded orders, as described in §6.2.3.6,

failed to yield consistent improvements in performance for both the LTM and

STM except when used in combination with interpolated smoothing. This com-

bination of unbounded orders and interpolated smoothing, however, consis-

tently improves the performance of the best performing order bounded models

with interpolated smoothing. These results are consistent with those obtained

in data compression experiments (Bunton, 1997) and this is likely to be due

to the fact that the optimal order bound varies between datasets. As noted

by Bunton (1997, p. 90), order bound experiments “provide more information
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about the nature of the test data, rather than the universality of the tested al-

gorithms.” The advantage of PPM* is that it requires fewer assumptions to be

made about the character of the data used.

Combined LTM and STM As expected on the basis of previous research (Con-

klin, 1990; Kuhn & De Mori, 1990; Teahan, 1998), combining the predictions

of the LTM and STM improves model performance by comparison with that of

either model used independently. Curiously, Conklin (1990) found that perfor-

mance continued improving when the bias b was set to values as high as 128

and greater. In the experiments reported here, the optimal bias setting ranged

from one to four depending on the dataset. Further experiments with the bias

set to values as high as 32 only yielded further reduction in performance.

6.6 Summary

The research goal in this chapter was to evaluate, in an application indepen-

dent manner, the performance improvements resulting from the application

of a number of variant techniques to a class of n-gram models. In §6.2.1, n-

gram modelling was introduced while in §6.2.2, the information-theoretic per-

formance measures that have been used were described. Particular attention

was given to PPM models in §6.2.3, where a number of techniques that have

been used to improve the performance of PPM models were described in detail.

These techniques include a range of different escape methods (§6.2.3.2), the

use of update excluded counts (§6.2.3.5), interpolated smoothing (§6.2.3.4),

unbounded orders (§6.2.3.6) and combining the predictions of a LTM and STM

(§6.2.4). In a series of experiments, these techniques were applied incremen-

tally to eight melodic datasets using cross entropy computed by 10-fold cross-

validation on each dataset as the performance metric (see §6.3). The results

reported in §6.4 demonstrate the consistent and significant performance im-

provements afforded by the use of escape method C (although method AX also

performed well with the short-term model), unbounded orders, interpolated

smoothing and combining long- and short-term models. Finally, in §6.5 the re-

sults were discussed in the context of previous research on the statistical mod-

elling of music and in the fields of data compression and statistical language

modelling.
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CHAPTER 7

COMBINING PREDICTIVE MODELS OF MELODIC MUSIC

7.1 Overview

As described in Chapter 5, a multiple viewpoint representation scheme has been

developed in the present research to address the need to flexibly represent

many diverse attributes of the musical surface. In this chapter, the statistical

modelling techniques presented in Chapter 6 are applied within the multiple

viewpoint framework presented in §5.4. Multiple viewpoint modelling strate-

gies take advantage of such a representational framework by deriving individ-

ual expert models for any given representational viewpoint and then combining

the results obtained from each model (Conklin & Witten, 1995). The specific

objective in this chapter is to evaluate methods for combining the predictions of

different models in a multiple viewpoint system. To this end, the performance

of the combination technique based on a weighted arithmetic mean described

in §6.2.4 is compared with that of a new technique based on a weighted ge-

ometric mean. A second goal is to examine in greater detail the potential for

multiple viewpoint systems to reduce model uncertainty in music prediction. A

feature selection algorithm is used to derive a set of viewpoints selected from

those described in Table 5.2 which optimises model uncertainty over a given

corpus.

Multiple viewpoint systems are a specific instance of a more general class of

strategies in machine learning collectively known as ensemble learning methods.

As noted by Dietterich (2000), ensemble methods can improve the performance

of machine learning algorithms for three fundamental reasons. The first is sta-

111
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tistical: with small amounts of training data it is often hard to obtain reliable

performance measures for a single model. By combining a number of well-

performing models, it is possible to reduce the risk of inadvertently selecting

models whose performance does not generalise well to new examples. The

second reason is computational: for learning algorithms which employ local

search, combining models which search locally from different starting points in

the hypothesis space can yield better performance than any of the individual

models. The final reason is representational: the combination of hypotheses

drawn from a given space may expand the space of representable functions.

The development of multiple viewpoint systems was motivated largely by rep-

resentational concerns arising specifically in the context of computer modelling

of music (Conklin & Witten, 1995). Although ensemble methods have typi-

cally been applied in classification problems, as opposed to the prediction prob-

lems studied here, research on ensemble methods in classification tasks will be

drawn on as required.

The chapter is structured as follows. In §7.2, the development of statistical

models within the multiple viewpoint framework is reviewed, while in §7.3, a

new technique for combining viewpoint predictions is introduced. The exper-

imental procedure used to evaluate this technique is described in §7.4 which

also contains a description of the feature selection algorithm used to develop a

multiple viewpoint system with reduced model uncertainty. Finally, the results

of the experiments are presented and discussed in §7.5.

7.2 Background

7.2.1 Multiple Viewpoint Modelling of Music

For our purposes in this chapter, a statistical model associated with a viewpoint

τ is a function mτ which accepts a sequence of events in τ∗ and which returns

a distribution over [τ] reflecting the estimated conditional probabilities of the

identity of the next viewpoint element in the sequence (see Chapter 6 for a

detailed description of the model). A predictive system operating on a multiple

viewpoint representation language consists of a number of models mτ1 , . . . ,mτn

corresponding to the collection of viewpoints τ1, . . . , τn in the multiple view-

point system. As described in §6.2.4, two models are actually employed for

each viewpoint: a long-term model (LTM) and a short-term model (STM). As

demonstrated in Chapter 6 the combined use of long- and short-term models

yields better performance than that of either model used independently. The

predictions of both long- and short-term models must be combined to produce
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Viewpoint Predictions (Short term) Viewpoint Predictions (Long term) 

Final Prediction

... ...

Combine Viewpoint Predictions Combine Viewpoint Predictions

Combine LTM and STM Predictions

Figure 7.1: The architecture of a multiple viewpoint system (adapted from Conklin &
Witten, 1995).

a final prediction (see §6.2.4). A number of general architectures can be envis-

aged to achieve this combination:

1. combine the STM and LTM predictions for each viewpoint individually

and then combine the resulting viewpoint predictions;

2. combine the viewpoint predictions separately for the long- and short-term

models and then combine the resulting LTM and STM predictions;

3. combine all long- and short-term viewpoint predictions in a single step.

The present research follows the practice of Conklin & Witten (1995) in choos-

ing the second of these three architectures (see Figure 7.1). Two additional

issues arise from the fact that the models accept sequences in [τ ]∗ (the set of

viewpoint sequences over which the model was trained) rather than ξ∗ (the set

of basic event sequences) and return distributions over [τ ] rather than ξ: first,

the corpus of event sequences in ξ∗ must be preprocessed into sequences in [τ ]∗

which are used to train the models; and second, the resulting distribution over

[τ ] must be postprocessed into a distribution over ξ so it may be combined with

distributions generated by other models. These issues are discussed in §7.2.2

and §7.2.3 respectively.
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7.2.2 Preprocessing the Event Sequences

Following Conklin & Witten (1995), sequences in ξ∗ are converted to sequences

in [τ ]∗ recursively using the function Φτ : ξ∗ → [τ ]∗ such that:

Φτ (e
j
1) =



















ε if ej1 = ε

Φτ (e
j−1
1 ) if Ψτ (e

j
1) = ⊥

Φτ (e
j−1
1 )Ψτ (ej) otherwise

where Ψτ is the viewpoint function for attribute type τ which accepts a basic

event sequence and returns an element of [τ]. Since Ψτ (e
j
1) = ⊥ ⇒ Φτ (e

j
1) =

Φτ (e
j−1
1 ), it is necessary to check that Ψτ (e

j
1) is defined in order to prevent any

sequence in [τ ]∗ being added to the model more than once (Conklin & Witten,

1995).

7.2.3 Completion of a Multiple Viewpoint System

A model mτ returns a distribution over [τ ] but, in order to combine the distribu-

tions generated by the models for different viewpoints, this must be converted

into a distribution over the basic event space ξ. Any viewpoint which is unde-

fined at the current location in the melody offers no information on which to

make a prediction and is therefore eliminated from the combination process.

In the interests of efficiency, prediction is elicited in stages, one for each basic

type of interest (Conklin, 1990). Only those viewpoints which contain in their

type set the basic type, τb, currently under consideration are activated at each

stage. Linked or threaded viewpoints which contain other basic types in their

typeset may only be used if these basic types are assumed to be instantiated in

the musical surface being predicted or have already been predicted in an earlier

stage.

The conversion is achieved by a function which maps elements of [τ] onto

elements of [τb]:

Ψ′
τ : ξ∗ × [τ ]→ 2[τb].

The function Ψ′
τ is implemented by creating a set of events each of which cor-

responds to a distinct basic element in [τb]. A set of sequences is created by

appending each of these events to the sequence of previously processed events

in the composition. By calling the function Ψτ on each of these sequences each

element in [τb] is put into the mapping with the current element of [τ ]. The

mapping is, in general, many-to-one since the derived sequence Φτ (e
j
1) could
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represent many sequences of events other than ej1. As a result, the probabil-

ity estimate returned by the model for the derived sequence must be divided

equally amongst the basic event sequences onto which it maps.

A model mτ must return a complete distribution over the basic attributes in

〈τ〉. This does not present problems for basic viewpoints where the viewpoint

domain is predefined to be the set of viewpoint elements occurring in the cor-

pus. However, for derived viewpoints, such as cpint, it may not be possible to

derive a complete distribution over [cpitch] from the set of derived elements

occurring in the corpus. To address this problem, the domain of each derived

type τ is set prior to prediction of each event such that there is a one-to-one cor-

respondence between [τ] and the domain of the basic type τb ∈ 〈τ〉 currently

being predicted. It is assumed that the modelling technique has some facility for

assigning probabilities to events that have never occurred before (see §6.2.3). If

no viewpoints predict some basic attribute then the completion of that attribute

must be achieved on the basis of information from other sources or on the basis

of a uniform distribution over the attribute domain. In the present research,

mτb was used to achieve the completion of attribute τb in such cases.

Once the distributions generated by each model in a multiple viewpoint

system have been converted to complete distributions over the domain of a

basic type, the distributions may be combined into final distributions for each

basic type. The objective of the first experiment presented in this chapter was

to empirically examine methods for achieving this combination.

7.3 Combining Viewpoint Prediction Probabilities

In this section, a novel technique is applied to the problem of combining the

distributions generated by statistical models for different viewpoints. Let τb

be the basic viewpoint currently under consideration and [τb] its domain. A

multiple viewpoint system has n viewpoints τ1, . . . , τn, all which are derived

from τb and whose type sets contain τb, and there exist corresponding sets

of long-term models LTM = {ltm1, ltm2, . . . , ltmn} and short-term models

STM = {stm1, stm2, . . . , stmn}. A function is required which combines the

distributions over [τb] generated by sets of models. As described in §7.2.1,

this function is used in the first stage of prediction to combine the distribu-

tions generated by the LTM and the STM separately and, in the second stage of

prediction, to combine the two combined distributions resulting from the first

stage. Here, we employ an anonymous set of models M = m1,m2, . . . ,mn for

the purposes of illustration.
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In §6.2.4, a weighted arithmetic scheme was used to combine the predic-

tions of the long- and short-term models in a single viewpoint system mod-

elling cpitch. Conklin & Witten (1995) describe two other schemes for com-

bining model predictions: the first converts the distributions into ranked lists,

combines the rankings and transcribes the combined ranked list back into a

probability distribution; the second method is based on the Dempster-Shafer

theory of evidence and has been used for combining the predictions of long-

and short-term models “with some success” (Conklin & Witten, 1995, p. 61).

A novel method for combining the distributions generated by statistical models

is presented here. The method uses a weighted geometric mean for combining

individual probabilities which may then be applied to sorted distributions over

[τb].1

A simple geometric mean of the estimated probabilities for each symbol

t ∈ [τb] is calculated as:

p(t) =
1

R

(

∏

m∈M

pm(t)

)
1

|M|

where R is a normalisation constant such that the resulting distribution over

[τb] sums to unity. As in the case of the arithmetic mean, this technique may

be improved by weighting the contributions made by each of the models such

that:

p(t) =
1

R

(

∏

m∈M

pm(t)wm

)
1∑

m∈M wm

(7.1)

where R is a normalisation constant such that the resulting distribution over

[τb] sums to unity. The entropy-based weighting technique described in the

context of weighted arithmetic combination in §6.2.4 (Equation 6.9) may be

used here to weight the contributions made by each model to the final esti-

mates. As with weighted arithmetic combination, when the bias parameter to

the weighting function b = 0, the weighted geometric scheme is equivalent to

its unweighted counterpart since all models are assigned an equal weight of

one (see Equation 6.9).

1In the present research, combination schemes based on the arithmetic mean are referred to

as arithmetic combination and those based on the geometric mean as geometric combination.

Similar distinctions have been made in the literature between linear and logarithmic opinion

pools (Genest & Zidek, 1986), combining classifiers by averaging and multiplying (Tax et al.,

2000) and mixtures and products of experts (Hinton, 1999, 2000).
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Hinton (1999, 2000) introduced the products of experts architecture for den-

sity estimation, where individual expert probabilities are multiplied and renor-

malised (using the unweighted geometric mean shown in Equation 7.1) as an

alternative to combining probabilities using a mixture (a weighted arithmetic

mean). Hinton argues that combining distributions through multiplication has

the attractive property of making distributions “sharper” (or less uniform) than

the component distributions. For a given element of the distributions it suffices

for just one model to correctly assign that element a low estimated probability

for the combined distribution to assign that element a low probability regard-

less of whether other models incorrectly assign that element a high estimated

probability. Arithmetic combination, on the other hand, will tend to produce

combined distributions that are more uniform than the component distribu-

tions and is prone to erroneously assigning relatively high estimated probabil-

ities to irrelevant elements. However, since the combined distribution cannot

be sharper than any of the component distributions arithmetic combination has

the desirable effect of suppressing estimation errors (Tax et al., 2000). Tax et al.

(2000) examine the performance of unweighted arithmetic and geometric com-

bination schemes in the context of multiple classifier systems. In accordance

with theoretical predictions, an arithmetic scheme performs better when the

classifiers operate on identical data representations and a geometric scheme

performs better when the classifiers employ independent data representations.

On the basis of these theoretical and empirical considerations, it is predicted

that the geometric combination scheme will outperform the arithmetic scheme

for viewpoint combination where the models are derived from distinct data

representations. Consider movement to a non scale degree as an example: a

model associated with cpitch might return a high probability estimate for such

a transition whereas a model associated with cpintfref is likely to return a low

estimated probability. In cases such as this, it is preferable to trust the model

operating over the more specialised data representation (i.e., cpintfref). In

the case of LTM-STM combination, however, it is predicted that the importance

of suppressing estimation errors will outweigh the importance of trusting the

estimates of one particular model. As a consequence, arithmetic combination

is expected to outperform geometric combination in this second stage of com-

bination. As an example, the LTM and STM will return low and high estimates,

respectively, for n-grams which are common in the current composition but rare

in the corpus as a whole. In cases such as this, it is preferable to suppress the

estimation errors yielded by the LTM.
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τb = cpitch τ1 = contour τ2 = cpintfref

[τb] Hmax([τb]) [τ1] pτ1([τ1]) pτ1([τb]) Hτ1 wτ1 [τ2] pτ2([τ2]) pτ2([τb]) Hτ2 wτ2 pcombined([τb])

78 3.585 0.049 3.373 1.063 11 0.011 0.011 2.392 1.499 0.014

77 3.585 0.049 3.373 1.063 10 0.038 0.038 2.392 1.499 0.042

76 3.585 0.049 3.373 1.063 9 0.005 0.005 2.392 1.499 0.016

75 3.585 1 0.294 0.049 3.373 1.063 8 0.008 0.008 2.392 1.499 0.021

74 3.585 0.049 3.373 1.063 7 0.195 0.195 2.392 1.499 0.135

73 3.585 0.049 3.373 1.063 6 0.005 0.005 2.392 1.499 0.016

72 3.585 0 0.235 0.235 3.373 1.063 5 0.121 0.121 2.392 1.499 0.196

71 3.585 0.094 3.373 1.063 4 0.394 0.394 2.392 1.499 0.267

70 3.585 0.094 3.373 1.063 3 0.196 0.196 2.392 1.499 0.177

69 3.585 -1 0.471 0.094 3.373 1.063 2 0.021 0.021 2.392 1.499 0.048

68 3.585 0.094 3.373 1.063 1 0.005 0.005 2.392 1.499 0.021

67 3.585 0.094 3.373 1.063 0 0.021 0.021 2.392 1.499 0.048

Table 7.1: An illustration of the weighted geometric scheme for combining the predictions of different models; a bias value of b = 1 is used in

calculating model weights and all intermediate calculations are made on floating point values rounded to 3 decimal places.
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In order to illustrate the mechanics of the weighted geometric combina-

tion scheme, consider the example of predicting the pitch of the final event

in the melodic phrase shown in Figure 7.2 using two long-term models asso-

ciated with the types contour and cpintfref respectively. Each model has

already been trained (using the methods described in Chapter 6) on prepro-

cessed sequences of the appropriate type (see §7.2.2) and the basic type of

interest τb = cpitch. As shown in the first column of Table 7.1, our as-

sumed pitch alphabet will be all 12 chromatic pitches between G4 and F♯5:

[cpitch] = {67, . . . , 78}. Following Equation 6.4, the maximum entropy of a

probability distribution constructed over this alphabet Hmax([τb]) = 3.585, as

shown in the second column of Table 7.1; this quantity will be needed to calcu-

late the weights assigned to each model.

The next five columns in Table 7.1 concern the model for the attribute

τ1 = contour whose domain [contour] = {−1, 0, 1} (see §5.4.1). In the ex-

ample shown in Table 7.1, the model returns estimated probabilities of 0.294,

0.471 and 0.235 (pτ1([τ1])) for rising, falling and stationary pitch contours

to the final event of the phrase (using the methods discussed in Chapter 6).

Since rising and falling contours could each correspond to a number of distinct

pitches, this distribution is converted to a distribution over the basic pitch al-

phabet (pτ1([τb])) by dividing the estimates for rising and falling contour equally

amongst the set of corresponding elements of [cpitch]. The entropy of this

distribution, Hτ1, is calculated according to Equation 6.3. Finally, the weight

associated with this model is calculated from Hτ1 and Hmax([τb]) using Equa-

tion 6.9; a bias value of b = 1 has been used in this example.

As shown in the next five columns in Table 7.1, an analogous process is

carried out for the model associated with the type τ2 = cpintfref, the major

difference being that the completion of the estimates for the basic type (cpitch)

is unnecessary since, in this example, there is a one-to-one correspondence be-

tween [cpitch] and [cpintfref]. As a consequence, the columns in Table 7.1

representing the estimates over the derived alphabet (pτ2([τ2])) and the basic

alphabet (pτ2([τb])) are equivalent. Table 7.1 now contains all the information

needed to derive the final combined estimates for each element of [cpitch].

This is achieved by using Equation 7.1 to weight each model’s estimates, multi-

ply the weighted estimates in each row, and then normalise such that the result-

ing distribution over [cpitch] sums to unity. The resulting combined estimates

are shown in the final column of Table 7.1.
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7.4 Experimental Methodology

The corpus of music used in this experiment was Dataset 2 consisting of 185 of

the chorale melodies harmonised by J. S. Bach (see Chapter 4). The evaluation

metric for model performance was cross entropy, as defined in Equation 6.6,

computed by 10-fold cross-validation (Dietterich, 1998; Mitchell, 1997) over

this corpus. The statistical model used was a smoothed n-gram model de-

scribed as LTM+C*I—STMC*UI within the model syntax defined in §6.3. While

the LTM+C*I—STMC*I model was found to be the best-performing predictor

of cpitch in Chapter 6, the LTM+C*I—STMX*UI model performed almost as

well. In preliminary pilot experiments with multiple viewpoint models, the

latter model consistently outperformed the former (albeit by a small margin).

Unless otherwise specified a LTM+C*I—STMX*UI has been used in the remain-

der of the present research.

The goal of the first experiment was to examine methods for combining

viewpoint predictions and, accordingly, a constant set of viewpoints was used

corresponding to the best performing of the multiple viewpoint systems de-

scribed by Conklin & Witten (1995). This system consists of the following

viewpoints:

cpintfref⊗ cpint,

cpint⊗ ioi,

cpitch,

cpintfref⊗ fib

and is capable of modelling the basic type cpitch alone. The first of the compo-

nent viewpoints of this system represents a link between scale degree and pitch

interval, the second a link between pitch interval and inter-onset interval, the

third chromatic pitch and the fourth a link between scale degree and a test type

indicating whether or not an event is the first in the current bar. See Tables 5.2

and 5.4 for details of each of the viewpoints in this system and Figure 7.2 for

an example use of these viewpoints in representing an excerpt from a chorale

melody in terms of viewpoint sequences.

The experiment compared the performance of the weighted arithmetic com-

bination scheme described in §6.2.4 with that of the weighted geometric com-

bination scheme described in §7.3 in both stages of combination with the bias

settings drawn from the set {0,1,2,3,4,5,6,7,8,16,32}. In preliminary exper-

iments, the Dempster-Shafer and rank-based combination schemes examined
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onset 0 24 48 72 96 120 144
cpitch 71 71 71 74 72 72 71

ioi ⊥ 24 24 24 24 24 24

fib T F F F T F F
cpint ⊥ 0 0 3 -2 0 -1

cpintfref 4 4 4 7 5 5 4

cpint⊗ioi ⊥ (0 24) (0 24) (3 24) (-2 24) (0 24) (-1 24)

Figure 7.2: The first phrase of the melody from Chorale 151 Meinen Jesum laß’ ich
nicht, Jesus (BWV 379) represented as viewpoint sequences in terms of the component

viewpoints of the best-performing system reported by Conklin & Witten (1995).

by Conklin & Witten (1995) were found to perform less well than these two

methods (when optimally weighted) and therefore were not included in the

experiment reported here. On the basis of the empirical results and theoretical

considerations reviewed in §7.3, it is predicted that the geometric combination

scheme will yield performance improvements over the arithmetic combination

scheme particularly when combining models associated with different view-

points.

An obvious limitation of the first experiment is that it is restricted to a sin-

gle set of viewpoints. Accordingly, a second experiment was run to examine

the performance of different multiple viewpoint systems and, in particular, to

discover those which are capable of reducing model entropy still further. In

this experiment, the combination methods used were those that yielded best

performance in the first experiment (i.e., geometric combination with a bias of

7 for LTM-STM combination and a bias of 2 for Viewpoint combination).

The selection of viewpoints to reduce model entropy can be viewed as a

problem of feature selection where the goal is to attempt to reduce the number

of dimensions considered in a task so as to improve performance according to

some evaluation function (Aha & Bankert, 1996). Computational methods for

feature selection typically consist of an algorithm which searches the space of

feature subsets and an evaluation function which returns a performance mea-

sure associated with each feature subset. The goal is to search the space of

feature subsets in order to maximise this measure. The performance measure

used in this experiment was cross entropy, as defined in Equation 6.6, com-

puted by 10-fold cross-validation over Dataset 2 (see Chapter 4). The feature

sets used in these experiments consist of subsets of the attribute types shown

in Table 5.2 and Table 5.4. Note that the product types used in the search cor-
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respond to a selected subset of the space of possible product types (see §5.4.4).

In previous research, Hall (1995) has used a genetic algorithm for selecting sets

of viewpoints in order to minimise model entropy over a held-out test set.

The simple sequential search algorithm, known as stepwise selection, em-

ployed in the current research is commonly used both in machine learning (Aha

& Bankert, 1996; Blum & Langley, 1997; Kohavi & John, 1996) and statistical

analysis (Krzanowski, 1988). Given an initial set of features, the algorithm

considers on each iteration all single feature additions and deletions from the

current feature set and selects the addition or deletion that yields the most

improvement in the performance measure. Following the methodological prin-

ciple of Ockham’s razor, the algorithm selects the optimal deletion if one exists

before considering any additions. The algorithm terminates when no single

addition or deletion yields an improvement. Forward stepwise selection corre-

sponds to the situation where the initial set of features is the empty set, whilst

backward stepwise elimination corresponds to the situation where the algorithm

is initialised with the full set of features (John et al., 1994). A forward step-

wise selection algorithm has been used for feature selection in this experiment.

Given n features, the size of the space of feature subsets is 2n. The forward

stepwise selection algorithm, on the other hand, is guaranteed to terminate in

a maximum of n2 iterations (John et al., 1994). However, while the solution

returned will be locally optimal, it is not guaranteed to be globally optimal.

7.5 Results and Discussion

7.5.1 Model Combination

The results of the first experiment are shown in Table 7.2 in which the columns

represent the settings for viewpoint combination and the rows indicate the set-

tings for LTM-STM combination. The results are given in terms of cross en-

tropies for each combination of settings for viewpoint and LTM-STM combina-

tion. Table 7.2 is divided into four sections corresponding to the use of arith-

metic or geometric methods for viewpoint or LTM-STM combination. Figures in

bold type represent the lowest entropies in each of the four sections of the ta-

ble. The results are also plotted graphically in Figure 7.3. The first point to note

is that the multiple viewpoint system is capable of predicting the dataset with

much lower entropies (e.g., 2.045 bits/symbol) than those reported in Chap-

ter 6 for a system modelling chromatic pitch alone (e.g., 2.342 bits/symbol)

on the same corpus. A paired t test confirms the significance of this difference

[t(184) = 15.714, p < 0.001].



7.5 RESULTS AND DISCUSSION 123

This test was carried out for the paired differences between the entropy

estimates obtained using the two models for each of the 185 chorale melodies

in the dataset. However, since the estimates within each 10-fold partition share

the same training set, they are not independent and, therefore, violate one of

the assumptions of the t test. In order to address this issue, a second paired t

test was carried out to compare the paired estimates averaged for each of the 10

resampling partitions. This follows the procedure adopted in §6.4.5 although

since only one dataset is used, the test has a small number of degrees of freedom

and is offered as a supplement to (rather than a replacement for) the previous

test. Nonetheless, the test confirmed the significance of the difference between

the entropy estimates of the two models [t(9) = 24.09, p < 0.001].2

Overall, these results replicate the findings of Conklin & Witten (1995) and

lend support to their assertion that the multiple viewpoint framework can in-

crease the predictive power of statistical models of music. It is also clear that

the use of an entropy-based weighting scheme improves performance and that

performance can be further improved by tuning the bias parameter which gives

exponential bias towards models with lower relative entropies (Conklin, 1990).

Regarding the combination methods, the results demonstrate, as predicted,

that the weighted geometric combination introduced in §7.3 tends to outper-

form arithmetic combination and that this effect is much more marked in the

case of viewpoint combination than it is for LTM-STM combination. This finding

corroborates theoretical predictions and empirical results derived from the lit-

erature on combining classifier systems (see §7.3). When combining viewpoint

predictions (derived from distinct data representations), a geometric scheme

performs better since it trusts specialised viewpoints to correctly assign low

probability estimates to certain elements (Hinton, 1999, 2000; Tax et al., 2000).

2Since the training sets show significant overlap between the k-fold partitions, these esti-

mates are not strictly independent either (Dietterich, 1998). Difficulties such as this are an

inevitable consequence of using a machine learning approach with small datasets (Dietterich,

1998; Mitchell, 1997).
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Viewpoint Combination
Arithmetic Geometric

0 1 2 3 4 5 6 7 8 16 32 0 1 2 3 4 5 6 7 8 16 32

A 0 2.493 2.437 2.393 2.363 2.342 2.327 2.316 2.309 2.304 2.290 2.291 2.357 2.321 2.299 2.286 2.278 2.274 2.271 2.270 2.269 2.274 2.285
r 1 2.434 2.368 2.317 2.281 2.257 2.241 2.230 2.222 2.217 2.207 2.212 2.256 2.216 2.192 2.180 2.175 2.173 2.173 2.174 2.175 2.188 2.203
i 2 2.386 2.317 2.264 2.229 2.207 2.193 2.184 2.178 2.175 2.171 2.178 2.189 2.150 2.130 2.123 2.122 2.124 2.126 2.130 2.133 2.152 2.169
t 3 2.350 2.279 2.228 2.196 2.177 2.166 2.160 2.156 2.155 2.159 2.168 2.146 2.111 2.096 2.094 2.097 2.102 2.107 2.112 2.117 2.142 2.160
h 4 2.323 2.253 2.204 2.175 2.159 2.150 2.147 2.145 2.146 2.157 2.169 2.119 2.088 2.077 2.078 2.085 2.092 2.100 2.107 2.113 2.142 2.161
m 5 2.303 2.234 2.188 2.161 2.147 2.141 2.139 2.140 2.141 2.158 2.173 2.102 2.074 2.066 2.070 2.079 2.089 2.098 2.106 2.113 2.146 2.167
e 6 2.288 2.221 2.176 2.152 2.140 2.136 2.135 2.137 2.140 2.161 2.179 2.091 2.066 2.060 2.066 2.077 2.088 2.098 2.108 2.116 2.151 2.174
t 7 2.276 2.211 2.168 2.146 2.136 2.133 2.134 2.136 2.140 2.165 2.184 2.085 2.061 2.057 2.064 2.076 2.088 2.099 2.110 2.118 2.156 2.180
i 8 2.268 2.204 2.163 2.142 2.133 2.131 2.133 2.136 2.140 2.168 2.189 2.080 2.057 2.055 2.064 2.076 2.089 2.101 2.112 2.121 2.161 2.186
c 16 2.243 2.186 2.152 2.136 2.132 2.133 2.138 2.143 2.149 2.184 2.212 2.073 2.053 2.054 2.066 2.081 2.097 2.111 2.123 2.134 2.182 2.212

32 2.239 2.185 2.154 2.140 2.138 2.140 2.145 2.151 2.157 2.195 2.226 2.074 2.055 2.058 2.070 2.086 2.103 2.118 2.132 2.143 2.194 2.226

0 2.496 2.437 2.386 2.346 2.316 2.294 2.278 2.266 2.257 2.237 2.240 2.311 2.267 2.238 2.222 2.213 2.208 2.207 2.206 2.207 2.219 2.234
G 1 2.425 2.354 2.295 2.252 2.222 2.202 2.188 2.178 2.172 2.160 2.165 2.200 2.155 2.129 2.118 2.114 2.114 2.116 2.119 2.122 2.141 2.157
e 2 2.372 2.298 2.240 2.201 2.176 2.161 2.151 2.145 2.142 2.142 2.150 2.138 2.098 2.081 2.077 2.079 2.084 2.090 2.096 2.101 2.126 2.143
o 3 2.334 2.260 2.206 2.172 2.152 2.141 2.135 2.133 2.132 2.141 2.154 2.104 2.070 2.059 2.060 2.067 2.076 2.084 2.092 2.099 2.13 2.149
m 4 2.307 2.235 2.185 2.155 2.139 2.131 2.128 2.128 2.129 2.146 2.163 2.086 2.057 2.050 2.054 2.064 2.075 2.085 2.095 2.103 2.138 2.159
e 5 2.288 2.218 2.171 2.145 2.132 2.127 2.126 2.127 2.130 2.152 2.171 2.077 2.051 2.046 2.053 2.065 2.077 2.089 2.099 2.108 2.146 2.169
t 6 2.275 2.207 2.163 2.139 2.129 2.125 2.126 2.128 2.132 2.158 2.179 2.072 2.048 2.045 2.054 2.067 2.080 2.092 2.103 2.113 2.154 2.178
r 7 2.265 2.200 2.158 2.136 2.127 2.125 2.127 2.130 2.134 2.163 2.186 2.069 2.047 2.045 2.055 2.069 2.083 2.096 2.107 2.117 2.160 2.185
i 8 2.258 2.194 2.155 2.134 2.127 2.125 2.128 2.132 2.136 2.167 2.192 2.068 2.047 2.046 2.057 2.071 2.085 2.099 2.111 2.121 2.165 2.191
c 16 2.240 2.184 2.151 2.136 2.132 2.133 2.138 2.144 2.150 2.186 2.216 2.070 2.051 2.053 2.065 2.081 2.098 2.112 2.125 2.136 2.186 2.217

32 2.239 2.185 2.154 2.141 2.138 2.141 2.146 2.151 2.158 2.198 2.229 2.073 2.055 2.057 2.070 2.087 2.104 2.12 2.134 2.145 2.197 2.230

Table 7.2: The performance on Dataset 2 of models using weighted arithmetic and geometric combination
methods with a range of bias settings.
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methods with a range of bias settings.
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When combining LTM-STM predictions (where each distribution is already

the result of combining the viewpoint predictions), on the other hand, a pre-

mium is placed on minimising estimation errors (Hinton, 1999, 2000; Tax et al.,

2000). The finding that geometric combination still outperforms arithmetic

combination may indicate that this suppression of errors is not necessary per-

haps because the LTM itself induces local structure in the current melody by

adding n-grams online as prediction progresses just as the STM does (see Chap-

ter 6). Finally, it is possible that the difference in relative performance of the

geometric and arithmetic schemes for LTM-STM and viewpoint combination is a

result of the order in which these combinations are performed (see Figure 7.1).

However, it is hypothesised that this is not the case and the observed pattern

of results arises from the difference between combining distributions derived

from distinct data representations as opposed to combining two distributions

already combined from the same sets of representations. Further research is

required to examine these hypotheses in more depth.

Another aspect of the results that warrants discussion is the effect on perfor-

mance of the bias parameter which gives an exponential bias towards distribu-

tions with lower relative entropy. Overall performance seems to be optimised

when the bias for LTM-STM combination is relatively high (between 6 and 16)

and the bias for viewpoint combination is relatively low (between 1 and 5).

It seems likely that this is due, in part, to the fact that at the beginning of a

composition, the STM will generate relatively high entropy distributions due to

lack of context. In this case, it will be advantageous for the system to strongly

bias the combination towards the LTM predictions. This is not an issue when

combining viewpoint predictions and more moderate bias values tend to be op-

timal. Other research has also found that high bias values for the combination

of the LTM-STM predictions tend to improve performance leading to the sug-

gestion that the weight assigned to the STM could be progressively increased

from an initially low value at the beginning of a composition as more events

are processed (Conklin, 1990).

The results shown in Table 7.2 also reveal an inverse relationship between

the optimal bias settings for LTM-STM combination and those for viewpoint

combination. With high bias values for LTM-STM combination, low bias values

for viewpoint combination tend to be optimal and vice versa. High bias settings

will make the system bolder in its estimation by strongly favouring sharper dis-

tributions while low bias settings will lead it to more conservative predictions.

On these grounds, with all other things being equal, we would expect moderate

bias values to yield optimal performance. If an extreme bias setting is preferred
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Stage Viewpoint Added H

1 cpint⊗dur 2.214

2 cpintfref⊗cpintfip 2.033

3 cpitch⊗dur 1.991

4 cpintfref⊗fib 1.973

5 thrtactus 1.966

6 cpintfref⊗dur 1.963

7 cpint⊗dur-ratio 1.960

8 cpintfip 1.955

9 thrfiph 1.953

Table 7.3: The results of viewpoint selection for reduced entropy over Dataset 2.

in one stage of combination for some other reason (e.g., the case of LTM-STM

combination just discussed), the negative effects may, it seems, be counteracted

to some extent by using settings at the opposing extreme in the other stage. Al-

though these arguments are general, we would expect the optimal bias settings

themselves to vary with different data, viewpoints and predictive systems.

7.5.2 Viewpoint Selection

The results of viewpoint selection are shown in Table 7.3 which gives the en-

tropies obtained with the optimal multiple viewpoint systems selected at each

stage. In all stages of selection, viewpoints were added to the optimal system;

removing viewpoints failed to reduce model uncertainty at any stage. The first

point to note about the results is that viewpoint selection results in a multi-

ple viewpoint system exhibiting lower model uncertainty than the system used

in the first experiment (see §7.5.1) in which the component viewpoints were

hand-selected by Conklin & Witten (1995). Thus, the average cross entropy

of the data given the optimal multiple viewpoint system derived in this experi-

ment was 1.953 bits/symbol compared with 2.045 bits/symbol obtained in the

first experiment. The significance of this difference was confirmed by paired t

tests over all 185 chorale melodies [t(184) = 7.810, p < 0.001] and averaged

for each 10-fold partition of the dataset [t(9) = 10.701, p < 0.001] (see §7.5.1).

A number of interesting observations can be made regarding the actual

viewpoints selected in this experiment. First, the multiple viewpoint system

selected is dominated by linked and threaded viewpoints; only one primitive

type, cpintfip, was selected and only relatively late in the selection process.3

3Threaded models are often referred to as long distance n-grams in research on statistical

language modelling where they have been shown to improve model performance (Huang et al.,
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Many of the linked viewpoints selected represent conjunctions of pitch and time

related attribute types. This suggests that strong correlations exist in the corpus

of chorale melodies between pitch structure and rhythmic structure. It is per-

haps not surprising that the majority of the viewpoints selected model relative

pitch structure (e.g., cpint, cpintfref and cpintfip) rather than pitch height.

This suggests that regularities in melodic structure within the corpus tend to be

expressed in terms of pitch intervals or defined in relation to significant tones.

In addition, the selection of thrtactus suggests that stylistic commonalities

in interval structure can be found when tones occurring on weak beats (e.g.,

passing notes) are ignored. Finally, the selection of thrfiph (and the failure

to select thrbar) is likely to reflect the relative importance of phrase structure

over higher level metric structure in this corpus.

7.6 Summary

In this chapter, the predictive system developed in Chapter 6 has been applied

within the multiple viewpoint representational framework presented in Chap-

ter 5. A novel combination technique based on a weighted geometric mean

was introduced in §7.3 and empirically compared with an existing technique

based on a weighted arithmetic mean. The entropy-based technique described

in §6.2.4 was used to compute the combination weights. This method accepts

a parameter which fine-tunes the exponential bias given to distributions with

lower relative entropy. In the experiment, a range of parameterisations of the

two techniques were evaluated using cross entropy computed by 10-fold cross-

validation over Dataset 2 (see Chapter 4).

The results presented in §7.5 demonstrate that the weighted geometric com-

bination introduced in the present research tends to outperform arithmetic

combination especially for the combination of viewpoint models. Drawing on

related findings in machine learning research on combining multiple classifiers,

it was hypothesised that this asymmetry arises from the difference between

combining distributions derived from distinct data representations as opposed

to combining distributions derived from the same data representations. In a

second experiment, a feature selection algorithm was applied to select multiple

viewpoint systems with lower cross entropy over Dataset 2. The uncertainty

associated with the resulting system was significantly lower than that of the

multiple viewpoint system used in the first experiment. The selected viewpoints

highlight some interesting stylistic regularities of the corpus.

1993; Mahajan et al., 1999; Simons et al., 1997).



CHAPTER 8

MODELLING MELODIC EXPECTANCY

8.1 Overview

The objective in this chapter is to examine the predictive system developed in

Chapters 6 and 7 as a model of melodic expectancy in human perception of

music. The concept of expectancy has long been of interest in psychology and

the cognitive sciences. Expectancy is simply the anticipation of forthcoming

events based on currently available information and may vary independently in

both strength and specificity. Following Eerola (2004b), the term expectancy is

used here to refer to a generic state of anticipation of forthcoming events and

the term expectation to refer, more specifically, to the anticipation of a particular

future event or events. The ability to anticipate forthcoming events is clearly

very important in an adaptive sense since it may aid the direction of attention

to, and rapid processing of, salient environmental stimuli as well as facilitate

the preparation and execution of appropriate responses to them. In addition,

conflicts or correspondences between actual and anticipated effects often entail

significant psychological and biological effects.

The generation of expectations is recognised as being an especially impor-

tant factor in music cognition. From a music-analytic perspective, it has been

argued that the generation and subsequent confirmation or violation of expec-

tations is critical to aesthetic experience and the communication of emotion

and meaning in music (Meyer, 1956; Narmour, 1990). From a psychological

perspective, expectancy has been found to influence recognition memory for

music (Schmuckler, 1997), the production of music (Carlsen, 1981; Schmuck-

129
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ler, 1989, 1990; Thompson et al., 1997; Unyk & Carlsen, 1987), the perception

of music (Cuddy & Lunny, 1995; Krumhansl, 1995a,b; Krumhansl et al., 1999,

2000; Schellenberg, 1996, 1997; Schellenberg et al., 2002; Schmuckler, 1989)

and the transcription of music (Unyk & Carlsen, 1987). While most empirical

research has examined the influence of melodic structure, expectancy in music

also reflects the influence of rhythmic and metric structure (Jones, 1987; Jones

& Boltz, 1989) and harmonic structure (Bharucha, 1987; Schmuckler, 1989).

Patterns of expectation may be influenced both by intra-opus memory for spe-

cific musical structures as well as by more abstract extra-opus schemata ac-

quired through extensive exposure to music (Bharucha, 1987; Krumhansl et al.,

1999, 2000; Narmour, 1990).

The research presented in this chapter examines the cognitive mechanisms

underlying melodic expectations. Narmour (1990, 1992) has proposed a de-

tailed and influential theory of expectancy in melody which attempts to char-

acterise the set of implied continuations to an incomplete melodic pattern.

According to the theory, the expectations of a listener are influenced by two

distinct cognitive systems: first, a bottom-up system consisting of Gestalt-like

principles which are held to be innate and universal; and second, a top-down

system consisting of style-specific influences on expectancy which are acquired

through extensive exposure to music in a given style. Krumhansl (1995b) has

formulated the bottom-up system of the IR theory as a quantitative model, con-

sisting of a small set of symbolic rules, which is summarised in §8.2.2 in terms of

its principal characteristics and the manner in which it differs from the IR the-

ory of Narmour (1990). This model has formed the basis of a series of empirical

studies, reviewed in §8.2.3, which have examined the degree to which the ex-

pectations of listeners conform to the predictions of the IR theory and have

led to several different formulations of the principles comprising the bottom-up

component of the model.

While this body of research suggests that the expectations of listeners in

a given experiment may be accounted for by some collection of principles in-

tended to reflect the bottom-up and top-down components of Narmour’s theory,

the present research is motivated by empirical data that question the existence

of a small set of universal bottom-up rules that determine, in part, the expec-

tations of a listener. According to the theory presented in §8.3.1, expectancy

in melody can be accounted for entirely in terms of the induction of statistical

regularities in sequential melodic structure without recourse to an independent

system of innate symbolic predispositions. While innate constraints on music

perception certainly exist (Justus & Hutsler, 2005; McDermott & Hauser, 2005;
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Trehub, 1999), it is argued here that they are unlikely to be found in the form

of rules governing sequential dependencies between musical events. According

to the account developed here, observed patterns of melodic expectation can

be accounted for in terms of the induction of statistical regularities existing in

the music to which the listener is exposed. Patterns of expectation that do not

vary between musical styles are accounted for in terms of simple regularities

in music whose ubiquity may be related to the constraints of physical perfor-

mance. If this is the case, there is no need to make additional (and problematic)

assumptions about innate representations of sequential dependencies between

perceived events (Elman et al., 1996).

The specific goals of this research are twofold. The first is to examine

whether models of melodic expectancy based on statistical learning are ca-

pable of accounting for the patterns of expectation observed in empirical be-

havioural research. If such models can account for the behavioural data as well

as existing implementations of the IR theory, there would be no need to invoke

symbolic rules as universal properties of the human cognitive system. To the

extent that such models can be found to provide a more powerful account of

the behavioural data, the IR theory (as currently implemented) may be viewed

as an inadequate cognitive model of melodic expectancy by comparison. In-

stead of representing innate and universal constraints of the perceptual system,

the bottom-up principles may be taken to represent a formalised approximate

description of the mature behaviour of a cognitive system of inductive learn-

ing. The second goal of the present research is to undertake a preliminary

examination of the kinds of melodic feature that afford regularities capable of

supporting the acquisition of the patterns of expectation exhibited by listeners.

In order to achieve these goals, the statistical system developed in Chap-

ters 6 and 7 is used to model empirically observed patterns of human expec-

tation and the fit is compared to that obtained with a quantitative formulation

of the IR theory consisting of two bottom-up principles (Schellenberg, 1997).

The experimental methodology used to examine the behaviour of the statistical

model is discussed in §8.4.

The question of distinguishing acquired and inherited components of be-

haviour is a thorny one, all the more so in relation to the perception of cultural

artefacts (which are both created and appreciated through the application of

the human cognitive system). Following Cutting et al. (1992), three criteria

are used to compare the two cognitive models of melodic expectation. The first

criterion is scope, which refers to the degree to which a theory accounts for

a broad range of experimental data elicited in a variety of contexts. In order
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to compare the scope of the two models, the extent to which they account for

the patterns of expectation exhibited by listeners is examined and compared

in three experiments presented in §8.5, §8.6 and §8.7. The three experiments

examine expectations elicited in the context of increasingly complex melodic

stimuli and also incorporate analyses of more detailed hypotheses concerning

the melodic features that afford regularities capable of supporting the acquisi-

tion of the observed patterns of expectation.

The second criterion introduced by Cutting et al. (1992) is selectivity, which

refers to the degree to which a theory accounts specifically for the data of inter-

est and does not predict unrelated phenomena. In order to compare the models

on the basis of selectivity, the ability of each model to account for random pat-

terns of expectation is assessed and compared in each experiment.

The third criterion discussed by Cutting et al. (1992) is the principle of par-

simony (or simplicity): a general methodological heuristic expressing a prefer-

ence for the more parsimonious of two theories that each account equally well

for observed data. Although the precise operational definition of parsimony

is a point of debate in the philosophy of science, variants of the heuristic are

commonly used in actual scientific practice (Nolan, 1997; Popper, 1959; Sober,

1981). This provides some evidence that the principle is normative; i.e., that it

actually results in successful theories. Further evidence along these lines is pro-

vided by the fact that simplicity is commonly used a heuristic bias in machine

learning (Mitchell, 1997) and for hypothesis selection in abductive reasoning

(Paul, 1993).

Furthermore, quantifying the principle of parsimony in terms of algorithmic

information theory demonstrates that simple encodings of a set of data also pro-

vide the most probable explanations for that data (Chater, 1996, 1999; Chater

& Vitányi, 2003). In the closely related field of Bayesian inference, it is com-

mon to compare models according to their simplicity, measured as a function of

the number of free parameters they possess and the extent to which these pa-

rameters need to be finely tuned to fit the data (Jaynes, 2003; MacKay, 2003).

Chater (1999) presents simplicity as a rational analysis of perceptual organisa-

tion on the basis of these normative justifications together with evidence that

simple representations of experience are preferred in perception and cognition.

Although this application of simplicity is not a primary concern in the present

research, we touch on it again briefly in §8.4 as a justification for preferring

small feature sets and when discussing the results of Experiment 3 in §8.7.2.

In psychology (as in many other scientific fields), the relative parsimony of

comparable models is most commonly defined in terms of the number of free



8.2 BACKGROUND 133

parameters in each model (Cutting et al., 1992). Here, however, we use the

principle in a more general sense where the existence of a theoretical com-

ponent assumed by one theory is denied leading to a simpler theory (Sober,

1981). To the extent that the theory of inductive learning is comparable to the

top-down component of the IR theory (and in the absence of specific biologi-

cal evidence for the innateness of the bottom-up principles), the former theory

constitutes a more parsimonious description of the cognitive system than the

latter since additional bottom-up constraints assumed to constitute part of the

cognitive system are replaced by equivalent constraints known to exist in the

environment. In order to test this theoretical position, we examine the extent

to which the statistical model subsumes the function of the two-factor model of

expectancy in accounting for the behavioural data in each experiment.

Finally, the chapter concludes in §8.8 with a general discussion of the ex-

perimental results, their implications and some promising directions for further

development of the theory.

8.2 Background

8.2.1 Leonard Meyer’s Theory of Musical Expectancy

In his book, Emotion and Meaning in Music, Meyer (1956) discusses the dy-

namic cognitive processes in operation when we listen to music and how these

processes not only underlie the listener’s understanding of musical structure

but also give rise to the communication of affect and the perception of meaning

in music. Broadly speaking, Meyer proposes that meaning arises through the

manner in which musical structures activate, inhibit and resolve expectations

concerning other musical structures in the mind of the listener. Meyer notes

that expectations may differ independently in terms of the degree to which

they are passive or active, their strength and their specificity. He contends,

in particular, that affect is aroused when a passive expectation induced by an-

tecedent musical structures is temporarily inhibited or permanently blocked by

consequent musical structures. The perceptual uncertainty caused by such a vi-

olation of passive expectations may arise from different sources; it may depend

on the listener’s familiarity with a musical genre or a particular piece of music

or the composer may deliberately introduce structures to violate the expecta-

tions of the listener for aesthetic effect (Meyer, 1957).

Meyer discusses three ways in which the listener’s expectations may be vi-

olated. The first occurs when the expected consequent event is delayed, the

second when the antecedent context generates ambiguous expectations about
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consequent events and the third when the consequent is unexpected. While

the particular effect of the music is clearly dependent on the strength of the

expectation, Meyer argues that it is also conditioned by the specificity of the

expectation. Meaning may be attributed to the antecedent structure as a con-

sequence both of the expectations it generates and its relationship with the

consequent structure once this is apprehended.

In his later work, Meyer (1973) conducted more detailed analyses of the

melodic structures or processes in Western tonal music that give rise to more or

less specific expectations in the listener. A linear pattern, for example, consists

of a diatonic scale, a chromatic scale or some mixture of the two and creates

an expectation for the pattern to continue in stepwise motion of seconds and

thirds. A gap-fill pattern, on the other hand, consists of a large melodic interval

(the gap) which creates an expectation for a succession of notes that fill the gap

by presenting all or most of the notes skipped over by the gap.1 Rosner & Meyer

(1982, 1986) have provided some experimental support for the psychological

validity of such melodic processes. Rosner & Meyer (1982) trained listeners to

distinguish a number of passages of Western tonal music exemplifying either

a gap-fill or a changing-note pattern. The subjects were subsequently able to

classify correctly new instances of the two processes. Rosner & Meyer (1986)

extended these findings by demonstrating that listeners rated passages of clas-

sical and romantic music based on the same melodic process as more similar

to each other than passages based on different melodic processes. While von

Hippel (2000a) has conducted a re-analysis of the data obtained by Rosner &

Meyer (1982, 1986) which suggests that gap-fill patterns play little or no role

in the classification tasks (see also §8.2.3.2), Schmuckler (1989) reports spe-

cific experimental evidence that listener’s expectations follow the predictions

of linear and gap-fill melodic processes.

8.2.2 The Implication-Realisation Theory

Narmour (1990, 1992) has extended Meyer’s approach into a complex theory

of melodic perception called the Implication-Realisation (IR) theory. The theory

posits two distinct perceptual systems – the bottom-up and top-down systems of

melodic implication. While the principles of the former are held to be hard-

1Other melodic processes discussed by Meyer (1973) are more complex. A changing-note

pattern, for example, is one in which the main structural tones of the pattern consist of the

tonic followed by the seventh and second scale degrees (in either order) followed by a return

to the tonic. A complementary pattern is one in which a model pattern consisting of the main

structural tones of a phrase is followed by a complementary model in which the direction of

motion is inverted. Other melodic processes involve Adeste Fideles patterns, triadic patterns and

axial patterns (see Rosner & Meyer, 1982, 1986, for a summary).
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wired, innate and universal, the principles of the latter are held to be learnt

and hence dependent on musical experience.

The top-down system is flexible, variable and empirically driven

. . . In contrast, the bottom-up mode constitutes an automatic, un-

conscious, preprogrammed, “brute” system.

(Narmour, 1991, p. 3)

Although the theory is presented in a music-analytic fashion, it has psycholog-

ical relevance because it advances hypotheses about general perceptual princi-

ples which are precisely and quantitatively specified and therefore amenable to

empirical investigation (Krumhansl, 1995b; Schellenberg, 1996).

In the bottom-up system, sequences of melodic intervals vary in the degree

of closure that they convey according to the degree to which they exhibit the

following characteristics:

1. an interval is followed by a rest;

2. the second tone of an interval has greater duration than the first;

3. the second tone occurs in a stronger metrical position than the first;

4. the second tone is more stable (less dissonant) in the established key or

mode than the first;

5. three successive tones create a large interval followed by a smaller inter-

val;

6. registral direction changes between the two intervals described by three

successive tones.

Narmour (1990) provides rules for evaluating the influence of each condition

on the closure conveyed by a sequence of intervals. While strong closure signi-

fies the termination of ongoing melodic structure, an interval which is unclosed

is said to be an implicative interval and generates expectations for the following

interval which is termed the realised interval. The expectations generated by

implicative intervals are described by Narmour (1990) in terms of several prin-

ciples of continuation which are influenced by the Gestalt principles of prox-

imity, similarity, and good continuation. In particular, according to the theory,

small melodic intervals imply a process (the realised interval is in the same di-

rection as the implicative interval and will be similar in size) and large melodic

intervals imply a reversal (the realised interval is in a different direction to the

implicative interval and is smaller in size).
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The following description of the principles of the bottom-up system is based

on an influential summary by Krumhansl (1995b). Some of these principles

operate differently for small and large intervals which are defined by Narmour

(1990) to be those of five semitones or less and seven semitones or more, re-

spectively. The tritone is considered to be a threshold interval which may func-

tion as small or large (i.e., implying continuation or reversal) depending on the

context. The following principles make up the bottom-up system of melodic

implication.

Registral direction states that small intervals imply continuations in the same

registral direction whereas large intervals imply a change in registral di-

rection (cf. the gap-fill process of Meyer, 1973). The application of the

principle to small intervals is related to the Gestalt principle of good con-

tinuation.

Intervallic difference states that small intervals imply a subsequent interval

that is similar in size (±2 semitones if registral direction changes and

±3 semitones if direction continues), while large intervals imply a conse-

quent interval that is smaller in size (at least three semitones smaller if

registral direction changes and at least four semitones smaller if direction

continues). This principle can be taken as an application of the Gestalt

principles of similarity and proximity for small and large intervals respec-

tively.

Registral return is a general implication for a return to the pitch region (±2

semitones) of the first tone of an implicative interval in cases where the

realised interval reverses the registral direction of the implicative inter-

val. Krumhansl (1995b) coded this principle as a dichotomy although

Narmour (1990) distinguishes between exact and near registral return

suggesting that the principle be graded as a function of the size of the

interval between the realised tone and the first tone of the implicative in-

terval (Schellenberg, 1996; Schellenberg et al., 2002). This principle can

be viewed as an application of the Gestalt principle of proximity in terms

of pitch and similarity in terms of pitch interval.

Proximity describes a general implication for small intervals (five semitones or

less) between any two tones. The implication is graded according to the

absolute size of the interval. This principle can be viewed as an applica-

tion of the Gestalt principle of proximity.

Closure is determined by two conditions: first, a change in registral direction;
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and second, movement to a smaller-sized interval. Degrees of closure

exist corresponding to the satisfaction of both, one or neither of the con-

ditions.2

In this encoding, the first three principles (registral direction, intervallic dif-

ference and registral return) assume dichotomous values while the final two

(proximity and closure) are graded (Krumhansl, 1995b). Although the bottom-

up IR principles are related to generic Gestalt principles, they are parameterised

and quantified in a manner specific to music.

Narmour (1990) uses the principles of registral direction and intervallic dif-

ference to derive a complete set of 12 basic melodic structures each consisting

of an implicative and a realised interval. These structures are described in

Table 8.1 according to the direction of the realised interval relative to the im-

plicative interval (same or different), the size of the realised interval relative to

the implicative interval (larger, similar or smaller) and the size of the implica-

tive interval (large or small). The resulting structures are classified into two

groups: the retrospective structures are so-called because, although they differ

in terms of the size of the implicative interval, they have the same basic shape

and are heard in retrospect as variants of the corresponding prospective struc-

tures. While prospective interpretations of implications occur when the implied

realisation actually occurs, retrospective interpretations occur when the impli-

cations are denied. The strength of the implications generated by each basic

melodic structure depends on the degree to which it satisfies either or both of

the principles of registral direction and intervallic difference. In an experimen-

tal study of the IR theory, Krumhansl (1995b) reports limited support for the ba-

sic melodic structures suggesting that expectations depend not only on registral

direction and intervallic difference (which define the basic melodic structures)

but also the principles of proximity, registral return and closure which are less

explicitly formulated in the original presentation of the IR theory (Krumhansl,

1995b).

2Note that the principle of closure specifies the combinations of implicative and realised in-

tervals that contribute to melodic closure (defined above) which signifies the termination of

ongoing melodic structure and results in weak expectations.
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Basic melodic structure Implicative

interval size

Direction of realised cf.

implicative interval

Size of realised cf.

implicative interval

Registral

Direction

Intervallic

Difference

Process, P Small Same Similar X X

Intervallic Process, IP Small Different Similar ✗ X

Registral Process, VP Small Same Larger X ✗
Retrospective Reversal, (R) Small Different Smaller ✗ ✗

Retrospective Intervallic Reversal, (IR) Small Same Smaller X ✗
Retrospective Registral Reversal, (VR) Small Different Larger ✗ ✗

Reversal, R Large Same Smaller X X

Intervallic Reversal, IR Large Different Smaller ✗ X

Registral Reversal, VR Large Same Larger X ✗

Retrospective Process, (P) Large Different Similar ✗ ✗

Retrospective Intervallic Process, (IP) Large Same Similar X ✗
Retrospective Registral Process, (VP) Large Different Larger ✗ ✗

Table 8.1: The basic melodic structures of the IR theory (Narmour, 1990).
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In other respects, the quantitative model developed by Krumhansl (1995b)

lacks some of the more complex components of the IR theory. For example,

Narmour (1992) presents a detailed analysis of how the basic melodic struc-

tures combine together to form longer and more complex structural patterns of

melodic implication within the IR theory. Three or more consecutive structures

may form a chain in one of three ways depending on the closure implied by

the antecedent structure: if there is sufficient closure, the antecedent structure

will be separated from the subsequent structure (they share a tone); if closure is

weak or suppressed, the structure will be combined with the subsequent struc-

ture (they share an interval); and finally, one structure may also be embedded

in another. Chaining is encouraged by weak closure as measured by one or

more of its contributing factors. Another way in which the IR theory addresses

more complex melodic structure is through the emergence of higher hierarchi-

cal levels of structural representation when strong closure exists at lower levels.

Structural tones (those beginning or ending a melodic structure, combination

or chain) which are emphasised by strong closure at one level are said to trans-

form to the higher level.

According to the theory, the same bottom-up principles of implication oper-

ate on sequences of (possibly non-contiguous) tones at higher transformational

levels and, theoretically, a tone may be transformed to any number of higher

levels. According to the theory, transformed tones may retain some of the regis-

tral implications of the lower level – an example of the primacy of the bottom-

up aspects of the theory. Krumhansl (1997) has found some empirical support

for the psychological validity of higher level implications in experiments with

specially constructed melodic sequences. Finally, although quantitative imple-

mentations have tended to focus on the parametric scales of registral direction

and interval size, the IR theory also includes detailed treatment of other para-

metric scales such as duration, metric emphasis and harmony (Narmour, 1990,

1992).3

The IR theory also stresses the importance of top-down influences on melodic

expectancy. The top-down system is acquired on the basis of musical experience

and, as a consequence, varies across musical cultures and traditions. The influ-

ences exerted by the top-down system include both extra-opus knowledge about

style-specific norms, such as diatonic interpretations, tonal and metrical hier-

archies and harmonic progressions, and intra-opus knowledge about aspects

of a particular composition such as distinctive motivic and rhythmic patterns.

Bharucha (1987) makes a similar distinction between schematic and veridical

3The status of these aspects of melody in the IR theory is criticised by some reviewers (Cross,

1995; Thompson, 1996).
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influences on expectancy: while the former are influenced by schematic rep-

resentations of typical musical relationships acquired through extensive expo-

sure to a style, the latter are aroused by the activation of memory traces for

specific pieces or prior knowledge for what is to come. Finally, the top-down

system may generate implications that conflict with and potentially over-ride

those generated by the bottom-up system. Efforts to develop quantitative im-

plementations of the IR theory have tended to focus on the bottom-up system

(see §8.2.3.2) with the top-down system represented only by relatively simple

quantitative predictors (see §8.2.3.3).

It is important to emphasise that the present research is primarily concerned

with those concrete implementations of the IR theory that, although they lack

much of the music-analytic detail of Narmour’s theory, have been examined

in an empirical, psychological context. Although Narmour considered the five

principles summarised above to be “a fair representation of his model” (Schel-

lenberg, 1996, p. 77) and refers the reader to Krumhansl (1995b) amongst

others for “evaluations of the model” (Narmour, 1999, p. 446), the present re-

search is relevant to the IR theory of Narmour (1990, 1992) only to the extent

that the concrete implementations examined are viewed as representative of

the basic tenets of the theory. The IR theory has been the subject of several

detailed reviews published in the psychological and musicological literature

(Cross, 1995; Krumhansl, 1995b; Thompson, 1996) to which the reader is re-

ferred for more thorough summaries of its principal features.

8.2.3 Empirical Studies of Melodic Expectancy

8.2.3.1 Overview

Expectancy in music has been studied in experimental settings from a num-

ber of perspectives including the influence of rhythmic (Jones, 1987; Jones &

Boltz, 1989), melodic (Cuddy & Lunny, 1995; Krumhansl, 1995b) and har-

monic structure (Bharucha, 1987; Schmuckler, 1989). A variety of experimen-

tal paradigms have been employed to study expectancy including rating com-

pletions of musical contexts (Cuddy & Lunny, 1995; Krumhansl, 1995a; Schel-

lenberg, 1996), generating continuations to musical contexts (Carlsen, 1981;

Schmuckler, 1989; Thompson et al., 1997; Unyk & Carlsen, 1987), classifying

and remembering musical fragments (Schmuckler, 1997), reaction time exper-

iments (Aarden, 2003; Bharucha & Stoeckig, 1986) and continuous response

methodologies (Eerola et al., 2002). Although expectancy in music has been

shown to operate in a number of different contexts over a number of different
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parameters and structural levels in music, this review is restricted to studies

of expectancy in melodic music and, in particular, those which have specifi-

cally addressed the claims of the IR theory. Empirical research examining the

bottom-up and top-down systems is discussed in §8.2.3.2 and §8.2.3.3 respec-

tively.

8.2.3.2 The Bottom-up System

Cuddy & Lunny (1995) tested the bottom-up principles of the IR theory (as

quantified by Krumhansl, 1995b) against goodness-of-fit ratings collected for

continuation tones following a restricted set of two-tone melodic beginnings

(see also §8.5). A series of multiple regression analyses supported the inclusion

of intervallic difference, proximity and registral return in a theory of melodic

expectancy. Support was also found for a revised version of registral direction

which pertains to large intervals only and an additional bottom-up principle of

pitch height, based on the observation that ratings tended to increase as the

pitch height of the continuation tone increased. No support was found for the

bottom-up principle of closure.

Krumhansl (1995a) repeated the study of Cuddy & Lunny (1995) with six-

teen musically trained American subjects using a more complete set of two-tone

contexts ranging from a descending major seventh to an ascending major sev-

enth. Analysis of the results yielded support for modified versions of proximity,

registral return and registral direction but not closure or intervallic difference.

In particular, the results supported a modification of proximity such that it is

linearly graded over the entire range of intervals used and a modification of

registral return such that it varies as a linear function of the proximity of the

third tone to the first.4 Finally, the principle of registral direction was supported

by the analysis except for the data for the major seventh which carried strong

implications for octave completion (see also Carlsen, 1981). Support was also

found for two extra principles that distinguish realised intervals forming oc-

taves and unisons respectively. Krumhansl (1995a) also examined the effects

of bottom-up psychophysical principles finding support for predictors coding

the consonance of a tone with the first and second tones of the preceding inter-

val (based on empirical and theoretical considerations).

Other experimental studies have extended these findings to expectations

generated by exposure to melodic contexts from existing musical repertoires.

Krumhansl (1995b) reports a series of three experiments: the first used eight

melodic fragments taken from British folk songs, diatonic continuation tones

4As originally intended by Narmour (Schellenberg, 1996; Schellenberg et al., 2002).
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and twenty American subjects of whom 10 were musically trained and 10 un-

trained (see also §8.6); the second used eight extracts from Webern’s Lieder

(Opus 3, 4 and 15), chromatic continuation tones and 26 American subjects

generally unfamiliar with the atonal style of whom 13 were musically trained

and 13 untrained; and the third used 12 melodic fragments from Chinese folk

songs, pentatonic continuation tones and 16 subjects of whom 8 were Chinese

and 8 American. All the melodic contexts ended on an implicative interval and

all continuation tones were within a two octave range centred on the final tone

of the context. Analysis of the results yielded support for all of the bottom-up

principles (with the exception of intervallic difference for the second experi-

ment). Overall, the weakest contribution was made by intervallic difference

and the strongest by proximity. Support was also found for the unison principle

of Krumhansl (1995a).

Schellenberg (1996) argued that the bottom-up models discussed above are

overspecified and contain redundancy due to collinearities between their com-

ponent principles. As a result, the theory may be expressed more simply and

parsimoniously without loss of predictive power. Support was found for this

argument in an independent analysis of the experimental data first reported by

Krumhansl (1995b) using a model consisting of registral return, registral di-

rection revised such that it applies only to large intervals (although quantified

in a different manner to the revision made by Cuddy & Lunny, 1995) and a

revised version of proximity (similar in spirit, though quantitatively different,

to the revision made by Krumhansl, 1995a). In a further experiment, Schellen-

berg (1997) applied principal components analysis to this revised model which

resulted in the development of a two-factor model. The first factor is the prin-

ciple of proximity as revised by Schellenberg (1996); the second, pitch reversal

is an additive combination of the principles of registral direction (revised) and

registral return. This model is considerably simpler and more parsimonious

than Schellenberg’s revised model and yet does not compromise the predictive

power of that model in accounting for the data obtained by Krumhansl (1995b)

and Cuddy & Lunny (1995).

Similar experiments with Finnish spiritual folk hymns (Krumhansl et al.,

1999) and indigenous folk melodies (yoiks) of the Sami people of Scandinavia

(Krumhansl et al., 2000) have, however, questioned the cross-cultural validity

of such revised models. In both studies, it was found that the model developed

by Krumhansl (1995a) provided a much better fit to the data than those of

Krumhansl (1995b) and Schellenberg (1996, 1997). By contrast, Schellenberg

et al. (2002) have found the opposite to be true in experiments with adults and
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infants in a task involving the rating of continuation tones following contexts

taken from Acadian (French Canadian) folk songs. They suggest that the dif-

ference may be attributable partly to the fact that none of the musical contexts

used in the experiments of Krumhansl et al. (1999, 2000) ended in unambigu-

ously large and implicative intervals (Schellenberg et al., 2002, p. 530). While

Schellenberg et al. (2002) and Krumhansl et al. (1999) found strong support

for the principle of proximity with only limited influence of registral return and

intervallic difference, Krumhansl et al. (2000) found the strongest bottom-up

influence came from the principle of intervallic difference with weak support

for the principles of proximity and registral return. The consonance predictors

of Krumhansl (1995a) made a strong contribution to both models especially in

the case of the folk hymns (Krumhansl et al., 1999, 2000).

According to the IR theory, the principles of the bottom-up system exert a

consistent influence on expectations regardless of the musical experience of the

listener and the stylistic context notwithstanding the fact that the expectations

actually generated are predicted to be subject to these top-down influences.

Indirect support for this claim comes in the form of high correlations between

the responses of musically trained and untrained subjects (Cuddy & Lunny,

1995; Schellenberg, 1996) and between the responses of groups with differ-

ent degrees of familiarity with the musical style (Eerola, 2004a; Krumhansl

et al., 2000; Schellenberg, 1996). Regardless of the cognitive mechanisms on

which they depend, melodic expectations tend to exhibit a high degree of sim-

ilarity across levels of musical training and familiarity. Further evidence is

provided by qualitatively similar degrees of influence of the bottom-up prin-

ciples on the expectations of musically trained and untrained subjects (Cuddy

& Lunny, 1995; Schellenberg, 1996) and across levels of relevant stylistic ex-

perience (Krumhansl et al., 1999; Schellenberg, 1996). These findings have

typically been interpreted as support for the universality of the bottom-up prin-

ciples.

However, there are several reasons to question this conclusion. First, other

research on melodic expectancy has uncovered differences across levels of train-

ing. von Hippel (2002), for example, conducted an experiment in which trained

and untrained subjects were asked to make prospective contour judgements for

a set of artificially generated melodies. While the expectations of the trained

listeners exhibited the influence of pitch reversal and step momentum (the ex-

pectation that a melody will maintain its registral direction after small inter-

vals) the responses of the untrained listeners exhibited significantly weaker

influences of these principles. Furthermore, in a study of goodness-of-fit rat-
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ings of single intervals as melodic openings and closures, Vos & Pasveer (2002)

found that the responses of untrained listeners exhibited a greater influence of

intervallic direction than those of the trained listeners.

Second, it must be noted that the empirical data cover a limited set of cul-

tural groups and differences in observed patterns of expectation related to cul-

tural background have been found (Carlsen, 1981). Furthermore, some studies

have uncovered cross-cultural differences in the strength of influence of the

bottom-up principles on expectancy. Krumhansl et al. (2000), for example,

found that the correlations of the predictors for intervallic difference, registral

return and proximity were considerably stronger for the Western listeners than

for the Sami and Finnish listeners. Eerola (2004a) made similar observations

in a replication of this study with traditional healers from South Africa.

Third, the influence of the bottom-up principles appears to vary with the

musical stimuli used. Krumhansl et al. (2000) note that while the Finnish lis-

teners in their study of expectancy in Sami folk songs exhibited a strong influ-

ence of consonance, the Finnish listeners in the earlier study of expectancy in

Finnish hymns (Krumhansl et al., 1999) exhibited a weaker influence of conso-

nance in spite of having a similar musical background. Krumhansl et al. (2000)

suggest that this may indicate that the Finnish listeners in their study adapted

their judgements to the relatively large number of consonant intervals present

in their experimental materials. More generally, the research reviewed in this

section diverges significantly in the support found for the original bottom-up

principles, revised versions of these principles and new principles. The most

salient differences between the studies, and the most obvious cause of this dis-

crepancy, are the musical contexts used to elicit expectations. Krumhansl et al.

(2000, p. 41) conclude that “musical styles may share a core of basic principles,

but that their relative importance varies across styles.”

The influence of melodic context on expectations has been further stud-

ied by Eerola et al. (2002) who used a continuous response methodology (see

8.7.1) to collect subjects’ continuous judgements of the predictability of melodies

(folk songs, songs composed by Charles Ives and isochronous artificially gen-

erated melodies) simultaneously as they listened to them. The predictability

ratings were analysed using three models: first, the IR model; second, a model

based on the entropy (see §6.2.2) of a monogram distribution of pitch intervals

with an exponential decay within a local sliding window (the initial distribu-

tion was derived from an analysis of the EFSC, see Chapter 4); and third, a

variant of the second model in which the pitch class distribution was used and

was initialised using the key profiles of Krumhansl & Kessler (1982). The re-
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sults demonstrated that the second model and, in particular, the third model

accounted for much larger proportions of the variance in the predictability data

than the IR model while a linear combination of the second and third models

improved the fit even further (Eerola, 2004b). It was argued that the success

of these models was a result of their ability to account for the data-driven in-

fluences of melodic context.

Finally, it is important to note that universality or ubiquity of patterns of

behaviour does not imply innateness. To the extent that the bottom-up prin-

ciples capture universal patterns of behaviour, they may reflect the influence

of long-term informal exposure to simple and ubiquitous regularities in music

(Schellenberg, 1996; Thompson et al., 1997). In accordance with this posi-

tion, Bergeson (1999) found that while adults are better able to detect a pitch

change in a melody that fulfils expectations according to the IR theory (Nar-

mour, 1990) than in one that does not, six and seven month old infants do not

exhibit this difference in performance across conditions. In addition, Schellen-

berg et al. (2002) report experiments examining melodic expectancy in adults

and infants (covering a range of ages) using experimental tasks involving both

rating and singing continuation tones to supplied melodic contexts. The data

were analysed in the context of the IR theory as originally formulated (Schel-

lenberg, 1996) and as revised by Schellenberg (1997). The results demonstrate

that expectations were better explained by both models with increasing age

and musical exposure. While consecutive pitch proximity (Schellenberg, 1997)

was a strong influence for all listeners, the influence of more complex predic-

tors such as pitch reversal (Schellenberg, 1997) and registral return (Schel-

lenberg, 1996) only became apparent with the older listeners. Schellenberg

et al. (2002) conclude with a discussion of possible explanations for the ob-

served developmental changes in melodic expectancy: first, they may reflect

differences between infant-directed speech and adult-directed speech; second,

they may reflect general developmental progressions in perception and cogni-

tion (e.g., perceptual differentiation and working or sensory memory), which

exert influence across domains and modalities; and third, they may reflect in-

creasing exposure to music and progressive induction of increasingly complex

regularities in that music.

8.2.3.3 The Top-down System

In addition to studying the bottom-up principles of the IR theory, research has

also examined some putative top-down influences on melodic expectation many

of which are based on the key profiles of perceived tonal stability empirically
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quantified by Krumhansl & Kessler (1982). Schellenberg (1996) and Krumhansl

(1995b), for example, found support for the inclusion in a theory of expectancy

of a tonality predictor based on the key profile for the major or minor key of

the melodic fragment (see §3.6). Cuddy & Lunny (1995) examined the effects

of several top-down tonality predictors. The first consisted of four tonal hierar-

chy predictors similar to those of Schellenberg (1996) and Krumhansl (1995b)

based on the major and minor key profiles for the first and second notes of the

context interval. The second, tonal strength, was based on the assumption that

the rating of a continuation tone would be influenced by the degree to which

the pattern of three tones suggested a tonality.5 The third tonality predictor,

tonal region, was derived by listing all possible major and minor keys in which

each implicative interval was diatonic and coding each continuation tone ac-

cording to whether it represented a tonic of one of these keys. Support was

found for all of these top-down influences although it was also found that the

predictors for tonal hierarchy could be replaced by tonal strength and tonal re-

gion without loss of predictive power. Krumhansl (1995a) extended the tonal

region predictor developed by Cuddy & Lunny (1995) by averaging the key

profile data for all keys in which the two context tones are diatonic. Strong

support was found for the resulting predictor variable for all context intervals

except for the two (ascending and descending) tritones. In contrast, no support

was found for the tonal strength predictor of Cuddy & Lunny (1995).

While neither Cuddy & Lunny (1995) nor Schellenberg (1996) found any

effect of musical training on the influence of top-down tonality predictors, Vos

& Pasveer (2002) found that the consonance of an interval (based on music-

theoretical considerations) influenced the goodness-of-fit judgements of the

trained listeners to a much greater extent than those of the untrained listen-

ers in their study of intervals as candidates for melodic openings and closures.

In a further analysis of their own data, Krumhansl et al. (1999) sought to dis-

tinguish between schematic and veridical top-down influences on expectations

(Bharucha, 1987, see §8.2.2). The schematic predictors were the two-tone con-

tinuation ratings obtained by Krumhansl (1995a) and the major and minor

key profiles (Krumhansl & Kessler, 1982). The veridical predictors consisted of

monogram, digram and trigram distributions of tones in the entire corpus of

spiritual folk hymns and a predictor based on the correct continuation tone. It

was found that the schematic predictors showed significantly stronger effects

for the non-experts in the study than the experts. In contrast, veridical pre-

dictors such as monogram and trigram distributions and the correct next tone

5The key-finding algorithm developed by Krumhansl and Schmuckler (Krumhansl, 1990) was

used to rate each of the patterns for tonal strength.



8.2 BACKGROUND 147

showed significantly stronger effects for the experts than for the non-experts.

Krumhansl et al. (2000) found similar effects in their study of North Sami yoiks

and showed that these effects were related to familiarity with individual pieces

used in the experiment. These findings suggest that increasing familiarity with

a given stylistic tradition tends to weaken the relative influence of top-down

schematic knowledge of Western tonal-harmonic music on expectancy and in-

crease the relative influence of specific veridical knowledge of the style.

There is some evidence, however, that the rating of continuation tones may

elicit schematic tonal expectations specifically related to melodic closure since

the melody is paused to allow the listener to respond. Aarden (2003) reports an

experiment in which subjects were asked to make retrospective contour judge-

ments for each event in a set of European folk melodies. Reaction times were

measured as an indication of the strength and specificity of expectations under

the hypothesis that strong and accurate expectations facilitate faster responses

(see also Bharucha & Stoeckig, 1986). The resulting data were analysed using

the two-factor model of Schellenberg (1997). While a tonality predictor based

on the key profiles of Krumhansl & Kessler (1982) made no significant contri-

bution to the model, a monogram model of pitch frequency in the EFSC (see

Chapter 4) did prove to be a significant predictor. In a second experiment, sub-

jects were presented with a counter indicating the number of notes remaining

in the melody and asked to respond only to the final tone. In this case, the

Krumhansl & Kessler tonality predictor, which bears more resemblance to the

distribution of phrase-final tones than that of all melodic tones in the EFSC,

made a significant contribution to the model. On the basis of these results,

Aarden (2003) argues that the schematic effects of tonality may be limited to

phrase endings whereas data-driven factors, directly reflecting the structure

and distribution of tones in the music, have more influence in melodic contexts

that do not imply closure.

Finally, it is worth noting that the top-down tonality predictors that have

been examined in the context of modelling expectation have typically been

rather simple. In this regard, Povel & Jansen (2002) report experimental ev-

idence that goodness ratings of entire melodies depend not so much on the

overall stability of the component tones (Krumhansl & Kessler, 1982) but the

ease with which the listener is able to form a harmonic interpretation of the

melody in terms of both the global harmonic context (key and mode) and the

local movement of harmonic regions. The latter process is compromised by the

presence of non-chord tones to the extent that they cannot be assimilated by

means of anchoring (Bharucha, 1984) or by being conceived as part of a run
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of melodic steps. Povel & Jansen (2002) argue that the harmonic function of a

region determines the stability of tones within that region and sets up expecta-

tions for the resolution of unstable tones.

8.2.3.4 Summary

While the results of many of the individual studies reviewed in the foregoing

sections have been interpreted in favour of the IR theory, the overall pattern

emerging from this body of research is rather different. Empirical research has

demonstrated that some collection of principles based on the bottom-up IR sys-

tem can generally account rather well for the patterns of expectation observed

in a given experiment but it is also apparent that any such set constitutes too

inflexible a model to fully account for the effects of differences across exper-

imental settings in terms of the musical experience of the listeners and the

melodic contexts in which expectations are elicited. Regarding the top-down

system, research suggests that the expectations of listeners show strong effects

of schematic factors such as tonality although the predictors typically used to

model these effects may be too inflexible to account for the effects of changing

the context in which expectations are elicited.

8.3 Statistical Learning of Melodic Expectancy

8.3.1 The Theory

A theory of the cognitive mechanisms underlying the generation of melodic ex-

pectations is presented here. It is argued that this theory is capable of account-

ing more parsimoniously for the behavioural data than the quantitative formu-

lations of the IR theory while making fewer assumptions about the cognitive

mechanisms underlying the perception of music. From the current perspective,

the quantitatively formulated principles of the IR theory provide a descriptive,

but not explanatory, account of expectancy in melody: they describe human

behaviour at a general level but do not account for the cognitive mechanisms

underlying that behaviour. To the extent that the two theories produce similar

predictions, they are viewed as lying on different levels of explanation (Marr,

1982; McClamrock, 1991). Both bottom-up and top-down components of the

quantitatively formulated IR models have been found to provide an inadequate

account of the detailed influences of musical experience and musical context

on melodic expectancy (see §8.2.3). The theory proposed here is motivated by

the need to formulate a more comprehensive account of these influences.
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In particular, the present theory questions the need, and indeed the validity,

of positing a distinction between bottom-up and top-down influences on ex-

pectation, and especially the claim that the principles of the bottom-up system

reflect innately specified representations of sequential dependencies between

musical events. According to the theory, the bottom-up principles of the IR the-

ory constitute a description of common regularities in music which are acquired

as mature patterns of expectation through extensive exposure to music. Rather

than invoking innate representational rules (such as the bottom-up principles

and the basic melodic structures of the IR theory), this theory invokes innate

general purpose learning mechanisms which impose architectural rather than

representational constraints on cognitive development (Elman et al., 1996).

Given exposure to appropriate musical stimuli, these learning mechanisms can

acquire domain specific representations and behaviour which is approximated

by the principles of the IR theory (see also Bharucha, 1987; Gjerdingen, 1999b).

It is hypothesised that the bottom-up principles of the quantitatively for-

mulated IR models (as well as other proposed bottom-up influences on ex-

pectancy) reflect relatively simple musical regularities which display a degree

of pan-stylistic ubiquity. To the extent that this is the case, these bottom-up IR

principles are regarded as formalised approximate descriptions of the mature

behaviour of a cognitive system that acquires representations of the statistical

structure of the musical environment. On the other hand, top-down factors,

such as tonality, reflect the induction of rather more complex musical struc-

tures which show a greater degree of variability between musical styles. If

this is indeed the case, a single learning mechanism may be able to account

for the descriptive adequacy of some of the bottom-up principles across de-

grees of expertise and familiarity as well as for differences in the influence of

other bottom-up principles and top-down factors. By replacing a small num-

ber of symbolic rules with a general-purpose learning mechanism, the theory

can account more parsimoniously for both consistent and inconsistent patterns

of expectation between groups of listeners on the basis of differences in prior

musical exposure, the present musical context and the relative robustness of

musical regularities across stylistic traditions.

8.3.2 Supporting Evidence

We shall discuss existing evidence that supports the proposed theory of ex-

pectancy in terms of the necessary conditions that must be satisfied for the

theory to hold. In particular we ask two questions: Are the regularities in mu-

sic sufficient to support the acquisition of the experimentally observed patterns
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of melodic expectation? And: Is there any evidence that listeners possess cogni-

tive mechanisms that are capable of acquiring such behaviour through exposure

to music?

Regarding the first question, research suggests that expectancy operates

very similarly in tasks which elicit ratings of continuations to supplied melodic

contexts (see §8.2.3) and tasks which elicit spontaneous production of con-

tinuations to melodic contexts (Schellenberg, 1996; Schmuckler, 1989, 1990;

Thompson et al., 1997). If the perception and production of melodies are influ-

enced by similar principles, it is pertinent to ask whether existing repertoires of

compositions also reflect such influences of melodic implication. Thompson &

Stainton (1996, 1998) have examined the extent to which the bottom-up prin-

ciples of the IR theory are satisfied in existing musical repertoires including the

soprano and bass voices of chorales harmonised by J. S. Bach, melodies com-

posed by Schubert and Bohemian folk melodies. Preliminary analyses indicated

that significant proportions of implicative intervals satisfy the principles of in-

tervallic difference, registral return and proximity while smaller proportions

satisfied the other bottom-up principles. The proportions were highly consis-

tent across the three datasets. Furthermore, a model consisting of the five

bottom-up principles accounted for much of the variance in the pitch of tones

following implicative intervals in the datasets (as well as closural intervals in

the Bohemian folk melodies – Thompson & Stainton, 1998). With the exception

of intervallic difference for the Schubert dataset, all five principles contributed

significantly to the predictive power of the model. These analyses demonstrate

that existing corpora of melodic music contain regularities that tend to follow

the predictions of the IR theory and that are, in principle, capable of supporting

the acquisition of patterns of expectation that accord with its principles.

Given these findings, an argument can be made that the observed regulari-

ties in music embodied by the bottom-up IR principles reflect universal physical

constraints of performance rather than attempts to satisfy universal properties

of the perceptual system. Examples of such constraints include the relative dif-

ficulty of singing large intervals accurately and the fact that large intervals will

tend towards the limits of a singer’s vocal range (Russo & Cuddy, 1999; Schel-

lenberg, 1997). von Hippel & Huron (2000) report a range of experimental

evidence supporting the latter observation as an explanation of post-skip rever-

sals (cf. the gap-fill pattern of Meyer, 1973 and the principles of registral direc-

tion and registral return of Narmour, 1990) which they account for in terms of

regression towards the mean necessitated by tessitura. In one experiment, for

example, it was found that evidence for the existence of post-skip reversals in
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a range of musical styles is limited to those skips (intervals of three semitones

or more) that cross or move away from the median pitch of a given corpus of

music. When skips approach the median pitch or land on it, there is no sig-

nificant difference in the proportions of continuations and reversals of registral

direction. In spite of this, von Hippel (2002) found that the expectations of lis-

teners actually reflect the influence of perceived post-skip reversals suggesting

that patterns of expectation are acquired as heuristics representing simplified

forms of more complex regularities in music.

We turn now to the question of whether the cognitive mechanisms exist

to acquire the observed patterns of melodic expectation through exposure to

existing music. Saffran et al. (1999) have elegantly demonstrated that both

adults and eight month old infants are capable of learning to segment con-

tinuous tone sequences on the basis of differential transitional probability dis-

tributions of tones within and between segments. On the basis of these and

similar results with syllable sequences, Saffran et al. (1999) argue that human

infants and adults possess domain general learning mechanisms which read-

ily compute transitional probabilities on exposure to auditory sequences. Fur-

thermore, Oram & Cuddy (1995) conducted a series of experiments in which

continuation tones were rated for musical fit in the context of artificially con-

structed sequences of pure tones in which the tone frequencies were carefully

controlled. The continuation tone ratings of both trained and untrained listen-

ers were significantly related to the frequency of occurrence of the continuation

tone in the context sequence. Cross-cultural research has also demonstrated

the influence of tone distributions on the perception of music (Castellano et al.,

1984; Kessler et al., 1984; Krumhansl et al., 1999). In particular, Krumhansl

et al. (1999) found significant influences of second order distributions on the

expectations of the expert listeners in their study (see §8.2.3.2).

There is also evidence that listeners are sensitive to statistical regularities in

the size and direction of pitch intervals in the music they are exposed to. In a

statistical analysis of a large variety of Western melodic music, for example, Vos

& Troost (1989) found that smaller intervals tend to be of a predominantly de-

scending form while larger ones occur mainly in ascending form. A behavioural

experiment demonstrated that listeners are able to correctly classify artificially

generated patterns that either exhibited or failed to exhibit the regularity. Vos &

Troost consider two explanations for this result: first, that it is connected with

the possibly universal evocation of musical tension by ascending large intervals

and of relaxation by descending small intervals (Meyer, 1973); and second,

that it reflects overlearning of conventional musical patterns. Vos & Troost do
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not strongly favour either account, each of which depends on the experimen-

tally observed sensitivity of listeners to statistical regularities in the size and

direction of melodic intervals.

In summary, research has demonstrated that existing repertoires of music

exhibit regularities which broadly follow the predictions of the bottom-up prin-

ciples of the IR theory and which, in some cases, may be related to physical

constraints of performance. Furthermore, there is evidence that listeners are

sensitive to statistical regularities in music and that these regularities are ex-

ploited in the perception of music.

8.3.3 The Model

The theory of melodic expectancy presented in §8.3.1 predicts that it should be

possible to design a statistical learning algorithm, such as the one developed

in Chapters 6 and 7, with no initial knowledge of sequential dependencies be-

tween melodic events which, given exposure to a reasonable corpus of music,

would exhibit similar patterns of melodic expectation to those observed in ex-

periments with human subjects (see also Bharucha, 1993).

The computational system developed in Chapters 6 and 7 provides an at-

tractive model of melodic expectancy for several reasons. First, in accordance

with the theory put forward here, while it is endowed (via the multiple view-

points framework) with sensitivities to certain musical features, the untrained

system has no structured expectations about sequential melodic patterns. Any

structure found in the patterns of expectation exhibited by the trained system

is a result of statistical induction of regularities in the training corpus. Sec-

ond, the system simulates at a general level of description the situation of the

listener attending to a melody. When exposed to a novel melody, the model ex-

hibits patterns of expectation about forthcoming events based on the foregoing

melodic context as do human listeners. Furthermore, these patterns of expec-

tation are influenced both by existing extra-opus and incrementally increasing

intra-opus knowledge (see §6.2.4).

Finally, the patterns of expectation exhibited by the system are sensitive

to many different musical attributes which are motivated by previous research

on music perception as discussed in §5.4. In this regard, note that both the

present theory and the IR theory assume a sensitivity to certain features of

discrete events making up the musical surface. If the system is to account for the

same experimental observations as the two-factor model (Schellenberg, 1997),

it must be capable of representation and inference over the dimensions of size

and direction of melodic intervals (in which terms the bottom-up principles
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are expressed) and pitches and scale degrees (in which terms the top-down

principles have generally been expressed).

It is important to make a clear distinction between the cognitive theory of

melodic expectancy presented in §8.3.1 and the statistical model of melodic ex-

pectancy embodied in the computational system presented in Chapters 6 and

7. In the remainder of the chapter, unless otherwise specified, references to the

theory or the model will honour this distinction (see §2.6). While the computa-

tional model embodies the theory, to the extent that it relies purely on statistical

learning, it also goes well beyond the theory in the details of its implementa-

tion. This is necessary in order for it to exhibit behaviours of any complexity

(see also §8.8).

8.4 Experimental Methodology

The present research has two primary objectives which, in accordance with the

level at which the theory is presented (and the manner in which it diverges from

the IR theory), are stated at a rather high level of description. The first objective

is to test the hypothesis that the statistical model developed in Chapters 6 and

7 is able to account for the patterns of melodic expectation observed in experi-

ments with human subjects at least as well as the IR theory. Since the statistical

model acquires its knowledge of sequential melodic structure through exposure

to melodic music, corroboration of the hypothesis would demonstrate that it is

not necessary to posit innate and universal musical rules to account for the ob-

served patterns of melodic expectation; melodic expectancy can be accounted

for in terms of statistical induction of both intra- and extra-opus regularities in

existing musical corpora.

The methodological approach followed in examining this hypothesis com-

pares the patterns of melodic expectation generated by the computational model

to those of human listeners observed in previously reported experiments. Three

experiments are presented which elicit expectations in increasingly complex

melodic contexts: first, in the context of the single intervals used by Cuddy &

Lunny (1995); second, in the context of the excerpts from British folk songs

used by Schellenberg (1996); and third, throughout the two chorale melodies

used by Manzara et al. (1992).

In each experiment, the statistical models are compared with the two-factor

model of Schellenberg (1997) plus a tonality predictor. Although the two-factor

model did not perform as well as that of Krumhansl (1995a) in accounting

for the expectations of the listeners in the experiments of Krumhansl et al.
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(1999, 2000), the converse was true in the experiments of Schellenberg et al.

(2002). While the debate surrounding the precise quantitative formulation of

the bottom-up system appears likely to continue, this particular IR variant was

chosen from those reviewed in §8.2.3.2 because it provides the most parsimo-

nious formulation of the bottom-up principles without loss of predictive power

in accounting for the data collected by Cuddy & Lunny (1995) and Schellenberg

(1996) which are used in Experiments 1 and 2 respectively. Following common

practice, the two-factor model was supplemented with a tonality predictor de-

veloped in previous research. In the first experiment, the influence of tonality

was modelled using the tonal region predictor of Krumhansl (1995a) while the

second and third experiments used the Krumhansl & Kessler key profiles for the

notated key of the context.

Following Cutting et al. (1992) and Schellenberg et al. (2002), the statisti-

cal model and the two-factor model of expectancy are compared on the basis of

scope, selectivity and simplicity. Regarding the scope of the two models, since

the individual subject data were not available for any of the experiments and

the two models are not nested, Williams’ t statistic for comparing dependent

correlations (Hittner et al., 2003; Steiger, 1980) was used to compare the two

models in each experiment. It is expected that the relative performance of the

statistical model will increase with longer and more realistic melodic contexts.

The selectivity of the models was assessed by using each model to predict ran-

dom patterns of expectation in the context of the experimental stimuli used

in each experiment. Finally, with regard to simplicity, we examine the extent

to which the statistical model subsumes the function of the bottom-up compo-

nents of the two-factor model in accounting for the behavioural data used in

each experiment. An alpha level of 0.05 is used for all statistical tests.

The second objective is to examine which musical attributes present in, or

simply derivable from, the musical surface afford regularities that are capable

of supporting the acquisition of the empirically observed patterns of melodic ex-

pectation. In each experiment, hypotheses are presented regarding the specific

attributes likely to afford such regularities. The approach taken to testing these

hypotheses has been to select sets of viewpoints which maximise the fit between

experimentally determined human patterns of expectation and those exhibited

by the computational model. The selection of viewpoints was achieved using

the forward stepwise selection algorithm described in §7.4. The use of for-

ward selection and the preference for feature deletions over additions may be

justified by the observation that simplicity appears to be a powerful and gen-

eral organising principle in perception and cognition (Chater, 1999; Chater &
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Vitányi, 2003). The performance measure used in these experiments is the re-

gression coefficient of the observed human patterns of expectation (e.g., mean

continuation tone ratings) for a given set of melodic stimuli regressed on the

patterns of expectation exhibited by the statistical model (using a given set of

features) for the same set of stimuli. The evaluation functions used will be

described in more detail for each experiment in turn (see §8.5, §8.6 and §8.7).

The feature sets used in these experiments consist of subsets of the attribute

types shown in Tables 5.2 and 5.4 which were described and motivated in terms

of previous research on music perception and cognition in §5.4. The corpus

used to train the models consisted of Datasets 1, 2 and 9 (see Chapter 4). In

discussing the experimental results, we shall talk about finding support for the

influence of a particular feature on melodic expectancy. It should be kept in

mind that this shorthand is intended to convey that support has been found

for the existence of statistical regularities in a given melodic dimension that

increase the fit between the behaviour of the model and the observed human

behaviour.

8.5 Experiment 1

8.5.1 Method

The objective in this experiment was to examine how well the statistical model

accounts for patterns of expectation following single interval contexts. Cuddy

& Lunny (1995) report an experiment in which listeners were asked to rate

continuation tones following a two tone context. The subjects were 24 under-

graduate students at Queen’s University in Canada of whom half were musically

trained and half untrained. The stimuli consisted of eight implicative contexts

corresponding to ascending and descending intervals of a major second, a mi-

nor third, a major sixth and a minor seventh. All subjects heard half of the

contexts ending on C4 and half ending on F♯4 (see Table 8.2) in an attempt

to discourage them from developing an overall top-down sense of tonality for

the entire experiment. Continuation tones consisted of all 25 chromatic tones

from one octave below to one octave above the second tone of the implicative

context. The two tones of each context were presented as a dotted minim fol-

lowed by a crotchet while all continuation tones had a minim duration. These

durations were chosen to create a sense of 4/4 metre continuing from the first

bar (containing the implicative interval) to the second bar (containing the con-

tinuation tone).

The subjects were asked to rate how well the continuation tone continued
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Context interval Second tone

Interval Direction C F♯

Major second Ascending B♭3–C4 E4–F♯4
Descending D4–C4 G♯4–F♯4

Minor third Ascending A3–C4 D♯4–F♯4
Descending E♭4–C4 A4–F♯4

Major sixth Ascending E♭3–C4 A3–F♯4
Descending A4–C4 D♯5–F♯4

Minor seventh Ascending D3–C4 G♯3–F♯4
Descending B♭4–C4 E5–F♯4

Table 8.2: The melodic contexts used in Experiment 1 (after Cuddy & Lunny, 1995,

Table 2).

the melody on a scale from 1 (extremely bad continuation) to 7 (extremely

good continuation). The experiment yielded 200 continuation tone ratings for

each subject. An analysis of variance with the factors musical training, con-

text interval and continuation tone yielded one significant interaction between

context interval and continuation tone. Since there was no effect of training

and the data exhibited high inter-subject correlation, the ratings for each con-

tinuation tone were averaged across subjects and training levels. The mean

continuation tone ratings for trained and untrained subjects are available in

Cuddy & Lunny (1995, Appendix).

In the present experiment, the trained model was exposed to each of the

eight contexts used by Cuddy & Lunny (1995) for all of which the second tone

was F♯4. Due to the short contexts involved, the short-term model was not

used in this experiment. In each case, the model returns a probability distri-

bution over the set of 25 chromatic pitches ranging from F♯3 to F♯5. Since

the distributions returned by the model are constrained to sum to one and are

likely to violate the parametric normality assumption, each of the pitches was

assigned a rank according to its estimated probability in inverse order (such

that high probability pitches were assigned high ranks). The regression coef-

ficient of the mean ratings obtained by Cuddy & Lunny (1995) regressed on

the distribution ranks of the model was used as a performance metric in view-

point selection. In terms of features used, chromatic pitch (cpitch) and pitch

class (cpitch-class, see Shepard, 1982) were included although they were

not expected to exert significant influences on expectancy as a result of the

limited context. It was hypothesised that more abstract melodic features such

as chromatic pitch interval (cpint) and interval class (cpcint) would be the
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Figure 8.1: Correlation between subjects’ mean goodness-of-fit ratings and the pre-
dictions of the statistical model for continuation tones in the experiments of Cuddy &

Lunny (1995).

most important source of regularities underlying melodic expectancy (Dowling

& Bartlett, 1981). Pitch contour (contour) was also included to examine the

effects of a still more abstract representation of registral direction (Dowling,

1994). It was also hypothesised that the patterns of expectation may reflect a

mode of perception in which subsequent tones are appraised in relation to the

first tone in the context (cpintfip). Given the impoverished context, a sense of

tonality may have been inferred based on the first tone of the context as tonic

(Cohen, 2000; Cuddy & Lunny, 1995; Thompson et al., 1997). In spite of the

limited context, it was also hypothesised that pitch may have interacted with

rhythmic dimensions of the contexts to generate expectations (Jones, 1987;

Jones & Boltz, 1989). Consequently, a set of linked viewpoints (see §5.4) was

included in the experiment which modelled interactions between three sim-

ple pitch-based attributes (cpitch, cpint and contour) and three rhythmic

attributes (dur, dur-ratio and ioi).

8.5.2 Results

The final multiple viewpoint system selected in this experiment enabled the

statistical model to account for approximately 72% of the variance in the mean

continuation tone ratings [R = 0.846, R2
adj = 0.715, F (1, 198) = 500.2, p <
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Stage Viewpoint Added R

1 cpint⊗dur 0.775

2 cpintfip 0.840

3 cpcint 0.846

Table 8.3: The results of viewpoint selection in Experiment 1.

0.001]. The relationship between the patterns of expectation exhibited by the

model and by the subjects in the experiments of Cuddy & Lunny (1995) is

plotted with the fitted regression line in Figure 8.1. The statistical model

provided a slightly closer fit to the data than the two-factor model, which ac-

counted for approximately 68% of the variance in the data [R = 0.827, R2
adj =

0.679, F (3, 196) = 141.2, p < 0.001], although the difference was found not to

be significant [t(197) = 1.102, p = 0.272].

In order to examine the hypothesis that the statistical model subsumes the

function of the bottom-up components of the two-factor model, a more detailed

comparison of the two models was conducted. The expectations of the statis-

tical model exhibit significant correlations in the expected directions with both

components of the two-factor model: Proximity [r(198) = −0.670, p < 0.001];

and Reversal, [r(198) = 0.311, p < 0.001]. Furthermore, the fit of the statistical

model to the behavioural data was not significantly improved by adding Prox-

imity [F (1, 197) = 1.537, p = 0.217], Reversal [F (1, 197) = 0.001, p = 0.975] or

both of these factors [F (2, 196) = 0.809, p = 0.45] to the regression model. This

analysis indicates that the statistical model entirely subsumes the function of

Proximity and Reversal in accounting for the data collected by Cuddy & Lunny

(1995).

Finally, in order to examine the selectivity of the two models, 50 sets of

ratings for the stimuli (N = 200 in each set) were generated through random

sampling from a normal distribution with a mean and SD equivalent to those

of the listeners’ ratings. With an alpha level of 0.05, just two of the 50 random

vectors were fitted at a statistically significant level by each of the models and

there was no significant difference between the fit of the two models for any of

the 50 trials. Neither model is broad enough in its scope to successfully account

for random data.

The results of viewpoint selection are shown in Table 8.3. As predicted on

the basis of the short contexts, the viewpoints selected tended to be based on

pitch interval structure. The limited context for the stimulation of expectancy

is probably insufficient for the evocation of statistical regularities in chromatic

pitch structure. The fact that cpint⊗dur was selected over and above its
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primitive counterpart (cpint) suggests that expectations were influenced by

the interaction of regularities in pitch interval and duration. It might appear

surprising that regularities in rhythmic structure should influence expectations

with contexts so short. Although this may be an artefact, recall that Cuddy &

Lunny (1995) carefully designed the rhythmic structure of their stimuli to in-

duce a particular metric interpretation. The issue could be investigated further

by systematically varying the rhythmic structure of the stimuli used to obtain

goodness-of-fit ratings. Finally, the results reveal a strong influence of cpintfip

on expectancy which may be partly accounted for by the brevity of the con-

texts, which do not contain enough information to reliably induce a tonality,

combined with the relatively long duration of the first tone. Regularities in

the three selected dimensions of existing melodies are such that the statistical

model provides an equally close fit to the patterns of expectation observed in

the experiment of Cuddy & Lunny (1995) as the two-factor model.

8.6 Experiment 2

8.6.1 Method

The objective of this experiment was to extend the approach of Experiment 1

to patterns of expectation observed after longer melodic contexts drawn from

an existing musical repertoire. Schellenberg (1996, Experiment 1) reports an

experiment in which listeners were asked to rate continuation tones following

eight melodic fragments taken from British folk songs (Palmer, 1983; Sharp,

1920). The subjects were 20 members of the community of Cornell University

in the USA of whom half had limited musical training and half had moderate

musical training. Figure 8.2 shows the eight melodic contexts of which four

are in a minor mode and four in a major mode. They were chosen such that

they ended on an implicative interval (see §8.2.2). Four of the fragments end

with one of two small intervals (2 or 3 semitones) in ascending and descend-

ing forms while the other four end with one of two large intervals (9 or 10

semitones) in ascending and descending forms. Continuation tones consisted

of the 15 diatonic tones in a two octave range centred on the final tone of the

melodic context. The subjects were asked to rate how well the continuation

tone continued the melody on a scale from 1 (extremely bad continuation) to 7

(extremely good continuation). The experiment yielded 120 continuation tone

ratings for each subject. Significant inter-subject correlation for all subjects

warranted the averaging of the data across subjects and training levels. The

mean continuation tone ratings are available in Schellenberg (1996, Appendix



160 MODELLING MELODIC EXPECTANCY 8.6

Fragment 1

Fragment 2

Fragment 3

Fragment 4

Fragment 5

Fragment 6
3

Fragment 7

Fragment 8

Figure 8.2: The melodic contexts used in Experiment 2 (after Schellenberg, 1996,

Figure 3).

A).

The procedure was essentially the same as in Experiment 1 except that the

statistical model returned distributions over an alphabet consisting of the dia-

tonic tones an octave above and an octave below the final tone of each melodic

fragment. Since the melodic fragments were longer, the short-term model was

used in this experiment. Since it has been found that listeners are sensitive to

short-term pitch distributional information in melodic material (Oram & Cuddy,

1995; Saffran et al., 1999) and Schellenberg & Trehub (2003) have demon-

strated accurate long-term pitch memory for familiar instrumental songs in or-

dinary listeners, it might be expected that regularities based on pitch height

(e.g., cpitch or cpitch-class) will have an influence on expectation. Several
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viewpoints, corresponding to hypotheses about the musical regularities under-

lying the observed patterns of expectation, were added to the set used in Ex-

periment 1. In particular, it was hypothesised that melodic expectations might

be influenced by tonality and the interaction of pitch with metric features. It

is assumed that these score-based features are representative of perceived fea-

tures and that the cognitive tasks of melodic segmentation (e.g., Deliège, 1987;

Ferrand et al., 2002), tonality induction (Vos, 2000) and metre induction (e.g.,

Eck, 2002; Toiviainen & Eerola, 2004) may be addressed independently from

the present modelling concerns.

Regarding metric information, it was hypothesised that expectations might

be influenced by regularities in pitch interval between notes occurring on met-

ric pulses (thrtactus) and the interval of a note from the first note in the

bar (cpintfib). In this case, the stimuli were presented to the subjects with

a subtle pattern of emphasis in intensity based on the notated time signature

(Schellenberg, 1996) in order to clarify the metrical structure (e.g., in the cases

of Fragments 5 and 7 in Figure 8.2 which might otherwise be more naturally

perceived in 2/4 metre). Regarding the effects of perceived tonality, it was hy-

pothesised that expectations might be influenced by the representation of scale

degree (cpintfref). The hypothesis underlying the use of statistical regulari-

ties in scale degree is closely related to an argument made by Krumhansl (1990)

that the statistical usage of tones in existing musical traditions is the dominant

influence on perceived tonal hierarchies (see §3.6). The viewpoint cpintfref

was also linked with dur, dur-ratio, ioi, cpint, cpintfip and fib to inves-

tigate the interactions between perceived tonal structure and these dimensions

of melodic, metric and rhythmic structure (see §5.4).

8.6.2 Results

The final multiple viewpoint system selected in this experiment enabled the

statistical model to account for approximately 83% of the variance in the mean

continuation tone ratings [R = 0.910, R2
adj = 0.827, F (1, 118) = 571.4, p <

0.001]. The relationship between the patterns of expectation exhibited by the

model and by the subjects in the experiments of Schellenberg (1996) is plotted

with the fitted regression line in Figure 8.3. The statistical model provided a

closer fit to the data than the two-factor model, which accounted for approxi-

mately 75% of the variance in the data [R = 0.871, R2
adj = 0.753, F (3, 116) =

121.9, p < 0.001], and this difference was found to be significant [t(117) =

2.176, p < 0.05].

In order to examine the hypothesis that the statistical model subsumes the
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Figure 8.3: Correlation between subjects’ mean goodness-of-fit ratings and the predic-
tions of the statistical model for continuation tones in the experiments of Schellenberg

(1996).

function of the bottom-up components of the two-factor model, a more detailed

comparison of the two models was conducted. The expectations of the statis-

tical model exhibit significant correlations in the expected directions with both

components of the two-factor model: Proximity [r(118) = −.738, p < 0.001];

and Reversal [r(118) = 0.489, p < 0.001]. Furthermore, the fit of the statistical

model to the behavioural data was not significantly improved by adding Prox-

imity [F (1, 117) = 3.865, p = 0.052] or Reversal [F (1, 117) = 1.643, p = 0.203]

to the regression model. However, adding both of these factors did significantly

improve the fit of the statistical model to the data [F (2, 116) = 6.034, p = 0.003].

The resulting three-factor regression model accounted for approximately 84%

of the variance in the mean continuation tone ratings [R = 0.919, R2
adj = 0.841,

F (3, 116) = 210.7, p < 0.001].

Since the variables of the two-factor model are defined in terms of pitch in-

terval, this departure from the results of Experiment 1 may reflect the relative

paucity of features related to pitch interval selected in the present experiment

(see Table 8.4). Since the feature selection algorithm does not cover the space

of feature sets exhaustively, it is quite possible that there exist feature sets that

include features related to pitch interval, that don’t compromise the fit to the

data achieved by the present statistical model but for which the addition of
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Stage Viewpoint Added Viewpoint Dropped R

1 cpitch 0.843

2 cpintfib 0.878

3 cpintfip 0.885

4 cpintfref⊗cpint 0.905

5 cpitch⊗ioi 0.909

6 cpitch 0.910

Table 8.4: The results of viewpoint selection in Experiment 2.

the two components of the two-factor model does not yield an improvement.

Nonetheless, since the improvement yielded by the addition of the two predic-

tors of the two-factor model was so small (an additional 1% of the variance,

given 17% left unaccounted for by the statistical model alone), this analysis

indicates that the statistical model almost entirely subsumes the function of

Proximity and Reversal in accounting for the data collected by Schellenberg

(1996).

Finally, in order to examine the selectivity of the two models, 50 sets of

ratings for the stimuli (N = 120 for each set) were generated through random

sampling from a normal distribution with a mean and SD equivalent to those

of the listeners’ ratings. With an alpha level of 0.05, just two of the 50 random

vectors were fitted at a statistically significant level by each of the models and

there was no significant difference between the fit of the two models for any of

the 50 trials. Neither model is broad enough in its scope to successfully account

for random data.

The results of viewpoint selection are shown in Table 8.4. Strong support

was found for cpitch especially when linked with ioi, again illustrating the

influence of joint regularities in pitch structure and rhythmic structure on ex-

pectations. The fact that cpitch was dropped immediately after the addition of

cpitch⊗ioi suggests not only that the addition of the latter rendered the pres-

ence of the former redundant but also that regularities in cpitch, in the absence

of rhythmic considerations, provide an inadequate account of the influence of

pitch structure on expectations. In contrast to the impoverished contexts used

in Experiment 1, the longer contexts used in this experiment are capable of in-

voking states of expectancy based on regularities in chromatic pitch structure.

These regularities are likely to consist primarily of low-order intra-opus reg-

ularities captured by the short-term model although potentially higher-order

extra-opus effects (via the long-term model) may also contribute since two of

the training corpora contain Western folk melodies (cf. Krumhansl et al., 1999).
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The viewpoints cpintfib and cpintfip also contributed to improving the fit

of the model to the human data, suggesting that regularities defined in refer-

ence to salient events (the first in the piece and the first in the current bar)

are capable of exerting strong influences on melodic expectations.6 Finally, one

viewpoint representing a joint influence of regularities in tonal and melodic

structure (cpintfref⊗cpint) was selected. While this viewpoint improved

the fit of the model, it is surprising that viewpoints modelling tonality were

not selected earlier. This may be a result of the fact that British folk melodies

are frequently modal (rather than tonal) and the fragments used do not always

contain enough information to unambiguously specify the mode (A. Craft, per-

sonal communication, 9/9/2003).

Regularities in the four selected dimensions of existing melodies are such

that the statistical model is able to exploit the longer contexts used in this ex-

periment to provide a better account of the patterns of expectation observed in

the experiment of Schellenberg (1996) than the two-factor model. A further

illustration of the behaviour of the statistical model is presented graphically in

Figures 8.4 and 8.5 which plot the responses of the model against those of the

subjects in the experiment of Schellenberg (1996) to subsets of the continuation

tone ratings. In both figures, the legend associates each of the eight melodic

contexts with a distinct colour and also indicates the size (in semitones) and

direction (ascending or descending) of the final implicative interval of the con-

text. The plotted points are labelled with the size (in semitones) and direction

(ascending or descending) of the realised interval formed by the continuation

tone and are coloured according to the melodic context in which they appear.

Figure 8.4 plots the responses to continuation tones forming a small realised

interval (five semitones or less according to the IR theory) with the final tone of

the context. In accordance with the bottom-up principle of proximity, both the

human listeners and the statistical model tend to exhibit high expectations for

this set of small realised intervals and, within this set, larger intervals tend to

receive lower ratings. However, both the model and the listeners exhibit plenty

of exceptions to this trend. In the context of Fragment 5, for example, both the

listeners and the model exhibit a relatively low expectation for a descending

major second but a relatively high expectation for an ascending perfect fourth.

Figure 8.5 plots the responses to continuation tones for Fragment 4 which

ends with a small ascending implicative interval (three semitones) and Frag-

ment 6 which ends with a large ascending implicative interval (nine semitones).

In accordance with the bottom-up principle of registral direction, both the hu-

6Note that the first note or the first note of the final bar of some, but not all, of the fragments

is the tonic.
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Ranked predictions of the model
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Figure 8.4: The relationship between the expectations of the statistical model and the
principle of proximity (see text for details).
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man listeners and the statistical model tend to expect the realised interval to

maintain the registral direction of the (small) final implicative interval of Frag-

ment 4 but to change the registral direction of the (large) final implicative

interval of Fragment 6. As for the principle of proximity, both the listeners and

the model exhibit exceptions to this rule such as an expectation for a return

to the first tone of the implicative interval (which happens to be the tonic) in

the case of Fragment 4 and an ascending step to the octave of the first tone

of the implicative interval (which also happens to be the tonic) in the case of

Fragment 6.

These examinations of the behaviour of the statistical model and the lis-

teners demonstrate that the expectations of both tend to comply with the pre-

dictions of the two-factor model (although with a significant number of devi-

ations). However, the fact that the statistical model yielded a closer fit to the

behavioural data suggests that it provides, in addition, a more complete ac-

count of the manner in which the expectations of listeners deviate from the IR

principles of proximity and pitch reversal. These observations indicate that the

cognitive mechanisms responsible for the generation of melodic expectations

can be accounted for largely in terms of the induction of statistical regularities

in the musical environment which are approximately described by the princi-

ples of the two-factor model.

8.7 Experiment 3

8.7.1 Method

Most experimental studies of expectancy, including those of Cuddy & Lunny

(1995) and Schellenberg (1996), have examined the responses of subjects only

at specific points in melodic passages. Results obtained by this method, how-

ever, cannot address the question of how expectations change as a melody

progresses (Aarden, 2003; Eerola et al., 2002; Schubert, 2001; Toiviainen &

Krumhansl, 2003). The purpose of this experiment was to examine the statis-

tical model and the two-factor model (Schellenberg, 1997) in the context of

expectations elicited throughout a melodic passage.

Manzara et al. (1992) have used an interesting methodological approach to

elicit the expectations of listeners throughout a melody. The goal of the research

was to derive an estimate of the entropy of individual pieces within a style ac-

cording to the predictive models used by human listeners (see §6.2.2). The

experimental methodology followed a betting paradigm developed by Cover &

King (1978) for estimating the entropy of printed English. Subjects interacted
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with a computer program presenting a score which retained all the information

of the original except that the pitch of every note was B4. Given an initial capi-

tal of S0 = 1.0, the subjects were asked to move through the score sequentially,

selecting the expected pitch of each note and betting a proportion p of their

capital repeatedly until the selected pitch was correct, after which they could

move to the next note. No time limits were set and the subjects could listen to

the piece up to and including the current candidate note at any point. At each

stage n, the subjects capital was incremented by 20pSn−1 if the selection was

correct and decremented by the proportion bet if it was incorrect.7 This propor-

tional betting scheme was designed to elicit intuitive probability estimates for

the next symbol to be guessed and rewards not only the correct guess but also

accurate estimates of the symbol’s probability. The entropy or uncertainty of a

listener at stage n can be estimated as log2 20 − log2 Sn where Sn is the capital

won by the listener at this stage. Higher entropy indicates greater predictive

uncertainty such that the actual pitch of the event is less expected.

Unlike the conventional probe tone method, the betting paradigm allows

the collection of responses throughout a melodic passage (but see Toiviainen &

Krumhansl, 2003, for a development of the probe tone methodology to allow

the collection of real-time continuous responses). In addition, Eerola et al.

(2002) report convergent empirical support for the use of entropy as a measure

of predictability in melody perception (see §8.2.3.2). Furthermore, since it

elicits responses prior to revealing the identity of the note and encourages the

generation of probability estimates, the betting paradigm offers a more direct

measure of expectation than the probe tone method. However, the responses of

listeners in the betting paradigm are more likely to reflect the result of conscious

reflection than in the probe tone paradigm and may be influenced by a potential

learning effect.

The experimental stimuli used by Manzara et al. (1992) consisted of the

melodies from Chorales 61 and 151 harmonised by J. S. Bach (Riemenschnei-

der, 1941) which are shown in Figure 8.6. The subjects were grouped into

three categories according to formal musical experience: novice, intermediate

and expert. The experiment was organised as a competition in two rounds.

Five subjects in each category took part in the first round with Chorale 151,

while the two best performing subjects from each category were selected for

the second round with Chorale 61. As an incentive to perform well, the overall

winner in each of the categories won a monetary prize. The capital data for

each event were averaged across subjects and presented as entropy profiles for

7There were 20 chromatic pitches to choose from.



168 MODELLING MELODIC EXPECTANCY 8.7

61: Jesu Leiden, Pein und Tod (BWV 159)

1 5 8 13 15 19 22 26 28

32 35 40 43 47 50 56

151: Meinen Jesum laß’ ich nicht, Jesus (BWV 379)

1 5 8 12 16 20 23 27

Figure 8.6: The two chorale melodies used in Experiment 3 (after Manzara et al.,

1992).

each chorale melody (see Figures 8.7 and 8.8).

Manzara et al. (1992) were able to make some interesting observations

about the entropy profiles derived. In particular, it was found that the ultimate

notes in phrases tended to be associated with lower uncertainty than those at

the middle and beginning of phrases. High degrees of uncertainty, on the other

hand, were associated with stylistically unusual cadential forms and intervals.

The entropy profiles for both pieces also demonstrated high uncertainty at the

beginning of the piece due to lack of context, followed by decreasing uncer-

tainty as the growing context supported more confident predictions. For both

pieces, the results demonstrated a rise in uncertainty near the end of the piece

before a steep decline to the final cadence. Witten et al. (1994) found a striking

similarity between the human entropy profiles and those generated by a mul-

tiple viewpoint statistical model derived from 95 chorale melodies (Conklin &

Witten, 1995) suggesting that the relative degrees of uncertainty elicited by

events throughout the pieces was similar for both the subjects and the model.

The experimental procedure used by Manzara et al. (1992) differs from that

used by Cuddy & Lunny (1995) and Schellenberg (1996) as does the nature of

the data collected. Consequently the methodology followed in this experiment

differs slightly from those in Experiments 1 and 2. The main difference is that

the expectations of the statistical model for each note in each melody were

represented using entropy (the negative log of the estimated probability of the

observed pitch). The performance metric was the regression coefficient of the

mean entropy estimates for the subjects in the experiments of Manzara et al.

(1992) regressed on the model entropy. Chorales 61 and 151 were not present
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in the corpus of chorale melodies used to train the models; specifically, Chorale

151 was removed from Dataset 2 (see Table 4.1). Five viewpoints were added

to the set used in Experiment 2 in order to examine the influence of phrase,

metric and tonal structure on expectations elicited in the longer contexts of the

two melodies. Specifically, viewpoints were incorporated that represent pitch

interval between the first event in each consecutive bar (thrbar) and between

events beginning and ending consecutive phrases (thrfiph and thrliph). A

feature representing pitch in relation to the first note in the current phrase

(cpintfiph) was also added to assess the potential influence of phrase level

salience on expectations. Finally, a feature was added to represent whether a

note is a member of the scale based on the notated key of the piece (inscale).

8.7.2 Results

The final multiple viewpoint system selected in this experiment enabled the

statistical model to account for approximately 63% of the variance in the mean

uncertainty estimates reported by Manzara et al. [R = 0.796, R2
adj = 0.629,

F (1, 84) = 145, p < 0.001]. Profiles for both model entropy and human entropy

are shown in Figures 8.7 and 8.8 for Chorales 61 and 151 respectively. The

entropy profiles illustrate the close correspondence between model uncertainty

and human uncertainty throughout each of the chorale melodies (see also Wit-

ten et al., 1994). The statistical model provided a closer fit to the data than

the two-factor model, which accounted for approximately 13% of the variance

in the data [R = 0.407, R2
adj = 0.134, F (3, 78) = 5.172, p < 0.01], and this dif-

ference was found to be significant [t(79) = 5.15, p < 0.001]. In the multiple

regression analysis of the two-factor model and in comparing it to the statisti-

cal model, the data for the first two notes of each melody were not used since

the two-factor model requires a context of a single interval in order to generate

expectations.

In order to examine the hypothesis that the statistical model subsumes the

function of the bottom-up components of the two-factor model, a more de-

tailed comparison of the two models was conducted. The expectations of the

statistical model exhibit a significant correlation in the expected direction with

the Proximity component of the two-factor model [r(80) = −.407, p < 0.001]

but not with Reversal [r(80) = 0.097, p = 0.386]. Furthermore, the fit of

the statistical model to the behavioural data was not significantly improved by

adding Proximity [F (1, 79) = 0.0122, p = 0.912], Reversal [F (1, 79) = 0.0691,

p = 0.793] or both of these factors [F (2, 78) = 0.0476, p = 0.954] to the re-

gression model. On this evidence, the statistical model entirely subsumes the
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Figure 8.7: The entropy profiles for Chorale 61 averaged over subjects in the experi-
ment of Manzara et al. (1992) and for the model developed in Experiment 3.
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Figure 8.8: The entropy profiles for Chorale 151 averaged over subjects in the experi-
ment of Manzara et al. (1992) and for the model developed in Experiment 3.
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Stage Viewpoint Added R H

1 cpintfip 0.737 2.293

2 cpintfref⊗dur-ratio 0.794 2.162

3 thrfiph 0.796 2.143

Table 8.5: The results of viewpoint selection in Experiment 3.

function of Proximity and Reversal in accounting for the data collected by Man-

zara et al. (1992).

Finally, in order to examine the selectivity of the two models, 50 sets of en-

tropy estimates for the two chorales were generated through random sampling

from a normal distribution with a mean and SD equivalent to those of the listen-

ers’ entropy estimates. With an alpha level of 0.05, just two of the 50 random

vectors were fitted at a statistically significant level by the two factor model

and in only one of these trials was there a significant difference between the fit

of the two models. Neither model is broad enough in its scope to successfully

account for random data.

The results of viewpoint selection are shown in Table 8.5. As in Experiments

1 and 2, cpintfip made a strong contribution to the fit of the model. Support

was also found for one linked viewpoint representing the influence of tonality

(cpintfref ⊗ dur-ratio) and fact that this viewpoint was selected over its

primitive counterpart again provides evidence for the interactive influence of

rhythmic and pitch structure on expectancy. Finally, some support was found

for an influence of phrase level regularities on expectancy (thrfiph).

In addition to showing the regression coefficient (R) which was used as

the evaluation metric in the viewpoint selection experiment, Table 8.5 also

shows the entropy of the model averaged over all events considered during

prediction of the two melodies (H). The observation that H decreases as R

increases suggests a rational cognitive basis for the selection of melodic fea-

tures in the generation of expectations: features may be selected to increase

the perceived likelihood (or expectedness) of events and reduce redundancy of

encoding (Chater, 1996, 1999). In order to examine this hypothesis, a further

selection experiment was run in which viewpoints were selected to minimise

model uncertainty (as measured by mean per-event entropy) over Chorales 61

and 151. The results of this experiment are shown in Table 8.6 which shows

average model uncertainty (H) and the regression coefficient (R) of the mean

entropy estimates of the subjects in the experiments of Manzara et al. (1992)

regressed on the model entropy for each selected system.

Once again, the viewpoint selection results generally exhibit an inverse
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Stage Viewpoint Added R H

1 cpintfref⊗cpint 0.657 2.061

2 cpint⊗dur 0.693 1.972

3 cpintfip 0.738 1.937

4 cpintfref⊗fib 0.750 1.916

5 thrfiph 0.759 1.903

Table 8.6: The results of viewpoint selection for reduced entropy over Chorales 61 and

151 in Experiment 3.

trend between R and H. However, while the systems depicted in Tables 8.5

and 8.6 show a degree of overlap, Table 8.6 also reveals that exploiting reg-

ularities in certain features (especially those related to melodic interval struc-

ture) improves prediction performance but does not yield as close a fit to the

behavioural data as the system shown in Table 8.5. A closer inspection of all

247 multiple viewpoint systems considered in this experiment revealed a sig-

nificant negative correlation between R and H for values of H greater than

2.3 bits/symbol [rs(N = 45) = −0.85, p < 0.001] but not below this point

[rs(N = 202) = −0.05, p = 0.46]. If listeners do focus on regularities in

melodic features so as to reduce uncertainty, this relationship may be subject to

other constraints such as the number and kind of representational dimensions

to which they can attend concurrently.

8.8 Discussion and Conclusions

The first goal defined in this chapter was to examine whether models of melodic

expectancy based on statistical learning are capable of accounting for the pat-

terns of expectation observed in empirical behavioural research. The sequence

learning system developed in Chapters 6 and 7 and the two-factor model of

expectancy (Schellenberg, 1997) were compared on the basis of scope, selec-

tivity and simplicity (Cutting et al., 1992; Schellenberg et al., 2002). The two

models could not be distinguished on the basis of selectivity since neither was

found to account for random patterns of expectation in any of the three experi-

ments. Regarding the scope of the two models, the results demonstrate that the

statistical model accounted for the behavioural data as well as, or better than,

the two-factor model in all three of the reported experiments. Furthermore,

the difference between the two models became increasingly apparent when

expectations were elicited in the context of longer and more realistic melodic

contexts (see also Eerola et al., 2002). Finally, regarding the simplicity of the
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two models, the results indicate that the statistical model entirely (or almost

entirely in the case of Experiment 2) subsumes the function of the principles

of Proximity and Reversal (Schellenberg, 1997) in accounting for the expecta-

tions of listeners, rendering the inclusion of these rules in an additional system

of innate bottom-up predispositions unnecessary.

Altogether, these experimental results demonstrate that patterns of expec-

tation elicited in a range of melodic contexts can be accounted for in terms

of the combined influence of sensitivities to certain dimensions of the musical

surface, relatively simple learning mechanisms and the structure of the musical

environment. In contrast to one of the central tenets of the IR theory, univer-

sal symbolic rules need not be assumed to account for experimentally observed

patterns of melodic expectation. The quantitatively formulated bottom-up and

top-down principles of the IR models may be viewed as formalised approxima-

tions to behaviour that emerges as a result of statistical induction of regularities

in the musical environment achieved by a single cognitive system (cf. Thompson

& Stainton, 1998).

The second goal in this chapter was to undertake a preliminary examination

of the kinds of melodic feature that afford regularities capable of supporting the

acquisition of the observed patterns of expectation. In each experiment, only

a small number of features (three in Experiments 1 and 3, and four in Experi-

ment 2) were selected by the forward stepwise selection procedure even though

the evaluation functions used did not explicitly penalise the number of features

used by the statistical model. In all three experiments, it was found that reg-

ularities in pitch structure defined in relation to the first note in a melody are

capable of exerting strong influences on expectancy. This influence of primacy

on perceived salience suggests that the first note in a melody provides a strong

reference point with which subsequent structures are compared in the genera-

tion of expectations (Cohen, 2000; Cuddy & Lunny, 1995; Longuet-Higgins &

Steedman, 1971; Thompson et al., 1997). Furthermore, the results of all three

experiments provide evidence that expectations are influenced by regularities

in the interaction of pitch structure and rhythmic structure (see also Jones,

1987; Jones & Boltz, 1989).

In addition, the experimental results suggest that induced regularities in

different melodic features may influence expectancy to varying degrees in dif-

ferent contexts. The short contexts in Experiment 1, for example, tended to

generate expectations based on regularities in melodic interval structure rather

than chromatic pitch structure. In the second experiment, on the other hand,

support was found for the influence of chromatic pitch structure as well as met-
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ric structure and tonal regularities. Finally, in Experiment 3, support was found

for the influence of tonal structure and phrase-level salience on the generation

of expectations. These differences suggest that melodic contexts differ in the

extent to which they emphasise different features used in cuing attention to

salient events. The results of Experiment 3 also provide some evidence for a

relationship, across different feature sets, between the predictive uncertainty

of the statistical model and its fit to the behavioural data suggesting that, sub-

ject to other constraints, listeners employ representations which increase the

perceived likelihood of melodic stimuli (Chater, 1996, 1999). The mechanisms

by which attention is drawn to different features in different melodic contexts

and how regularities in these dimensions influence expectancy is an important

topic for future empirical research. Improved methodologies for eliciting and

analysing continuous responses to music (Aarden, 2003; Eerola et al., 2002;

Schubert, 2001; Toiviainen & Krumhansl, 2003) will form an important ele-

ment in this research.

The experimental results provide support for the present theory of melodic

expectation in terms of the influence of melodic context on the invocation of

learnt regularities. In particular, the results confirm that regularities in existing

melodic traditions are sufficient to support the acquisition of observed patterns

of expectation. According to the theory, expectations will also be subject to

the influence of prior musical experience. Future research should examine this

aspect of the theory in greater depth. It would be predicted, for example, that

a model exposed to the music of one culture would predict the expectations

of people of that culture better than a model trained on the music of another

culture and vice versa (see also Castellano et al., 1984). The theory also pre-

dicts that observed patterns of expectation will become increasingly systematic

and complex with increasing age and musical exposure (cf. Schellenberg et al.,

2002). Future research might examine the developmental profile of expecta-

tions exhibited by the model as it learns, yielding testable predictions about

developmental trajectories in the acquisition of melodic expectations exhibited

by infants (see also Plunkett & Marchman, 1996).

Another fruitful avenue for future research involves a more detailed exami-

nation of the untested assumptions of the model, the elaboration of the theory

and the proposition of hypotheses at finer levels of detail (Desain et al., 1998).

Such hypotheses might concern, for example, the developmental status of the

features assumed to be present in the musical surface and the derivation of

other features from this surface as well as how the interaction between the

long- and short-term models is related to the effects of intra- and extra-opus



8.9 SUMMARY 175

experience. The examination of expectations for more complex musical struc-

tures embedded in polyphonic contexts may reveal inadequacies of the model.

For example, its reliance on local context in generating predictions may prove

insufficient to account for the perception of non-local dependencies and re-

cursively embedded structure (Lerdahl & Jackendoff, 1983). Conversely, the

computational model may be overspecified in some regards as a model of hu-

man cognition. For example, schematic influences on expectancy are likely to

be subject to the effects of limitations on working memory although the model

is not constrained in this regard (Reis, 1999).

To conclude, not only does the theory put forward in this chapter provide

a compelling account of existing data on melodic expectancy: it also makes a

number of predictions for future research. In this regard, the modelling strategy

followed in the present research constitutes a rich source of new hypotheses

regarding the influence of musical context and experience on expectations and

provides a useful framework for the empirical examination of these hypotheses.

8.9 Summary

In this chapter, the predictive system presented in Chapters 6 and 7 was applied

to the modelling of expectancy in melody perception. In §8.2, the concept of

expectancy in music was introduced and the influential theoretical accounts of

Meyer (1956, 1967, 1973) and Narmour (1990, 1992) were reviewed. Empiri-

cal support for these theoretical accounts suggests that while the IR theory can

account well for observed patterns of expectation, research to date does not

support the rigid distinction between bottom-up and top-down components of

the theory nor the hypothesised innateness of the bottom-up principles. In

§8.3, an alternative theory of melodic expectancy was presented according to

which the observed patterns of expectation can be accounted for in terms of

the induction of statistical regularities in existing corpora of music. Patterns

of expectation which do not vary between musical styles are accounted for in

terms of simple regularities in music which may be related to the constraints

of physical performance. The computational system developed in Chapters 6

and 7 was discussed in terms of this theory and the experimental methodology

used to examine the behaviour of the system as a model of melodic expectancy

was introduced in §8.4. The experimental design and results of three experi-

ments with increasingly complex melodic stimuli were presented and discussed

in §8.5, §8.6 and §8.7 respectively. Finally, a general discussion of the experi-

mental results and their implications was presented in §8.8.
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CHAPTER 9

MODELLING MELODIC COMPOSITION

9.1 Overview

The goal in this chapter is to examine, at the computational level, the intrinsic

demands of the task of composing a successful melody. Of particular concern

are constraints placed on the representational primitives and the expressive

power of the compositional system. In order to achieve these goals, three of

the multiple viewpoint systems developed in previous chapters are used to gen-

erate novel pitch structures for seven of the chorale melodies in Dataset 2. In

§9.3, null hypotheses are presented which state that each of the three mod-

els is consistently capable of generating chorale melodies which are rated as

equally successful, original and creative examples of the style as the original

chorale melodies in Dataset 2. In order to examine these hypotheses, experi-

enced judges are asked to rate the generated melodies together with the orig-

inal chorale melodies on each of these three dimensions. The experimental

methodology, described in §9.4, is based on the Consensual Assessment Tech-

nique developed to investigate psychological components of human creativity.

In §9.2.3 and §9.2.4 it is argued that this methodology addresses some notable

limitations of previous approaches to the evaluation of computational models

of compositional ability. The results, presented in §9.5, warrant the rejection

of the null hypothesis for all three of the systems. In spite of steps taken to

address the limitations of previous context modelling approaches to generating

music, the finite context grammars making up these systems show little ability

to meet the computational demands of the task regardless of the representa-
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tional primitives used. Nonetheless, a further analysis identifies some objective

features of the chorale melodies which exhibit significant relationships with the

ratings of stylistic success. These results, in turn, suggest ways in which the

computational models fail to meet intrinsic stylistic constraints of the chorale

genre. Adding viewpoints to the multiple viewpoint systems to address these

concerns significantly improves the prediction performance of these systems.

9.2 Background

9.2.1 Cognitive Modelling of Composition

In striking contrast to the amount of cognitive-scientific research which has

been carried out on music perception, cognitive processes in composition re-

main largely unexamined (Baroni, 1999; Sloboda, 1985). This section contains

a review of research which has been carried out on the cognitive modelling of

music composition with an emphasis on computational approaches. It should

be noted that this review intentionally excludes research on the computer gen-

eration of music in which cognitive-scientific concerns in the construction and

evaluation of the computational models are not apparent.

Given the current state of knowledge about cognitive processes in composi-

tion, Johnson-Laird (1991) in his study of jazz improvisation (see §3.3) argues

that it is fundamental to understand what the mind has to compute in order

to generate an acceptable improvisation before examining the precise nature of

the algorithms by which it does so (see §2.4).1 In order to study the intrinsic

constraints of the task, Johnson-Laird applied grammars of varying degrees of

expressive power to different subcomponents of the problem. The results of this

analysis suggest that while a finite state grammar is capable of computing the

melodic contour, onset and duration of the next note in a jazz improvisation,

its pitch must be determined by constraints derived from a model of harmonic

movement which requires the expressive power of a context free grammar.

Lerdahl (1988a) explores the relationship between perception and compo-

sition and outlines some cognitive constraints that this relationship places on

the cognitive processes of composition. Lerdahl frames his arguments within

a context in which a compositional grammar generates both a structural de-

scription of a composition and, together with intuitive perceptual constraints,

its realisation as a concrete sequence of discrete events which is consumed by

1Improvisation may be regarded as a special case of composition in which the composer is

also the performer and is subject to additional constraints of immediacy and fluency (Sloboda,

1985).
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a listening grammar that, in turn, yields a perceived structural description of

the composition. A further distinction is made between natural and artificial

compositional grammars: the former arise spontaneously within a culture and

are based on the listening grammar; the latter are consciously developed by

individuals or groups and may be influenced by any number of concerns. Not-

ing that both kinds of grammar coexist fruitfully in most complex and mature

musical cultures, Lerdahl argues that when the artificial influences of a com-

positional grammar carry it too far from the listening grammar, the intended

structural organisation can bear little relation to the perceived structural or-

ganisation of a composition. Lerdahl (1988a) goes on to outline a number of

constraints placed on compositional grammars via this need for the intended

structural organisation to be recoverable from the musical surface by the listen-

ing grammar. These constraints are largely based on the preference rules and

stability conditions of GTTM (see §3.3).

The proposal that composition is constrained by a mutual understanding be-

tween composers and listeners of the relationships between structural descrip-

tions and the musical surface is expanded by Temperley (2003) into a theory of

communicative pressure on the development of musical styles. Various phenom-

ena are discussed within the context of this theory including the relationship

between the traditional rules of voice leading and principles of auditory per-

ception (Huron, 2001) as well as trade-off relationships between syncopation

and rubato in a range of musical styles.

Baroni (1999) also discusses grammars for modelling the cognitive pro-

cesses involved in music perception and composition basing his arguments on

his own development, implementation and use of grammars for the structural

analysis of a number of musical repertoires (Baroni et al., 1992). Baroni char-

acterises a listening grammar as a collection of morphological categories which

define sets of discrete musical structures at varying levels of description and

a collection of syntactical rules for combining morphological units. He argues

that such a grammar is based on a stylistic mental prototype acquired through

extensive exposure to a given musical style. While the listening grammar is

largely implicit, according to Baroni, the complex nature of composition re-

quires the acquisition of explicit grammatical knowledge through systematic,

analytic study of the repertoire. However, Baroni (1999) states that the compo-

sitional and listening grammars share the same fundamental morphology and

syntax. The distinguishing characteristics of the two cognitive activities lie in

the technical procedures underlying the effective application of the syntactical

rules. As an example, Baroni examines hierarchical structure in the listening
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and compositional grammars: for the former, the problem lies in picking up

cues for the application of grammatical rules and anticipating their subsequent

confirmation or violation in a sequential manner; for the latter, the structural

description of a composition may be generated in a top-down manner.

9.2.2 Music Generation from Statistical Models

Conklin (2003) discusses the generation of music using statistical models from

the perspective of generating pieces which have high probability of occurring

according to the model. Conklin examines four methods for generating com-

positions from statistical models of music. The first and simplest is sequential

random sampling where an event is sampled from the estimated distribution

of events at each sequential event position. The sampled event is appended

to the generated piece and the next event is sampled until a specified limit on

the length of the piece is reached. Since events are generated in a random

walk, there is a danger of straying into local minima in the state space of pos-

sible compositions. More importantly, however, this method suffers from the

fact that it greedily tends to generate high probability events without regard

for the overall probability of the generated piece. Events with high estimated

probabilities generated at one stage may constrain the system at a later stage

to generate a piece with a low overall probability. Nonetheless, most efforts to

generate music from statistical models, including all those discussed in §3.4,

have used this method.

One statistical modelling technique which addresses these problems is the

Hidden Markov Model (HMM) which generates observed events from hidden

states (Rabiner, 1989). Training a HMM involves adjusting the probabilities

conditioning the initial hidden state, the transitions between hidden states and

the emission of observed events from hidden states so as to maximise the prob-

ability of a training set of observed sequences. A trained HMM can be used to

estimate the probability of an observed sequence of events and to find the most

probable sequence of hidden states given an observed sequence of events. The

latter task can be achieved efficiently for a first-order HMM using a dynamic

programming solution known as the Viterbi algorithm and a similar algorithm

exists for first-order (visible) Markov models. Allan (2002) has used the Viterbi

algorithm to generate the most likely sequence of underlying harmonic states

given an observed chorale melody. Furthermore, Allan demonstrates that this

method is capable of generating significantly more probable harmonic progres-

sions than are typically obtained using sequential random sampling.

In the context of complex statistical models, such as those developed in
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Chapters 6 and 7, the Viterbi algorithm suffers from two problems (Conklin,

2003). First, its time complexity increases exponentially with the context length

of the underlying Markov model. Second, it is difficult to formulate such models

in an appropriate manner for using the Viterbi algorithm.

There do exist tractable methods for sampling from complex statistical mod-

els which address the limitations of random sampling (Conklin, 2003). The

Metropolis-Hastings algorithm is a Markov Chain Monte Carlo (MCMC) sam-

pling method which provides a good example of such techniques (MacKay,

1998). The following description applies the Metropolis-Hastings algorithm

within the framework developed in Chapters 6 and 7. Given a trained multiple

viewpoint system m for some basic type τb, in order to sample from the target

distribution pm(s ∈ [τb]
∗), the algorithm constructs a Markov chain in the state

space of possible viewpoint sequences [τb]
∗ as follows:

1. set the iteration number k = 0, the desired number of iterations N =

some large value; the initial state s0 = some viewpoint sequence tj1 ∈ [τb]
∗

of length j;

2. select an event index 1 ≤ i ≤ j either at random or based on some

ordering of the indices;

3. let s′k be the sequence obtained by replacing the event ti at index i of sk

with a new event t′i sampled from a proposal distribution q which may

depend on the current state sk – in the present context, an obvious choice

for q would be {pm(t|ti−1
1 )}t∈[τb];

4. accept the proposed sequence with probability:

min

[

1,
pm(s′k ) · q(ti)

pm(sk) · q(t
′
i)

]

;

5. if accepted, set sk+1 = s′k, else set sk+1 = sk;

6. if k < N , set k = k + 1 and return to step 2, else return sk.

If N is large enough, the resulting event sequence sN−1 is guaranteed to

be an unbiased sample from the target distribution pm([τb]
∗). However, there

is no general theoretical method for assessing the convergence of MCMCs nor

to estimate the number of iterations required to obtain an unbiased sample

(MacKay, 1998). Another popular MCMC method, Gibbs sampling corresponds

to a special case of Metropolis sampling in which the proposal density q is the

full distribution {pm(s′k)}t∈[τb] and the proposal is always accepted. Since this
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distribution may be expensive to compute, Gibbs sampling can add significant

computational overheads to the sampling procedure. Finally, because these

sampling algorithms explore the state space using a random walk, they still

suffer from the problem of falling into local minima. The effects of this limita-

tion may be counteracted to some extent by selecting a high probability event

sequence as the start state (Conklin, 2003).

Another solution to the problems resulting from the use of random walks

is to introduce symbolic constraints on the generation of events. Hall & Smith

(1996), for example, placed structural constraints on harmonic movement and

the metric positions of rhythmic groups to prevent the generation of stylisti-

cally uncharacteristic features in their statistical model of blues tunes. In a

similar vein, Hild et al. (1992) employed symbolic voice leading constraints in

their neural network model of chorale harmonisation. While these studies de-

rived their constraints from stylistic analyses or music-theoretic concerns, Povel

(2004) describes a system for generating melodies based on perceptual con-

straints. Research on the perception of rhythm, harmony and contour are used

to constrain the production of tonal melodies in order to examine whether such

constraints are necessary and sufficient determinants of tonal structure.

All the methods discussed so far generate new pieces through the substitu-

tion of single events. As a consequence, they are unlikely to provide a satis-

factory model of phrase or motif level structure and, in particular, to preserve

the structure of repeated phrases or variations. Although the short term model

(see §6.2.4) is intended to provide a model of intra-opus structure, it still re-

lies on single-event substitutions. In order to address these concerns, Conklin

(2003) argues that pattern discovery algorithms (e.g., Cambouropoulos, 1998;

Conklin & Anagnostopoulou, 2001) may be used to reveal phrase level struc-

ture at various degrees of abstraction which may subsequently be preserved

during stochastic sampling. The discovery and use of motif classes in generat-

ing melodic variations by Hörnel (1997) is an example of this approach (see

§3.5).

9.2.3 Evaluating Computational Models of Composition

Analysis by synthesis is a method for evaluating computational models of music

by generating compositions which are subsequently analysed with respect to

the objectives of the implemented model. This method of evaluation has a long

history and it has been argued that one of the primary advantages of a compu-

tational approach to the analysis of musical styles is the ability to generate new

pieces from an implemented theory for the purposes of evaluation (Ames &
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Domino, 1992; Camilleri, 1992; Sundberg & Lindblom, 1976, 1991). However,

the evaluation of the generated music raises methodological issues which have

typically compromised the benefits potentially afforded by the computational

approach.

In many cases, the compositions are evaluated with a single subjective com-

ment such as: “[the compositions] are realistic enough that an unknowing lis-

tener cannot discern their artificial origin” (Ames & Domino, 1992, p. 186);

“[the program] seems to be capable of producing musical results” (Ebcioǧlu,

1988, p. 49); or “The general reactions of Swedes listening to these melodies

informally are that they are similar in style to those by Tegnér” (Sundberg &

Lindblom, 1976, p. 111). Johnson-Laird (1991, p. 317) simply notes that “The

program performs on the level of a competent beginner” and gives an informal

account of how the program undergenerates and overgenerates. In short, “the

gap between the cognitive work, that brings forward these models, and the ex-

perimental approach, that should validate them, is huge” (Desain et al., 1998,

p. 154). This lack of emphasis on evaluation has the effect of making it very

difficult to compare and contrast different theories intersubjectively.

Other research has used expert stylistic analyses to evaluate the composi-

tions generated by computational systems. This is possible when a computa-

tional model is developed to account for some reasonably well defined stylis-

tic competence or according to critical criteria derived from music theory or

research in music psychology. For example, Ponsford et al. (1999) gave an

informal stylistic appraisal of the harmonic progressions generated by their n-

gram models. A more intersubjective method of appraisal is described by Hild

et al. (1992) who developed a system which would harmonise in the style of J.

S. Bach. The harmonisations produced by their system were judged by music

professionals to be on the level of an improvising organist. A more detailed

appraisal of computer generated harmonies was obtained by Phon-Amnuaisuk

et al. (1999) who had the generated harmonisations evaluated by a university

senior lecturer in music according to the criteria used for examining first year

undergraduate students’ harmony.

However, even when stylistic analyses are undertaken by groups of experts,

the results obtained are typically still qualitative in nature. For a fully inter-

subjective analysis by synthesis, the evaluation of the generated compositions

should be quantitative. One possibility is to use an adapted version of the Tur-

ing test in which subjects are presented with pairs of compositions (of which

one is computer generated and the other human composed) and asked to state

which they believe to be the computer generated composition (Marsden, 2000).
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This approach has been adopted by Triviño-Rodriguez & Morales-Bueno (2001)

and Hall & Smith (1996) for the evaluation of, respectively, chorale melodies

and blues melodies generated from statistical models of music (see §3.4).

Hall & Smith (1996) randomly selected ten blues melodies from their cor-

pus, removed them from the training set and used the remaining 48 melodies to

train their model. Twenty blues melodies were generated from the model and

ten of these were randomly selected for evaluation. The original and generated

melodies were randomly assembled into ten pairs each with a fixed, randomly

generated presentation order. These pairs of stimuli were presented in fixed

order to 198 subjects of whom only 23 had more than four years of training

on a musical instrument. A Chi-squared test was performed for the numbers

of listeners making less than two errors and two or more errors. The results

suggested that the subjects were unable to reliably distinguish the human com-

posed and computer generated melodies.

Triviño-Rodriguez & Morales-Bueno (2001) adopted a similar experimental

procedure in which 52 listeners were presented with two pairs of computer gen-

erated and human composed chorale melodies. Triviño-Rodriguez & Morales-

Bueno do not provide details of the selection of the chorale melodies in either

category nor of the presentation orders used in the experiment. The results

showed that the listeners were able to correctly classify melodies in 55% of tri-

als. A more informal variant of this approach (called The Game) has also been

used to evaluate computer generated compositions by Cope (2001, see §3.3),

who reports that listeners typically average between 40% and 60% correct re-

sponses.

These musical Turing tests have the advantage of yielding empirical, quan-

titative results which may be appraised intersubjectively. Overall, they have

demonstrated the inability of subjects to reliably distinguish between computer

generated and human composed compositions. However, the methodology suf-

fers from a number of difficulties all of which stem from its failure to examine

the criteria being used to judge the compositions.

First, it must be noted that these studies have not typically used musically

trained subjects capable of distinguishing important stylistic features of the

compositions. The problem of the relationship between objective properties

of artefacts and subjective judgements of their aesthetic value has a long his-

tory in philosophy, dating back at least as far as David Hume’s classic essay on

taste (Hume, 1965), first published in 1757. Hume argued that there exists

some universality in the relation between the attributes of objects and aesthetic

experience and that this permits intersubjective agreement on aesthetic issues.
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This universal standard of taste, however, may often be distorted by lack of

culturally embedded experience in discriminating the relevant properties of ob-

jects that may elicit an aesthetic response.

To consider a musical example, Stobart & Cross (2000) report an analy-

sis of the music of the indigenous people of Northern Potośı in Bolivia which

underlines the importance of culture and language in shaping musical prefer-

ences. Rather than viewing relatively long events as having metrical salience

(as Western listeners typically do, see §5.4.1), the Potośıans take the first event

of a piece as initiating the metrical framework. Stobart & Cross (2000) suggest

that this may be related to the fact that the only fixed position prosodic stress

in their language occurs on the first syllable of a word.2 Clearly, the subjective

appraisals of Western listeners on initial exposure to Potośıan music would be

subject to the distorting effects of a likely misinterpretation of the metric frame-

work. Studies such as this emphasise the importance of cultural and stylistic

experience in the appraisal of music and suggest that judges of computer gen-

erated music should possess considerable knowledge of the target style.

A second and less easily remediable problem with the Turing test approach

is that the paradigm used is likely to have the effect of shifting attention towards

searching for musical features expected to be generated by a computer model

rather than concentrating on stylistic features of the compositions. Drawing

once again on philosophical accounts of aesthetic judgement, Kant (1952) pro-

posed that two individuals can be said to be perceiving the same object only

when they possess the same faculties of perception and understanding, which

operate identically in both cases – i.e., their cognitive representation of the ob-

ject is the same. Kant defined a purely aesthetic judgement (in contrast to

moral and pragmatic judgements) in stringent terms as an assessment of the

perceived form of an artefact which is free of any interest (desires, needs and

so on) that the judge may have in the actual existence of the artefact.

It seems likely that the Turing test would stimulate an emotional interest in

most judges in terms of, for example, competitive intellectual pride (see Cope,

2001, ch. 2). This vested interest may in turn distort the assessment by causing

the judges to rely on preconceived notions of the capacities of computers rather

than on their knowledge and appreciation of the musical style. For example, in

an evaluation of human composed and computer generated rhythmic patterns,

by Pearce & Wiggins (2001), in which subjects were asked to state whether

2Using a similar argument, Hall (1953) suggests that the reason that Elgar’s popularity was re-

stricted to England (at the time), while English composers such as Britten and Vaughan-Williams

were well liked abroad, was due to the manner in which his music reflects the wide pitch range

and predominantly descending patterns of intonation peculiar to British English (as compared

with American English and most Continental languages).
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they thought a given pattern was created by a human or a computer, there

was a systematic bias towards classifying patterns as computer generated. The

informally collected comments of the subjects suggested that they perceived the

task as a challenge to catch out the computer which may have contributed to

the bias.

A final and more serious shortcoming of the Turing test methodology is

that it fails to shed light on the fundamental musicological and psychological

questions of interest: Which stylistic features present or absent in the computer

generated compositions facilitate discrimination performance? Which cognitive

or stylistic hypotheses embodied in the generative system influence the judge-

ments of listeners and how do they do so? Cope (2001, p. 21) suggests that

listeners who perform well in The Game should try to “identify those character-

istics which gave the machine-composed examples away” while listeners who

performed poorly should “try to discover what led the machine-composed ex-

amples to sound as if they were human-composed.” Ideally, we would like to

formalise these suggestions for qualitative responses into a concretely specified,

quantitative and empirical methodology for the detailed examination, reformu-

lation and elaboration of computational models of musical competence (see

§2.4 and §2.5).

9.2.4 Evaluating Human Composition

One approach to developing alternatives to the Turing test paradigm discussed

in §9.2.3 is to examine empirical methodologies used to evaluate human com-

positional ability. The vast majority of existing methodologies of this kind have

been developed to assess the compositional creativity of school children and

students. As noted by Auh (2000), such methodological approaches differ on

at least two different dimensions. The first dimension concerns the kind of

data collected which may be qualitative or quantitative. Since the present con-

cern is with quantitative methodologies, qualitative approaches such as those

of Folkestad et al. (1990) are not considered here (see Sloboda, 1985, ch. 4, for

a review). The second dimension identified by Auh (2000) concerns the object

of the evaluation which may be the creative individuals themselves, the process

of creation, the product or artefact resulting from this process or the environ-

ment within with the creative individual operates. This taxonomy of objects

of study is quite common in the wider field of research on creativity (Brown,

1989; Jackson & Messick, 1965; Plucker & Renzulli, 1999).

In terms of the composition of music, the creative individual is the com-

poser and the product is the composition. Attempts to measure characteristics
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of composers have focused on specific musical factors (such as musical achieve-

ment and experience), general factors (such as academic achievement, IQ and

gender) as well as cognitive style and personality traits (Auh, 2000). Studies

of the creative environment examine such factors as the social, cultural, oc-

cupational, political and economic contexts within which a composer works

(see e.g., Simonton, 1998). Research on the process of composition has typi-

cally focused on the analysis of observed sessions performing some well defined

compositional task into categories on the basis of time spent performing a given

activity, the working score, recorded verbal utterances and the final composi-

tion (Colley et al., 1992; Davidson & Welsh, 1988; Folkestad et al., 1990; Kratus,

1989, 1994; Webster, 1987).

Of most relevance to the present research, however, are methodologies

which have been developed to evaluate the final product of the compositional

process. Theoretical approaches to evaluating the creativity of products typi-

cally stress the need to assess both the originality, novelty or unusualness and

the appropriateness or value of the artefact (Amabile, 1996; Boden, 1990; Jack-

son & Messick, 1965; Mayer, 1999; Ritchie, 2001). The unusualness of a re-

sponse can only be judged in relation to a set of norms, based on a group

of existing artefacts, which serve as a judgemental standard. The judgemental

standard for evaluating appropriateness is the context which reflects both exter-

nal factors, which must be interpreted logically (i.e., in terms of the demands

of the task) and psychologically (i.e., in terms of the intentions of the creator),

and internal factors determining the degree to which the components of the

product are coherent with one another. A product that is unusual but inappro-

priate will tend towards absurdity whilst one that is unoriginal but appropriate

will tend towards cliché (Jackson & Messick, 1965).

Methodological approaches to evaluating creativity in musical composition

have been developed which follow these theoretical accounts. Auh (2000), for

example, describes her use of a scheme for the evaluation of creativity in hu-

man compositions which involves three assessment criteria: judgements of the

originality or novelty of a piece; judgements of the appropriateness (the degree

of tonal and rhythmic organisation and structure) of a piece; and judgements

of expressiveness or musicality of the piece. Auh & Walker (1999) used this

framework using five-point rating scales for the evaluation of the compositions

of 18 school children by three expert, independent judges and obtained mean

inter-judge correlations of r = 0.71. Auh & Johnston (2000) used the same

framework for the evaluation of the compositions of 36 school children by three

judges and obtained mean inter-judge correlations of r = 0.88. Regarding the
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evaluation of appropriateness, Davidson & Welsh (1988) asked seven profes-

sional musicians to rank 10 melodies composed by conservatory students ac-

cording to musical success. The resulting rank order of the melodies correlated

significantly with the degree of musical experience of the student (r = 0.86).

Like many other theorists, Amabile (1996) proposes a conceptual defini-

tion of creativity in terms of processes which result in novel and appropriate

solutions to heuristic, open-ended or ill-defined tasks (see also Simon, 1973).

However, while agreeing that creativity can only be assessed through subjective

assessments of products, Amabile criticises other approaches for using a priori

theoretical definitions of creativity in their rating schemes and failing to distin-

guish creativity from other constructs. While a conceptual definition is impor-

tant for guiding empirical research, a clear operational definition of creativity

is necessary for the development of useful empirical methods of assessment.

Accordingly, Amabile (1996) presents a consensual definition of creativity ac-

cording to which a product is deemed creative to the extent that observers who

are familiar with the relevant domain independently agree that it is creative. To

the extent that this construct is valid in terms of internal consistency (indepen-

dent judges agree in their subjective ratings of creativity) it will be possible to

empirically examine the objective features or subjectively experienced dimen-

sions of creative products that contribute to their perceived creativity.

Amabile (1996) has used this operational definition to develop an empirical

methodology for evaluating creativity known as the consensual assessment tech-

nique (CAT). The essential features of this methodology are as follows. First, the

task must be open ended enough to permit considerable flexibility and novelty

in the response which must result in an observable product that can be rated

by judges. Second, regarding the procedure, the judges should:

1. be experienced in the relevant domain;3

2. make independent assessments;

3. assess other aspects of the products such as technical accomplishment,

aesthetic appeal or originality;

4. make relative judgements of each product in relation to the rest of the

test items;

5. be presented with test items and provide ratings in orders randomised

differently for each judge.

3Although, a number of studies have found high levels of agreement between judges with

different levels of familiarity and experience (Amabile, 1996), this may be due to the technical

simplicity of the tasks used.
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Third, in terms of the analysis of the collected data, the most important issue

is to determine the interjudge reliability of the subjective rating scales. Sub-

ject to high levels of reliability, creativity ratings may be correlated with other

objective features or subjectively experienced dimensions of creative products.

A large number of experimental studies of verbal, artistic and problem solv-

ing creativity have demonstrated the ability of the CAT to obtain reliable subjec-

tive assessments of creativity in a range of domains (see Amabile, 1996, ch. 3,

for a review). In recent years, the CAT has also been used successfully in as-

sessing the musical compositions of students and school children (Brinkman,

1999; Hickey, 2001; Priest, 2001; Webster & Hickey, 1995). Brinkman (1999)

used the CAT to examine relationships between creativity style (adaptor or in-

novator) and degrees of constraint in the problem specification. Three expert

judges rated 64 melodies composed by high school students on seven-point

scales of originality, craftsmanship and aesthetic value. The interjudge relia-

bilities obtained were 0.84 for originality, 0.77 for craftsmanship and 0.76 for

aesthetic value for a combined total of 0.807. In research examining student’s

assessments of musical creativity in relation to their own ability to function cre-

atively as composers, Priest (2001) used the CAT to place 54 university students

into high-, middle- and low-creativity groups. Eight independent judges rated

melodies composed by the students on continuous scales of creativity, melodic

interest, rhythmic interest and personal preference yielding interjudge reliabil-

ities of 0.81, 0.79, 0.85 and 0.84 respectively.

In an examination of a range of assessment scales for evaluating children’s

compositions, Webster & Hickey (1995) studied the relationship between rat-

ings of craftsmanship, originality/creativity and aesthetic value obtained by the

consensual assessment technique and other existing rating scales for music.

Sub-items of these scales were categorised according to style (implicit or ex-

plicit) and content (global or specific). In a study in which four expert judges

rated 10 children’s compositions, Webster & Hickey (1995) found that implic-

itly defined rating scales tend to yield higher interjudge reliabilities (see also

Amabile, 1996). However, while rating scales involving global and implicit def-

initions are better at predicting originality, creativity and aesthetic value, those

involving explicit and specific definitions are better at predicting craftsmanship.

In further research, Hickey (2000, 2001) asked which judges are appropriate in

the context of evaluating children’s compositions. Five groups of judges (music

teachers, composers, music theorists, seventh-grade children and second-grade

children) were asked to rate 12 pieces composed by fourth- and fifth-grade

children on seven-point scales for creativity, craftsmanship and aesthetic ap-
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peal. The results demonstrated that the most reliable judges were the music

teachers and the least reliable the composers.

In summary, the CAT offers a methodological approach for evaluating com-

putational models of musical compositions which is capable of overcoming the

limitations of the Turing test approach discussed in §9.2.3. First, the method-

ology explicitly requires the use of appropriate judges; those with considerable

practical experience and theoretical knowledge of the task domain. Second,

since it has been developed for research on human creativity, no explicit men-

tion is made of the computer generated origins of the artefacts; this should help

avoid any potential biases due to a perception of the task as a challenge to catch

out the computer. Third, and most importantly, the methodology allows the

possibility of examining in more detail the objective and subjective dimensions

of the generated products. Crucially, the objective attributes of the products

may include features of the generative models (corresponding to cognitive or

stylistic hypotheses) which produced them. In this way, it is possible to empir-

ically compare different musicological theories of a given style or hypotheses

about the cognitive processes involved in generating creative compositions in

that style.

9.3 Experimental Hypotheses

Following Johnson-Laird (1991), the goal in this chapter is to examine the com-

putational constraints of the task of composing a melody in two ways: first, to

examine whether the trained finite context grammars developed in Chapters

6, 7 and 8 are capable of meeting the task demands of composing successful

melodies or whether more expressive grammars are needed; and second, to

examine which representational structures are necessary for the composition of

successful melodies (see §9.2.1).

The experiment reported in this chapter was designed to test the hypoth-

esis that the statistical models developed in Chapters 6 and 7 are capable of

generating melodies which are deemed creative in the context of a specified

stylistic tradition. To this end three multiple viewpoint systems trained on the

chorale melodies in Dataset 2 (see Chapter 4) are used to generate melodies

which are then empirically evaluated. The three systems in question are as fol-

lows: System A is the single viewpoint system (comprising cpitch alone) which

was used in Chapter 6; System B is the multiple viewpoint system developed

through feature selection in §8.7 to provide the closest fit to the experimental

data of Manzara et al. (1992); and System C is the multiple viewpoint system
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System Viewpoints H

A cpitch 2.337a

B cpintfip, cpintfref⊗dur-ratio, thrfiph 2.163

C cpint⊗dur, cpintfref⊗cpintfip, cpitch⊗dur 1.953

cpintfref⊗fib, thrtactus, cpintfref⊗dur,

cpint⊗dur-ratio, cpintfip, thrfiph

aThe discrepancy between this value and that shown in Table 6.7 is due to the fact that

different parameterisations of the STM were used as explained in §7.4.

Table 9.1: The component viewpoints of multiple viewpoint systems A, B and C and
their associated entropies computed by 10-fold cross-validation over Dataset 2.

developed through feature selection in §7.5.2 to yield the lowest model uncer-

tainty over Dataset 2. Each system was parameterised optimally as discussed in

Chapter 7 and differs only in the viewpoints it uses as shown in Table 9.1.

This work differs in a number of ways from previous approaches to the use

of statistical models for generating music. One of the most salient omissions

from our modelling strategy is that in contrast to the n-gram models of Hall &

Smith (1996) and the neural network models of Hild et al. (1992), no symbolic

constraints were imposed on the generation of compositions. Since the goal of

the current research was to examine the synthetic capabilities of purely statis-

tical, data-driven models of melodic structure, this approach was followed in

order to focus the analysis more sharply on the inherent capacities of statistical

finite context grammars.

In spite of this omission, the strategy employed improves on previous re-

search in a number of ways. First, the variable order selection policy of PPM* is

used to address concerns that low, fixed order models have a tendency to gener-

ate features uncharacteristic of the target style (Ponsford et al., 1999). Also, as

discussed in Chapter 6, other parameters of the models have been optimised to

improve prediction performance over a range of different melodic styles. Sec-

ond, in contrast to other approaches (e.g., Triviño-Rodriguez & Morales-Bueno,

2001), Systems B and C operate over rich representational spaces supplied by

the multiple viewpoint framework. In addition, and in contrast to the research

of Conklin & Witten (1995), the viewpoints used in Systems B and C were se-

lected on the basis of objective and empirical criteria. Also the systems use a

novel model combination strategy, which was shown in Chapter 7 to improve

prediction performance over Dataset 2.

Third, while the vast majority of previous approaches have used sequen-

tial random sampling to generate music from statistical models, in the present
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research melodies were generated using Metropolis sampling (see §9.2.2). It

is expected that this method will be capable of generating melodies which are

more representative of the inherent capacities of the systems. It is worth em-

phasising that Metropolis sampling is not being proposed as a cognitive model

of melodic composition but is used merely as a means of generating melodies

which reflect the internal state of knowledge and capacities of the trained mod-

els.

Finally, in order to evaluate the systems as computational models of melodic

composition, a methodology based on the CAT was developed and applied (see

§9.2.4). The methodology, described fully in §9.4, involves the use of expert

judges to obtain ratings of the stylistic success, originality and creativity of com-

puter generated compositions and existing compositions in the target genre. It

is hypothesised that one or more of the three systems shown in Table 9.1 will be

capable of consistently generating compositions which are rated equally well on

these scales as the chorale melodies in Dataset 2. The empirical nature of this

methodology makes it preferable to the exclusively qualitative analyses which

are typically adopted and, following the arguments made in §9.2.3 and §9.2.4,

it is expected to yield more revealing results than the Turing test methodology

used by Hall & Smith (1996) and Triviño-Rodriguez & Morales-Bueno (2001).

The purpose of using three different systems is to examine which represen-

tational structures are necessary to achieve competent generation of melodies.

For each system, a null hypothesis is constructed according to which the system

is capable of generating melodies which are rated as being equally success-

ful, original and creative examples of a target style as existing, human com-

posed melodies in that style. Assuming that the systems are unlikely to produce

melodies that are more stylistically successful than existing melodies in the

style, the null hypothesis for System A, which is something of a straw man, is

expected to be rejected. In the case of Systems B and C, however, there are

reasons to expect that the null hypothesis will be retained.

In the case of System B, the discussion of perceptual constraints on composi-

tional grammars is relevant, especially the proposal of Baroni (1999) that com-

position and listening involve equivalent grammatical structures (see §9.2.1).

If the representational structures underlying the perception and composition

of music are very similar, we would expect grammars which model perceptual

processes well to be able to generate satisfactory compositions. To the extent

that System B represents a satisfactory model of the perception of pitch struc-

ture in the chorale genre, we may expect to retain the null hypothesis for this

system.
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In Chapter 8, a relationship was demonstrated between model uncertainty

and fit to the human expectancy data obtained by Manzara et al. (1992) sug-

gesting that human perceptual systems may base their predictions on repre-

sentational features which reduce uncertainty. In terms of model selection for

music generation, Conklin & Witten (1995) proposed that highly predictive

theories of a musical style, as measured by entropy, will also be capable of gen-

erating original and acceptable works in the style. Table 9.1 shows that Systems

A, B and C in turn exhibit decreasing uncertainty (cross entropy computed by

10-fold cross-validation) in predicting unseen melodies from Dataset 2. On this

basis, it may be expected that the null hypothesis for System C will be retained.

9.4 Experimental Methodology

9.4.1 Judges

The judges used in this experiment were 16 members of the research and stu-

dent communities of the music departments at: City University, London; Gold-

smiths College, University of London; and the Royal College of Music, London.

The ages of the judges, of whom five were male and eleven female, ranged be-

tween 20 and 46 years (mean 25.9, SD 6.5). They had been musically trained

in a formal context for between 2 and 40 years (mean 13.8, SD 9.4) and all

reported having moderate or high familiarity with the chorale genre. Specif-

ically seven judges were highly familiar while nine were moderately familiar

with the genre. Results were also collected and discarded from six judges who,

in spite of having a musical background, reported having little or no familiarity

with the genre. All judges received a nominal payment for participating in the

experiment which lasted for approximately an hour.

9.4.2 Apparatus and Stimulus Materials

The stimuli consisted of 28 chorale melodies of which seven were selected from

Dataset 2 (see Chapter 4) and seven each were generated by Systems A, B

and C. The chorale melodies selected from Dataset 2 are notated in full in

Appendix C. They were randomly selected from the set of chorales falling in

the midrange of the distribution of cross entropy values computed using System

A. All seven chorales are in common time; six are in a major key and one in a

minor key (Chorale 238, BWV 310). The length of the seven melodies ranges

from 8 to 14 bars (mean 11.14) and 33 to 57 events (mean 43.43).

Using each of the three multiple viewpoint systems, seven chorales were
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generated using 5000 iterations of Metropolis sampling with the seven chorales

selected from Dataset 2 as the initial states (see §9.2.2). In each case, only the

pitches were sampled from the systems; the time and key signatures as well

as rhythmic and phrase structure were taken from the chorale melody used

as the initial state or base chorale melody. The chorale melodies generated by

Systems A, B and C are notated in Appendices D, E and F respectively. The

seven original chorale melodies selected were removed from the datasets used

to train all systems.

In the interests of facilitating concise discussion of the individual test items,

the following scheme will be used to refer to each melody. The seven original

chorale melodies from Dataset 2 will be referred to in full by their number

(e.g., “Chorale 141”) while the generated melodies will be referred to using

a combination of the abbreviated name of the system and the base chorale

employed in their generation. To give an example, “A141”, “B141” and “C141”

refer respectively to the melodies generated by Systems A, B and C with base

chorale 141.

Each chorale melody was generated as a quantised MIDI file (Rothstein,

1992). A subtle pattern of velocity accents was added to emphasise the metric

structure and a single crotchet rest was added after each fermata to emphasise

the phrase structure. The stimuli were recorded to CD quality audio files on a

PC computer using the standard piano tone of a Roland XP10 synthesiser con-

nected via the MIDI interface of a Terratec EWS88 MT soundcard. All chorales

were recorded at a uniform tempo of 90 beats per minute. The stimuli were

presented to the judges over Technics RP-F290 stereo headphones fed from a

laptop PC running a software media player. The judges recorded their responses

in writing in a response booklet.

9.4.3 Procedure

The judges supplied their responses individually and received instructions in

verbal and written forms. They were told that they would hear a series of

chorale melodies in the style of Lutheran hymns. Their task was to listen to

each melody in its entirety before answering four questions about the melody

by placing circles at appropriate locations on discrete scales provided in the

response booklet.4 The first question was “How successful is the composition

as a chorale melody?” Judges were advised that their answers should reflect

4One exception was made for a judge who was blind. In this case, the questions were read to

the judge whose verbal responses were recorded by the experimenter. Since the judge listened

to the stimuli on headphones and due to the randomised presentation order, the experimenter

was unaware of which stimulus any given response referred to.
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such factors as conformity to important stylistic features; tonal organisation;

melodic shape and interval structure; and melodic form. The second question

was “How original is the composition as a chorale melody?” Judges were ad-

vised that their answers should reflect the extent to which they felt that the

composition is novel or original in the context of existing works in the style.

The third question was “How creative is the composition as a chorale melody?”

Judges were advised that their answers should reflect their own subjective def-

inition of creativity. Answers to the first three questions were given on seven-

point numerical scales, ranging from one to seven, with anchors marked low

(one), medium (four) and high (seven). In an attempt to ensure an analytic

approach to the task, judges were asked to briefly justify their responses to the

first three questions. Following Webster & Hickey (1995), the ratings of stylistic

success were presented in more specific terms than the ratings for originality

and creativity. The final question was “Do you recognise the melody?” Judges

were advised to answer in the affirmative only if they could specifically identify

the composition as one they were already familiar with.

It was explained to judges that after all four questions had been answered

for a given melody, they could listen to the next melody by pressing a single key

on the computer keyboard. Judges were asked to bear in mind that their task

was to rate the composition of each melody rather than the performance and

were urged to use the full range of the seven-point scales, limiting ratings of 1

and 7 to extreme cases. There were no constraints placed on the time taken to

answer the questions for each melody.

The experiment began with a practice session during which judges heard

two melodies from the same genre (but not one of those in the test set). The

two melodies chosen were Chorales 61 (BWV 159) and 151 (BWV 379) which

were used in Chapter 8 (see Figure 8.6). These practice trials were intended to

set a judgemental standard for the subsequent test session. This represents a

departure from the CAT in which judges are encouraged to make their ratings of

any given test item in relation to the others by experiencing all test items before

proceeding to make their ratings. However, in this experiment it was intended

that the judges should use their expertise to rate the test items in relation to an

absolute standard represented by the body of existing chorale melodies. Judges

responded as described above for both of the items in the practice block. The

experimenter remained in the room for the duration of the practice session after

which the judges were given an opportunity to ask any further questions. The

experimenter then left the room before the start of the test session.

In the test session, the 28 melodies were presented to the judges who re-
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sponded to the questions. The melodies were presented in random order sub-

ject to the constraints that no melody generated by the same system nor based

on the same chorale should be presented sequentially. A reverse counterbal-

anced design was used for the test session with eight of the judges listening to

the melodies presented in one such order and the other eight listening to them

in the reverse order.

After completing the test session, the judges were asked to fill out a short

questionnaire detailing their age, sex, number of years of music training (in-

strument and theory) and familiarity with the chorales harmonised by J. S.

Bach (high/medium/low).

9.5 Results

9.5.1 Inter-judge Consistency

In the analysis of the results, the data collected for the two chorale melodies

in the practice block were discarded. All analyses to be reported concern only

the 28 chorale melodies from the main test session of the experimental trials.

The first issue to examine concerns the consistency of the ratings across judges

on the scales of success, originality and creativity. For the originality and cre-

ativity ratings only 58 and 24 of the 120 respective pairwise comparisons were

significant at p < 0.05 with mean coefficients of [r(26) = −0.021, p = 0.92] and

[r(26) = 0.027, p = 0.89] respectively. This lack of consistency in the ratings

for originality and creativity may have been a result of the departure from the

methodological conventions of the CAT in terms of encouraging the judges to

consider the test items in relation to one another (see §9.4.3). Alternatively, it

may reflect the views expressed by some judges that the concepts of original-

ity and (especially) creativity did not make a great deal of sense to them in the

context of this simple and traditional vocal style. In light of the lack of observed

consistency, the originality and creativity ratings were not subjected to further

analysis.

For the ratings of stylistic success, however, all but two of the 120 pairwise

correlations between judges were significant at p < 0.05 with a mean coefficient

of [r(26) = 0.65, p < 0.001]. Since there was no apparent reason to reject the

judges involved in the two non-significant correlations, they were not excluded

in subsequent analyses. The high levels of inter-judge consistency found for

the success ratings warrant the averaging the ratings for each test item across

individual judges for use in subsequent analyses.
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Chorale 249 238 365 264 44 141 147

n 1 2 4 1 6 1 8

Table 9.2: The number of judges (n) who recognised each of the seven original chorale
melodies in the test set.

9.5.2 Presentation Order and Prior Familiarity

One factor which might have influenced the ratings of the judges is the order

in which they listened to the test items. However, the correlation between the

mean success ratings for judges in the two groups was r(26) = 0.91, p < 0.001

indicating a high degree of consistency across the two orders of presentation

and warranting the averaging of responses across the two groups of judges.

Another factor which may have influenced the judges’ ratings is their prior fa-

miliarity with the original chorale melodies used as test items. Of the 16 judges,

nine reported recognising one or more of the original chorale melodies. Each

of the seven original chorale melodies was recognised by at least one judge

with a total of 23 recognised items over all 112 ratings obtained for the seven

melodies from 16 judges (see Table 9.2). Interestingly, one of the nine judges

who reported prior familiarity with one or more of the original chorale melodies

also reported recognising three of the computer generated melodies (melodies

A264, B264 and B44). These findings warrant treating the familiarity data

with a certain amount of caution. Nonetheless, there was a tendency for the

mean ratings of success to be slightly higher in cases where judges recognised

the test item although a paired t test failed to reveal a significant difference

[t(6) = 2.07, p = 0.084]. Since few of the original chorale melodies were fa-

miliar to more than a handful of the judges, it is hard to make a firm decision

on the influence of prior familiarity and all ratings are included in subsequent

analyses and no further attention is given to the issue.

9.5.3 Generative System and Base Chorale

The purpose of the next stage of analysis was to examine the influence of gen-

erative system on the ratings of stylistic success. The mean success ratings

for each test item are shown in Table 9.3, with aggregate means for gener-

ative system and base chorale, and presented graphically in Figure 9.1. The

mean ratings suggest that the original chorale melodies received higher success

ratings than the computer generated melodies while the ratings for the latter

show an influence of base chorale but not of generative system. Melody C249

is something of an exception receiving high average ratings of success. The
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Figure 9.1: The mean success ratings for each test item.

planned analysis was a multivariate ANOVA using within-subjects factors for

generative system with 4 levels (Original, System A, System B and System C)

and base chorale with 7 levels (249, 238, 365, 264, 44, 153 and 147) with the

null hypotheses of no main or interaction effects of generative system or base

chorale. However, Levene’s test revealed significant violations of the assump-

tion of homogeneity of variance with respect to the factor for generative system

[F (3) = 6.58, p < 0.001]. In light of this, Friedman rank sum tests were per-

formed as a non-parametric alternative to the two-way ANOVA. Unfortunately

this test does not allow the examination of interactions between the two factors.

The first analysis examined the influence of generative system in an unrepli-

cated complete blocked design using the mean success ratings aggregated for

each subject and generative system across the individual base chorales. Sum-

mary statistics for this data are shown in Table 9.4. The Friedman test revealed

a significant within-subject effect of generative system on the mean success rat-

ings [χ2(3) = 33.4, p < 0.001]. Pairwise comparisons of the factor levels were

carried out using Wilcoxon rank sum tests with Holm’s Bonferroni correction

for multiple comparisons. The results indicate that the ratings for the original

chorale melodies differ significantly from the ratings of melodies generated by

all three computational systems (p < 0.001). Furthermore, the mean success

ratings for the melodies generated by System B were found to be significantly
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System A System B System C Original Average

249 2.56 2.44 5.00 6.44 4.11

238 3.31 2.94 3.19 5.31 3.69

365 2.69 1.69 2.50 6.25 3.28

264 1.75 2.00 2.38 6.00 3.03

44 4.25 4.38 4.00 6.12 4.69

141 3.38 2.12 3.19 5.50 3.55

147 2.38 1.88 1.94 6.50 3.17

Average 2.90 2.49 3.17 6.02 3.65

Table 9.3: The mean success ratings for each test item and means aggregated by

generative system and base chorale.

different from those of the melodies generated by Systems A and C (p = 0.027).

These results suggest that none of the systems are capable of consistently gen-

erating chorale melodies which are rated as equally successful stylistically as

those in Dataset 2 and that System B performed especially poorly.

The second analysis examined the influence of base chorale in an unrepli-

cated complete blocked design using the mean success ratings aggregated for

each subject and base chorale across the individual levels of generative sys-

tem. Summary statistics for this data are shown in Table 9.5. The Friedman

test revealed a significant within-subject effect of base chorale on the mean

success ratings [χ2(6) = 49.87, p < 0.001]. Pairwise comparisons of the factor

levels were carried out using Wilcoxon rank sum tests with Holm’s Bonferroni

correction for multiple comparisons. The results indicate that the mean rat-

ing for melodies generated with base chorale 44 was significantly different (at

p < 0.01) from that of melodies generated with all other base chorales (except

Chorale 249, p = 0.072). In addition, the mean rating of melodies gener-

ated with base chorale 249 was significantly different (at p < 0.05) from that

of melodies generated with all other base chorales (except Chorales 44, see

above, and 238, p = 0.092). An examination of the mean success ratings plot-

Statistic System A System B System C Original

Median 2.86 2.57 3.07 5.93

Q1 2.68 2.25 2.68 5.86

Q3 3.29 2.75 3.61 6.29

IQR 0.61 0.50 0.93 0.43

Table 9.4: The median, quartiles and inter-quartile range of the mean success ratings
for each generative system.
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Statistic 249 238 365 264 44 141 147

Median 4.12 3.75 3.25 3.00 4.75 3.75 3.25

Q1 4.00 3.44 2.75 2.75 4.44 3.19 2.94

Q2 4.25 4.00 3.81 3.31 5.06 3.75 3.31

IQR 0.25 0.56 1.06 0.56 0.62 0.56 0.37

Table 9.5: The median, quartiles and inter-quartile range of the mean success ratings

for each base chorale.

ted in Figure 9.1, suggests that the significant effects of base chorale are largely

due to the relatively high mean success rating of melody C249 and all computer

generated melodies with Chorale 44 as their base melody.

9.5.4 Objective Features of the Chorales

A question which arises from the previous analyses concerns the objective mu-

sical features of the test items which were used by the judges in making their

ratings of stylistic success. Given the finding that the generated melodies were,

in general, rated as less successful than the original chorale melodies, an an-

swer to this question could shed light on how the systems are lacking as models

of composition. In order to address this issue, a simple qualitative analysis of

the test items was carried out and used to develop a set of objective descriptors.

These predictors were then applied in a series of multiple regression analyses

using the three rating schemes, averaged across test items, as dependent vari-

ables. The descriptive variables and their quantitative coding are presented

before discussing the results of the analyses.

The chorale melodies contained in Dataset 2 represent congregational hymns

of the Lutheran church which were either composed for this purpose or adapted

from existing pre-Reformation hymns and secular folk songs in the sixteenth

and seventeenth centuries. Specifically, Dataset 2 contains a subset of the

chorale melodies placed in the soprano voice and harmonised in four parts

by J. S. Bach in the first half of the eighteenth century. Although they do re-

flect these diverse origins, these melodies are characterised by stepwise patterns

of conjunct intervallic motion as well as simple, uniform rhythmic and metric

structure. Phrase structure in the chorales is consistently notated by means of

fermatas which emphasise both melodic sequences and the implied harmonic

movement. The majority of phrases begin on the tonic, mediant or dominant

scale degrees and end on the tonic or dominant with a cadence to the tonic

virtually ubiquitous in the case of the final phrase.

The chorales generated by the three statistical systems are on the whole not
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very stylistically characteristic of Dataset 2 although some are moderately suc-

cessful. The melody generated by System C with base chorale 249, for example,

is reasonably coherent in terms of melodic form although it lacks harmonic di-

rection especially in the final phrase. The qualitative comments supplied by

the judges to justify their ratings were used to identify a number of stylistic

constraints describing the test items and distinguishing the original chorale

melodies. These may be grouped into five general categories: pitch range;

melodic structure; tonal structure; phrase structure; and rhythmic structure.

The predictor variables presented below were developed to cover all five of

these categories. The categories are very general and, along with some of the

specific predictors, bear a certain resemblance to the rating scales of Cantomet-

ric analysis used in comparative ethnomusicology (Lomax, 1962).

Pitch Range The chorale melodies in Dataset 2 are written for the soprano

voice and span a pitch range of approximately an octave above and below C5

tending to favour the centre of this range. While the generated melodies are

constrained to operate within this range, some tend towards unusually high or

low tessitura. Examples of the former include the melodies B365 and B264 and

of the latter the melody C238. The predictor variable pitch centre was developed

to capture such intuitions. Following von Hippel (2000b), it is a quantitative

variable reflecting the absolute distance, in semitones, of the mean pitch of a

given melody from the mean pitch of Dataset 2 (approximately B♭4). Another

issue to consider concerns the overall pitch range of the generated chorales.

The chorale melodies in Dataset 2 span, on average, a range of just under

an octave (mean pitch range = 11.8 semitones). By contrast, several of the

21 generated melodies span pitch ranges of 16 or 17 semitones (e.g., melodies

C147, B249 and A264) with a mean pitch range of 13.9 semitones. Others, such

as melody A141 operate within a rather narrow range of pitch height. These

qualitative considerations were captured in a quantitative predictor variable

pitch range which represents the absolute distance, in semitones, of the pitch

range of a given melody from the mean pitch range of Dataset 2.

Melodic Structure The generated melodies fail to consistently reproduce the

salient melodic features of the chorales in Dataset 2 in a number of ways. Per-

haps the most obvious of these is a common failure to maintain a stepwise

pattern of conjunct movement. While some of the generated melodies, such as

melodies C44 and C249, are relatively coherent, others, such as melody C147,

contain stylistically uncharacteristic intervallic leaps of an octave or more. Of
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9042 melodic intervals in the chorale melodies in Dataset 2, just 57 are greater

than a perfect fifth and none exceeds an octave. In order to capture these devia-

tions from the conventions of Dataset 2, a quantitative predictor variable called

interval size was created which represents the number of intervals in a melody

which are greater in size than a perfect octave. Apart from interval size, the

generated chorales contain uncharacteristic discords such as the tritone in the

penultimate bar of the melody B147 or the sevenths in the second phrase of the

melody B238 and the third and final phrases of melody C147. Only 8 of the

9042 intervals in Dataset 2 are tritones or sevenths (or their enharmonic equiv-

alents). In order to capture these deviations from the conventions of Dataset 2,

a quantitative predictor variable called interval dissonance was created which

represents the number of dissonant intervals greater than a perfect fourth in a

given melody.5

Tonal Structure Since it operates exclusively over representations of pitch

height, it is not surprising that most of the melodies generated by System A fail

to establish a key note and exhibit little tonal structure. However, we might ex-

pect System B and, especially, System C to fare somewhat better in this regard.

While the comments of the judges suggest that this is not the case, it is

quite possible that the judges arrived at a tonal interpretation at odds with

the intended key of the base chorale. In order to independently estimate the

perceived tonality of the melodies presented to the judges, a key finding algo-

rithm was applied to each of the test items with the results shown in Table 9.6.

The algorithm in question is the Krumhansl-Schmuckler key finding algorithm

(Krumhansl, 1990) modified to use the revised key profiles developed by Tem-

perley (1999).6 Note that the algorithm assigns the correct keys to all seven of

the original chorale melodies. While the suggested keys of the melodies gen-

erated by System A reflect the fact that it does not consider tonal constraints,

the melodies generated by Systems B and C retain the key of their base chorale

in two and five cases respectively. Furthermore, especially in the case of the

melodies generated by System C, deviations from the key of the base chorale

tend to be to related keys (either in the circle of fifths or through relative and

parallel major/minor relationships). This suggests a degree of success on the

part of the more sophisticated systems in retaining the tonal characteristics of

5It should be noted that dissonance is used here in its musical sense; this predictor does not

reflect an attempt to model sensory dissonance.
6While Temperley (1999) proposes a number of improvements to the Krumhansl-Schmuckler

algorithm, the algorithm used here differs from the original only its use of the revised key pro-

files. Temperley derived the revised profiles through both trial and error and theoretical reason-

ing to address a number of concerns with the original profiles.
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System A System B System C Original

249 F Major G Minor G Major G Major

238 G Major D Major E Major E Minor

365 B♭ Major F♯ Minor A Major A Major

264 A Minor B♭ Major B♭ Major B♭ Major

44 C Major G Major D Major D Major

141 C Major E Minor A Major A Major

147 G Major E♭ Major B♭ Major E♭ Major

Table 9.6: The key returned by the key-finding algorithm of Temperley (1999) for each

test item.

the base chorales.

Nonetheless, the generated melodies often exhibit a degree of chromaticism

which is unacceptable in the style since it obscures the prevailing tonality. In

many cases, this seems to be a result of the failure to represent mode in the

multiple viewpoint systems. Chorale 238, for example, is written in the key of

E minor but the melody C238 contains accidentals from the key of E major (C♯,

G♯ and D♯). Similar comments apply to the melodies C264, C44 and B44. Other

generated melodies appear to include chromatic elements from related keys as

in the case of the melody C141, intended to be in the key of A major, which

includes the accidentals D♯ and A♯ from the related keys of E and B major. On

the basis of these considerations, a quantitative predictor called chromaticism

was developed which represents the number of tones which are chromatic in

the key suggested by the key-finding algorithm with the assumption that this

reflects the tonality induced by the judges in listening to the melodies.

Phrase Structure The generated chorales also typically fail to reproduce the

simple implied harmonic rhythm of the original chorale melodies and its char-

acteristically strong relationship to phrase structure. In particular, while some

of the generated melodies close on the tonic, (e.g., melodies C249, C264 and

C141), many fail to imply harmonic closure in a stylistically satisfactory man-

ner (e.g., melodies C238, C365, C44 and C147). The generated melody C44,

for example, breaks the implied I-V-I harmonic movement of Chorale 44, espe-

cially in the final phrase. In order to capture such effects, a dummy variable

called harmonic closure was created which assumes a value of zero if a melody

closes on the tonic of the key assigned by the key-finding algorithm described

above and one otherwise. In addition, the generated melodies frequently fail to

respect thematic repetition and development of melodic material often embed-

ded within the phrase structure of the chorales. To take an obvious example,
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the two opening phrases of Chorale 264 are repeated exactly in the fifth phrase.

However, the structural coherence this brings to the melody is almost entirely

obliterated in the generated melody C264. More subtle examples of failures to

repeat and transform melodic motifs abound in the generated melodies. How-

ever, these kinds of repetition and development of melodic material within the

phrase structure of a chorale are difficult to quantify and are not represented

in the present model. Instead, as an extremely simple indicator of complexity

in phrase structure, a second dummy variable phrase length was created which

assumes a value of zero if all phrases are of equal length (in terms of tactus

beats) and one otherwise.

Rhythmic Structure Although the chorale melodies in Dataset 2 tend to

be very simple rhythmically, the finding of significant (and marginally non-

significant) effects of base chorale in the previous analyses raises the question

of whether rhythmic structure may have influenced the ratings of the judges.

Furthermore, the comments of some judges revealed that they were taking con-

siderable account of rhythmic structure in making their judgements. For these

reasons, three further quantitative predictors modelling rhythmic features were

adapted from the expectancy-based model of melodic complexity developed by

Eerola & North (2000). First, rhythmic density is a quantitative predictor repre-

senting the mean number of events per tactus beat. Second, rhythmic variability

is a quantitative predictor which models the degree of changes in note duration

and is coded as the standard deviation of the log of the event durations in a

melody. Finally, syncopation represents the degree of syncopation by assigning

tones a pulse strength within a metric hierarchy (Lerdahl & Jackendoff, 1983;

Palmer & Krumhansl, 1990) and taking the average strengths of all the tones in

a given melody. Pulses are coded such that lower values are assigned to tones

on metrically stronger beats. As noted by Eerola & North (2000), all three

quantities have been demonstrated to increase the difficulty of perceiving or

producing melodies (Clarke, 1985; Conley, 1981; Povel & Essens, 1985).

The comments of the judges in justifying their judgements of the success of

the melodies generally reflected the considerations involved in the development

of these predictors. They frequently commented that the incoherence and com-

plexity of the generated melodies in terms of pitch range, form, tonality and

melodic structure would make them very difficult to sing or to harmonise.

The mean ratings of success for each test item were regressed on the ten

predictor variables introduced above in a multiple regression analysis. Of the
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Predictor β Std. Error t p

Pitch Range −0.2854 0.0799 −3.57 < 0.01

Pitch Centre −0.2066 0.1026 −2.01 < 0.1

Interval Dissonance −0.7047 0.2776 −2.54 < 0.05

Chromaticism −0.2716 0.0336 −8.09 < 0.001

Phrase Length −0.5258 0.2759 −1.91 < 0.1

Overall model: R = 0.922, R2
adj = 0.817, F (5, 22) = 25.04, p < 0.001

Table 9.7: Multiple regression results for the mean success ratings of each test melody.

pairwise correlations between the predictors, the following were significant at

p < 0.05: interval size correlated positively with interval dissonance (r = 0.6)

and chromaticism (r = 0.39); harmonic closure correlated positively with chro-

maticism (r = 0.49); rhythmic variation correlated positively with syncopa-

tion (r = 0.61) and phrase length (r = 0.73); and rhythmic density corre-

lated positively with syncopation (r = 0.62) and negatively with phrase length

(r = −0.54). Given this collinearity, redundant predictors were removed from

the regression model through backward stepwise elimination using the Akaike

Information Criterion (AIC). For a regression model with p predictors and n

observations:

AIC = n log(RSS/n) + 2p + c

where c is a constant and RSS is the residual sum of squares of the model

(Venables & Ripley, 2002). Since larger models will provide better fits, this

criterion attempts to balance model size, represented by p, with the fit of the

model to the dependent variable, represented by RSS.

Regarding the predictors, more positive values indicate greater deviance

from the standards of Dataset 2 (for pitch range and centre) or increased

melodic complexity (for the remaining predictors). On this basis, it is expected

that each predictor will exhibit a negative relationship with the success ratings.

The results of the multiple regression analysis with the mean success ratings

as the dependent variable are shown in Table 9.7. The overall model accounts

for a significant proportion (approximately 82%) of the variance in the mean

success ratings. Apart from rhythmic structure, at least one predictor from each

of the five categories made a significant (or marginally significant) contribution

to the fit of the model. Furthermore, the coefficients for all of the selected pre-

dictors are negative as predicted. Overall, the model indicates that the judged

success of a test item decreases as its pitch range and centre depart from the

mean range and centre of Dataset 2, with increasing numbers of dissonant in-
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Stage Viewpoint Added H

1 cpint⊗dur 2.214

2 cpintfref⊗mode 2.006

3 cpintfref⊗cpintfip 1.961

4 cpitch⊗dur 1.943

5 thrfiph 1.933

6 cpintfref⊗liph 1.925

7 cpint⊗dur-ratio 1.919

8 cpint⊗inscale 1.917

9 cpintfref⊗dur 1.912

10 cpintfiph 1.911

Table 9.8: The results of viewpoint selection for reduced entropy over Dataset 2 using

an extended feature set.

tervals and chromatic tones and if it has unequal phrase lengths.

9.5.5 Improving the Computational Systems

The analysis of the generated chorales conducted in §9.5.4 suggests that sev-

eral important stylistic constraints of the chorale genre are lacking in the com-

putational systems examined. These constraints primarily concern pitch range,

intervallic structure and tonal structure. In order to examine whether the sys-

tems can be improved to respect such constraints, a number of viewpoints were

added to those used in selecting System C and the resulting models were anal-

ysed in the context of prediction performance. Regarding tonal structure, it

seems likely that the evident confusion of parallel minor and major modes is

due to the failure of any of the systems to represent mode. In order to examine

this hypothesis, a linked viewpoint cpintfref⊗mode was included in the ex-

tended feature space. Furthermore, it is hypothesised that the skewed distribu-

tion of pitch classes at phrase beginnings and endings can be more adequately

modelled by two linked viewpoints cpintfref⊗fiph and cpintfref⊗liph.

On the hypothesis that intervallic structure is constrained by tonal structure,

another linked viewpoint cpint⊗inscale was also included. Finally, in an

effort to represent potential constraints on pitch range and centre, a new view-

point tessitura was created which assumes a value of 0 if the pitch of an event

is within 1 standard deviation of the mean pitch of Dataset 2, -1 if it is below

this range and 1 if it is above. The linked viewpoint tessitura⊗cpint was

used in the feature set to represent the potentially complementary constraints

of pitch height and interval size and direction.

These five viewpoints were added to the set, shown in Tables 5.2 and 5.4,
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used in the feature selection experiment of Chapter 7 which led to the devel-

opment of System C. The feature selection algorithm discussed in §7.4 was run

over this extended feature space with the empty multiple viewpoint system as

its start state to select feature subsets which reduce model uncertainty. The re-

sults of feature selection are shown in Table 9.8. In general, the resulting mul-

tiple viewpoint system (referred to as System D) shows a great deal of overlap

with System C. Just three of the nine viewpoints present in System C were not

selected for inclusion in System D: cpintfref⊗fib; thrtactus; and cpintfip.

It seems likely that this is due to fact that three of the five new viewpoints

were selected for inclusion in System D: cpintfref⊗mode; cpintfref⊗liph;

and cpint⊗inscale. The first and second of these viewpoints, in particular,

were added early in the selection process. In addition, the existing viewpoint

cpintfiph was added in the final stage of feature selection. Finally, it is impor-

tant to note that System D exhibits a lower average entropy (H = 1.911) than

System C (H = 1.953) in predicting unseen compositions in Dataset 2. The sig-

nificance of this difference was confirmed by paired t tests over all 185 chorale

melodies [t(184) = 5.985, p < 0.001] and averaged for each 10-fold partition of

the dataset [t(9) = 12.008, p < 0.001] (see §7.5.1).

9.6 Discussion and Conclusions

The goal of these experiments was to examine the intrinsic computational-level

demands of the task of melodic composition. In particular, the aim was to exam-

ine constraints placed on the representational primitives and expressive power

of the computational system in the composition of a successful melody. In order

to achieve these goals, three multiple viewpoint systems were developed: first,

a simple system which represents only pitch height; second, a system which

provides a close fit to the expectations of listeners to chorale melodies; and

third, a system which exhibits relatively low uncertainty in predicting events in

unseen chorale melodies. Within the context of these three systems, finite con-

text grammars were trained on Dataset 2 and used to generate new pitches for

seven of the chorales in that corpus. Musically trained judges who were famil-

iar with the domain were asked to rate the original and generated melodies in

terms of their perceived success, originality and creativity as chorale melodies.

For each system a null hypothesis was constructed according to which the

system would be capable of generating melodies which are rated as being

equally successful, original and creative examples of the style as the original

melodies. The originality and creativity ratings showed little consistency across
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judges and were discarded. Regarding the ratings for success, however, the re-

sults of the analysis suggested significant effects of generative system and base

chorale. Further analyses indicated that the effects were attributable to the

fact that the original chorale melodies were rated as more stylistically success-

ful than the computer generated melodies. On this basis, the null hypotheses

may be rejected for all three systems; none of the computational systems is

capable of consistently generating chorale melodies which are rated as equally

successful examples of the style as the original chorale melodies in Dataset 2.

In a second analysis, the qualitative comments of the judges were used to de-

rive a number of predictors describing objective features of the test items. The

results of a multiple regression analysis demonstrated that the success ratings

tended to decrease when the pitch range and pitch centre diverged from those

of Dataset 2, with increasing numbers of dissonant intervals and chromatic

tones, and with uneven phrase lengths.

This analysis of the relationship between objective features of the chorales

and the ratings of stylistic success suggested some ways in which the mod-

els could be improved to better reflect the constraints of the style. Several

viewpoints were developed in an effort to represent potential constraints on

tonal-harmonic structure, intervallic structure and pitch range. In a subsequent

feature selection experiment, three of these new viewpoints were selected re-

sulting in System D which has significant overlap with System C but which

exhibits significantly lower uncertainty in predicting unseen chorale melodies

in Dataset 2. Appendix G presents a preliminary investigation into the capacity

of System D to generate stylistically successful chorale melodies.

Some discussion is warranted of the finding that the statistical finite con-

text grammars used in the current research failed to match the computational

demands of the task of composing chorale melodies regardless of the represen-

tational primitives used. Since steps were taken to address the limitations of

previous context modelling approaches to generating music, it might be con-

cluded that more powerful grammars are required to successfully achieve this

task. The question of how powerful the grammar needs to be is an empirical one

which should be addressed in future research. In this regard, a number of ap-

proaches can be envisaged. First, it is possible that a further analysis of the ca-

pacities of finite context modelling systems will prove fruitful. Future research

should use the methodology developed here to analyse System D, identify its

weaknesses and elaborate it further. Second, it remains possible that the MCMC

sampling procedure was partly responsible for the negative result, in spite of

the fact that this method represents an improvement (in terms of obtaining an
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unbiased sample from the target distribution) over the sequential random sam-

pling method used in previous research. More structured generation strategies,

such as pattern based sampling techniques (Conklin, 2003; Hörnel, 1997), may

be capable of conserving phrase level regularities and repetitions in a way that

the models examined here clearly were not. Third, symbolic constraints may

be employed to examine hypotheses about the nature of compositional compe-

tence within the framework of finite context modelling (Hall & Smith, 1996;

Hild et al., 1992; Povel, 2004). An approach such as this might prove capa-

ble of providing more satisfactory models of intra-opus regularities than the

short-term models used here. Finally, future developments in neural network

research (see §3.5) may lead to architectures and training strategies which al-

low networks to acquire representations of constraints of a sufficient expressive

power to successfully model the cognitive process of melody composition.

A number of issues concerning the methodological approach also warrant

discussion. Perhaps most significantly, the adapted CAT yielded insightful re-

sults for ratings of stylistic success in spite of the fact that the judges were

encouraged to rate the test items according to an absolute standard (cf. Ama-

bile, 1996). However, the results highlight a number of recommendations for

future research. First, future research should completely avoid the possibility

of method artefacts by randomising the presentation order of both test items

and practice items for each judge and also randomising the order in which

each rating scale is presented (Amabile, 1996). Second, the comments of the

judges sometimes reflected the influence of aesthetic appeal on their judge-

ments (e.g., “doesn’t work . . . but endearing and engaging”). In the interests of

delineating subjective dimensions of the product domain in the assessment task

(Amabile, 1996), judges should also be asked to rate the test items on aesthetic

appeal. Third, although the influences of prior familiarity with the test items

were ambiguous, efforts should be made to avoid any potential bias resulting

from recognition of the stimuli. Finally, future work should examine why the

inter-judge reliability was so low for the originality and creativity ratings. Pos-

sible causes for this finding include the fact that judges were not encouraged to

make relative assessments of the test items (see §9.4.3) or the degree to which

the concepts of originality and creativity apply to this simple and traditional

vocal style. In any case, the present results suggest that the task of composing a

stylistically successful chorale melody (regardless of its originality or creativity)

presents significant challenges as a first step in modelling cognitive processes

in composition.

Nonetheless, the methodological approach to evaluation derived from the
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consensual assessment technique proved to be highly fruitful in examining the

generated melodies in the context of existing pieces in the style. This methodol-

ogy facilitated the empirical examination of specific hypotheses concerning the

models through a detailed comparison of the generated and original melodies

on a number of dimensions. It also permitted the examination of objective

features of the melodies which influenced the ratings and the subsequent iden-

tification of weaknesses in the generative systems and directions for improving

them. This provides a practical demonstration of the utility of analysis by syn-

thesis in the context of modelling cognitive processes in composition as long as

it is combined with an empirical methodology for evaluation such as the one

developed here.

9.7 Summary

The goal in this chapter was to examine, at the computational level, the intrin-

sic demands of the task of composing a successful melody. Of particular interest

were constraints placed on the degree of expressive power and the representa-

tional primitives of the compositional system. In order to achieve these goals,

three multiple viewpoint systems developed in previous chapters were used to

generate new pitches for seven of the chorale melodies in Dataset 2. In §9.3,

null hypotheses were presented which stated that each of the three models

would be capable of consistently generating chorale melodies which are rated

as equally successful, original and creative examples of the style as the chorale

melodies in Dataset 2. In order to examine these hypotheses experienced judges

were asked to rate the generated melodies together with seven original chorale

melodies on each of these three dimensions. The results, presented in §9.5, war-

rant the rejection of the null hypothesis for all three of the systems, mainly on

the basis of the success ratings. In spite of steps taken to address some notable

limitations of previous context modelling approaches to generating music, the

finite context grammars making up these systems exhibited little ability to meet

the computational demands of the task regardless of the representational prim-

itives used. Nonetheless, a further analysis identified some objective features

of the chorale melodies which exhibit significant relationships with the ratings

of stylistic success. These results, in turn, suggested ways in which the compu-

tational models were failing to meet intrinsic stylistic constraints of the chorale

genre. Adding certain viewpoints to the multiple viewpoint systems to address

these concerns resulted in significant improvements in the prediction perfor-

mance of the models. In contrast to previous approaches to the evaluation of
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computational models of compositional ability, the methodological framework

developed in this chapter enabled a detailed and empirical examination and

comparison of melodies generated by a number of models, the identification of

weaknesses of those models and their subsequent improvement.
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CHAPTER 10

CONCLUSIONS

10.1 Dissertation Review

In Chapter 1, the present research was motivated in terms of a discrepancy be-

tween the development of sophisticated statistical models of musical structure

in AI research and the predominant use of symbolic rule-based systems derived

from expert music-theoretic knowledge in research on music perception. The

former offer an opportunity to address the music-theoretic biases, inflexibility

and cross-cultural limitations of the latter. The specific objectives of the present

research were to develop powerful statistical models of melodic structure; to

apply these models in the examination of specific hypotheses regarding cogni-

tive processing in melody perception and composition; and to investigate and

adopt appropriate methodologies for the empirical evaluation of such hypothe-

ses. The principal claim investigated was that statistical models which acquire

knowledge through the induction of regularities in existing music can, if ex-

amined with appropriate methodologies, provide significant insights into the

cognitive processing involved in music perception and composition.

The methodological foundations for achieving the research objectives were

presented in Chapter 2. In particular, arguments were presented for examining

music perception and composition at the computational level, for following a

machine learning approach and for evaluating cognitive models using empirical

experiments. In Chapter 3, the finite context models used in this research were

introduced in terms of the languages they can generate, their assumptions and

the methodological constraints they impose. While these models suffer from

213
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their limited expressive power, they are compatible with a machine learning ap-

proach unlike many more powerful classes of grammar. Several approaches to

addressing the inherent limitations of these models were discussed in a review

of their use in previous research for modelling musical structure, generating

music and modelling music perception.

The corpora of melodic music used in the present research were introduced

in Chapter 4 including Dataset 2 which consists of 185 of the chorale melodies

harmonised by J. S. Bach and was used extensively in later chapters. Chap-

ter 5 presented the scheme used to represent musical objects which takes as

its musical surface the properties of discrete musical events at the note level.

Events are composed of attributes representing properties related to event tim-

ing and pitch as well as other metric, tonal and phrase level features notated in

the score. In the interests of endowing the representation scheme with greater

structural generality, a multiple viewpoint framework (Conklin & Witten, 1995)

was developed which permits the flexible representation of many different fea-

tures derived from the musical surface. On the basis of previous research on

music perception and computational music analysis, a collection of viewpoints

was constructed to allow the representation of the pitch, rhythmic, tonal, met-

ric and phrase structure of a melody as well as relationships between these

structural domains.

In Chapter 6, a number of strategies for improving the performance of fi-

nite context models were examined empirically in the context of predicting the

pitches of events in unseen melodies in a range of different styles. Some of

these strategies concern the smoothing mechanism employed: first, several dif-

ferent techniques for computing the escape probabilities were examined; sec-

ond, backoff smoothing was compared with interpolated smoothing; and third,

a technique for removing the global order bound altogether was examined. An-

other technique examined, update exclusion, is an alternative policy for main-

taining frequency counts. The final strategy examined combines the predictions

of a trained model with those of a short-term model trained online during pre-

diction of the current melody.

In a series of experiments, these techniques were applied incrementally to

eight melodic datasets using cross entropy computed by 10-fold cross-validation

on each dataset as the performance metric. The results demonstrated the con-

sistent and significant performance improvements afforded by the use of escape

method C (and AX with the short-term model), unbounded orders, interpolated

smoothing and combining long- and short-term models. Furthermore, since

these findings were obtained over a range of musical genres and generally cor-
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roborate findings in data compression and statistical language modelling, there

is reason to believe that the improvements afforded are robust across domains

of application.

In Chapter 7, these improved models were applied within the context of the

multiple viewpoint framework. A central issue when predicting melodies with

multiple viewpoints concerns the method by which distributions estimated by

different models are combined. In an experiment which compared the perfor-

mance of a novel combination technique based on a weighted geometric mean

with that of an existing technique based on a weighted arithmetic mean, the for-

mer was found to outperform the latter. This effect was much more pronounced

when combining viewpoint models than the long- and short-term models. It

was proposed that this asymmetry results from the fact that the former involves

combining estimates derived from distinct data representations. In a second

experiment, a feature selection algorithm was applied to select multiple view-

point systems that are associated with lower cross entropy over Dataset 2. The

final selected system is dominated by linked and threaded viewpoints which

emphasise stylistic regularities in the corpus in terms of relative pitch structure,

relationships between pitch and rhythmic structure and the influence of metric

and phrase level salience.

The goal in Chapter 8 was to examine the cognitive processing involved

in the generation of perceptual expectations while listening to a melody. The

implication-realisation theory of Narmour (1990) is a detailed account of ex-

pectancy in melody according to which the expectations of a listener depend

to a large extent on a small number of Gestalt-like rules which are held to be

innate and universal. An alternative theory was presented which claims that

observed patterns of melodic expectation can be accounted for in terms of the

induction of statistical regularities existing in the music to which listeners are

exposed.

In order to test the theory, three experiments were conducted to examine

the correspondence between the patterns of expectation exhibited by listeners

and those exhibited by the statistical models developed in Chapters 6 and 7

in the context of increasingly complex melodic stimuli. The question of which

melodic features afford regularities capable of supporting the acquisition of

the observed patterns of expectation was also addressed by selecting multiple

viewpoint systems exhibiting closer fits to the behavioural data. The results

demonstrate that the statistical models can account for the expectations of lis-

teners as well as, or better, than the IR model especially when expectations were

elicited in longer melodic contexts. The results also indicate that the statistical
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model largely subsumes the function of the principles of Proximity and Reversal

(Schellenberg, 1997) in accounting for the expectations of listeners, rendering

the inclusion of these rules in an additional system of innate bottom-up pre-

dispositions unnecessary. Overall, the viewpoints selected in the experiments

reflected a strong influence of interval structure, relative pitch structure and a

relationship between these dimensions of pitch structure and rhythmic struc-

ture.

The goal in Chapter 9 was to examine the intrinsic demands of the task of

composing a successful melody. Of particular interest were constraints placed

on the degree of expressive power and the representational primitives of the

compositional system. In order to achieve these goals, three multiple viewpoint

systems developed in previous chapters were used to generate new pitches for

seven of the chorale melodies in Dataset 2 using Metropolis sampling in place

of the sequential random sampling method typically used. The null hypoth-

esis stated that these systems are capable of consistently generating chorale

melodies which would be rated as equally successful, original and creative ex-

amples of the style as the chorale melodies in Dataset 2. An adapted form of

the Consensual Assessment Technique (Amabile, 1996) for the assessment of

psychological components of human creativity was used to examine this hy-

pothesis. In this methodology, experienced judges are asked to rate generated

melodies together with original melodies on a number of dimensions.

In spite of steps taken to address some notable limitations of previous con-

text modelling approaches to generating music, the results demonstrate that

the finite context grammars making up these systems possess little ability to

meet the computational demands of the task regardless of the representational

primitives used. However, in contrast to previous approaches to the evaluation

of computational models of compositional ability, the methodological approach

enabled a further quantitative analysis of specific ways in which the compu-

tational models failed to represent some important stylistic constraints of the

chorale genre. These failures were addressed by augmenting the multiple view-

point systems with additional viewpoints resulting in significant improvements

in prediction performance.

10.2 Research Contributions

In §2.3, a distinction was made between three different branches of AI each

with its own motivations, goals and methodologies: basic AI; cognitive science;

and applied AI. The present research makes direct contributions in the fields of
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basic AI and, especially, cognitive science and indirectly contributes to the field

of applied AI.

The goal of basic AI is to examine computational techniques which have

the potential for simulating intelligent behaviour. Chapters 6 and 7 present an

examination of the potential of a range of computational modelling techniques

to simulate intelligent behaviour in the induction of regularities in existing cor-

pora of melodic music and the use of these regularities in predicting unseen

melodies. The techniques examined and the methodologies used to evaluate

these techniques were drawn from the fields of data compression, statistical

language modelling and machine learning. In empirically identifying a num-

ber of techniques which consistently improve the performance of finite context

models of melodic music, the present research contributes to our basic under-

standing of computational models of intelligent behaviour in the induction and

prediction of musical structure. In particular, Chapter 7 introduced a new tech-

nique based on a weighted geometric mean for combining the predictions of

multiple models trained on different viewpoints which was shown to outper-

form an existing technique based on a weighted arithmetic mean.

Another contribution made in the present research was to use a feature se-

lection algorithm to construct multiple viewpoint systems (see 5.2.3) on the

basis of objective criteria rather than hand-crafting them on the basis of ex-

pert human knowledge as has been done in previous research (Conklin, 1990;

Conklin & Witten, 1995). This has allowed the empirical examination of hy-

potheses regarding the degree to which different representational dimensions

of a melody afford regularities that can be exploited by statistical models of

melodic structure and melody perception.

The goal of cognitive-scientific research is to further our understanding of

human cognition using computational techniques. Contributions to cognitive

science were made in Chapters 8 and 9 where the statistical finite context mod-

els developed in Chapters 6 and 7 were used to examine computational level

constraints on the cognitive tasks of perceiving melodic structure and compos-

ing melodies respectively. Specifically, the research reported in Chapter 8 pro-

posed a theory of melodic expectancy based on statistical learning and adopted

methodologies from cognitive science and psychology to examine the predic-

tions of the theory. The results demonstrate that the expectations of listeners

elicited in a range of melodic contexts may be accounted for in terms of the

combined influence of a sensitivity to certain dimensions of musical events and

simple, domain general learning mechanisms which are given extensive expo-

sure to music in a given genre.
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These results are significant for a number of reasons: first, they suggest

an underlying cognitive account of descriptive Gestalt-based theories of ex-

pectancy in melody (e.g., Narmour, 1990); second, they suggest that other cog-

nitive accounts of music perception based on expert music-theoretic knowledge

(e.g., Lerdahl & Jackendoff, 1983) may significantly overestimate the percep-

tual and cognitive capacities of listeners. Third, they offer the possibility of

addressing the bias inherently associated with such theories. Fourth, they of-

fer the possibility of a more parsimonious model of the influences of acquired

cultural influences on music perception (Cross, 1998b; Eerola, 2004b).

In Chapter 9, computational constraints on composition were examined by

applying a number of multiple viewpoint systems to the task of generating suc-

cessful melodies in a specified style. In spite of efforts made to improve on

the modelling and sampling strategies adopted in previous research, the results

demonstrated that these simple grammars are largely incapable of meeting the

intrinsic demands of the task. Although the result was negative, it nonetheless

remains a contribution to our understanding of cognitive processes in compo-

sition. In particular, the result is significant in the light of arguments made in

previous research that similar grammars underlie the perception and composi-

tion of music (Baroni, 1999; Lerdahl, 1988a). In contention with such argu-

ments, although the finite context grammars developed in the present research

accounted rather well for a range of empirically observed phenomena in the

perception of melody, they proved largely incapable of composing a stylistically

successful melody. Although this may have been due in part to the MCMC sam-

pling method used, it is noteworthy that this method represents an improve-

ment (in terms of obtaining an unbiased sample from the target distribution)

over the sequential random sampling method used in previous research. In

addition, the methodology developed to evaluate the computational systems

constitutes a significant contribution to future research in the cognitive mod-

elling of composition.

Finally, the goal of applied AI is to use existing AI techniques to develop ap-

plications for specific purposes in industry. While this has not been a direct con-

cern in the present research, the techniques developed could be put to practical

use in a variety of contexts. For example, the contributions made in the present

research to the statistical modelling of music and understanding of cognitive

processes in music perception and composition could be put to practical use in

systems for computer-assisted composition (Ames, 1989; Assayag et al., 1999;

Hall & Smith, 1996), machine improvisation with human performers (Lartillot

et al., 2001; Rowe, 1992) and music information retrieval (Pickens et al., 2003).
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To this extent, the present research represents an indirect contribution to such

fields of applied AI.

10.3 Limitations and Future Directions

As discussed in §1.4, a number of general limitations were placed on the scope

of the present research. Perhaps the most notable of these limitations is the

decision to focus on monophonic music. An additional limitation arises from

the fact that the results reported in this dissertation (with the partial exception

of those in Chapter 6) have been obtained using a restricted set of corpora of

Western folk and hymn melodies. In the case of the results reported in Chap-

ters 6 and 7, the close alignment with results in data compression, statistical

language modelling and machine learning research does suggest that the im-

provements afforded are robust across domains. Nonetheless, our confidence

in the generality of the results would be increased if they could be experimen-

tally replicated in a broader context of musical styles and with homophonic

and polyphonic music.1 In this regard, however, the present research does pro-

vide a basis for the formulation of specific hypotheses which may be refuted or

corroborated by further experimental research.

Future research should also address some limitations in the methodology

adopted in the development of the statistical models in Chapters 6 and 7. First,

during the development of the statistical models used in the present research, a

methodological strategy was employed whereby the best performing techniques

in one experiment were adopted without further consideration in examining

the performance of other dimensions of the model. As a consequence of this

strategy, the resulting models will reflect local optima in the parameter space

but are not guaranteed to be globally optimal.

Other limitations of the present research concern the representation scheme

and features used. The strategy taken has been to use previous research in

music perception and the computational modelling of music to construct by

hand viewpoints which are expected to be involved in a given modelling task.

As a consequence of this approach, none of the conclusions reached in the

present research can be guaranteed to hold for attributes outside of the finite

set used. This limitation is perhaps most notable in the case of the experiments

reported in Chapters 6 and 7 (Experiment 1) where a single attribute and a

single multiple viewpoint system were used respectively.

1Issues involved in the representation of such music for training statistical models are dis-

cussed by, for example, Assayag et al. (1999), Conklin (2002), Pickens et al. (2003) and Ponsford

et al. (1999).
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Even in later chapters, when the multiple viewpoint systems used were de-

rived through feature selection on the basis of objective criteria, the features

were drawn from a finite, hand constructed set. In addition, the features were

developed for the primary purpose of modelling pitch structure. This decision

may be justified by noting that pitch is typically the most complex dimension

of the melodic music considered in this dissertation. However, future research

should examine a wider range of features. For example, comparable analysis

of a musical genre exhibiting greater degrees of rhythmic and metric complex-

ity than the corpora used here would require the development of a rich set of

viewpoints for modelling rhythmic structure. In this regard, it is worth noting

that there has been relatively little psychological research conducted on tempo-

ral expectancies (cf. Jones & Boltz, 1989; Palmer & Krumhansl, 1990) and how

these interact with melodic and tonal-harmonic factors. In such an endeavour,

the multiple viewpoint framework and methodologies for evaluation employed

in the present research provide a platform for the construction of hypotheses

about the features represented in the cognitive processing of melody as well as

the empirical examination of these hypotheses.

Further issues arise from the assumed components of the basic event space

which includes attributes based on such features of the score as time signa-

ture, key signature and fermatas. Especially in the context of modelling music

perception, the integration of cognitive theories of segmentation (e.g., Ferrand

et al., 2002), tonality induction (Vos, 2000) and metre induction (e.g., Eck,

2002; Toiviainen & Eerola, 2004) into the framework presented here remains a

topic for future research. In addition, the construction by hand of derived fea-

tures evades the important issue of how such representations may be acquired

in human cognition which deserves attention in future research.

In computational terms, it would be possible to automate the construction

of derived and product types using the methods developed by Lewin (1987)

for constructing quotient and product GISs (see §5.2.1). In the case of derived

types, a search space could be defined through the recursive application of a

finite set of basic operations which partition the domain associated with a type

into equivalence classes. This space could then be searched in order to optimise

some objective criterion such as prediction performance. As an example, con-

sider the types cpitch, cpint, cpcint and contour which progressively parti-

tion the pitch space into more abstract equivalence classes. Intermediate levels

of abstraction (not considered in the present research) could be developed to

model, for example, the hypothesised equivalence of pitches which differ by

an integral number of major thirds (Conklin, 1990; Shepard, 1982). The goal



10.3 LIMITATIONS AND FUTURE DIRECTIONS 221

would then be to find an optimal level of abstraction in the pitch representa-

tion. Another example is provided by those types used in the present research

which model pitch in relation to some referent tone such as the notated tonic

(cpintfref), the first event in the piece (cpintfip) or the first event in the

current bar (cpintfib) or phrase (cpintfiph). It would be possible to search

a space of possible referents used in the construction of such types.

In the present research, a limited set of product types were defined between

pairs of primitive types on the basis of research in music cognition and music

informatics. Once again, it would be possible to search the space of possible

product types between any number of primitive types to optimise some objec-

tive criterion. Finally, a space could be defined over a richer set of test types

than has been examined in the current research which could then be searched

in the construction of threaded types to optimise some objective criterion. The

space of test types could be constrained by music-theoretic concerns as in the

present research (e.g., metric accent or phrase structure) or using cognitive

models of segmentation based on salient discontinuities in melodic structure.

Of particular interest in this regard are models which predict segment bound-

aries at points where sequential expectations are non-specific or are violated

(Ferrand et al., 2002; Saffran et al., 1999). This kind of model would fit neatly

into the computational framework developed in this dissertation and the appli-

cation of the computational methods developed herein to modelling the per-

ception of segment boundaries remains an important topic for future research.

While on the topic of threaded types, it remains to be seen whether the fail-

ure of finite context models to represent embedded structure and non-adjacent

dependencies in the context of modelling composition (see Chapter 9) can be

addressed either by threaded types or more complex types within the multiple

viewpoints framework (Conklin, 2003).

A final representational issue arises from the assumption that cognitive pro-

cesses operate over a symbolic musical surface consisting of discrete events.

While this approach is justified to an extent by previous research in music per-

ception and cognition, future research should focus on the relationship between

symbolic and sub-symbolic levels of processing. In the present context, it is par-

ticularly important to examine perceptual constraints on the kinds of high-level

symbolic attribute which may be recovered through processing of lower level

representations of the musical surface (Gjerdingen, 1999b; Todd et al., 1999;

Šerman & Griffith, 2004).

Many opportunities exist for further development of the statistical mod-

elling framework presented in Chapters 6 and 7. First, Bunton (1997) describes
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an information-theoretic variable order state selection mechanism which re-

places the original state selection used in PPM* (see §6.2.3.6) and which con-

sistently improves performance in data compression experiments. It remains

to be seen whether this mechanism can be fruitfully applied with music data.

Alternatively, a variable order state selection policy based on principles of per-

ceptual segmentation might prove profitable in the context of PPM* modelling

(Reis, 1999). Second, it would be useful to use the empirical methodologies

adopted in the present research to compare the performance of the PPM vari-

ants examined here with that of other modelling strategies (see §3.4 and §3.5).

Examples of such techniques include: other smoothing techniques commonly

used in statistical language modelling such as Katz backoff (Katz, 1987) and

Kneser-Ney smoothing (Kneser & Ney, 1995); models based on the Ziv-Lempel

dictionary compression algorithm (Ziv & Lempel, 1978) as used by Dubnov, As-

sayag and their colleagues (Assayag et al., 1999; Dubnov et al., 1998; Lartillot

et al., 2001); the PSTs (Ron et al., 1996) used by Lartillot et al. (2001) and

Triviño-Rodriguez & Morales-Bueno (2001); and the neural network models

developed by Mozer (1994).

Recently, Begleiter et al. (2004) have examined the prediction performance

of a number of variable order Markov models including PSTs, Ziv-Lempel vari-

ants and PPM. Using a methodology similar to that employed in Chapter 6,

it was found that PPM (with escape method C) and the Context Tree Weight-

ing (CTW) compression algorithm (Willems et al., 1995) outperform the other

algorithms in predicting sequential data drawn from three different domains:

molecular biology, text and music.2 While these results provide convergent evi-

dence for the relative power of the PPM modelling strategies used in the present

research, they also suggest that further examination of the CTW algorithm may

prove fruitful in future research.

It would also be useful to conduct a thorough examination of the effect of

the overall architecture of the multiple viewpoint framework on performance.

How is performance affected, for example, if we first combine the LTM-STM

predictions for each viewpoint and then combine the resulting predictions? It

seems unlikely that a single combination of all distributions will improve perfor-

mance but this conjecture can only be tested by empirical experimentation. In

addition, it remains to be seen whether other combination schemes developed

in the field of machine learning (e.g., Chen et al., 1997; Kittler et al., 1998;

2It should be noted that Begleiter et al. (2004) use music as a source of complex real-world

sequential data for evaluating the performance of general-purpose algorithms. They do not

examine issues particular to the cognitive or analytical representation and processing of musical

structure.
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Xu et al., 1992) can be profitably applied to modelling music with multiple

viewpoint systems. Finally, it was suggested in §10.2 that the modelling tech-

niques evaluated in the present research might be used profitably in practical

applications such as tools for composition, performance and music information

retrieval. In order to address such questions, future research should examine

the validity as entropy as a measure of performance through detailed empirical

studies of the relationship between entropy measures and model performance

on these practical tasks. Other methodological issues to be considered would

concern the effects of training set size and homogeneity on performance and

reliability (Knopoff & Hutchinson, 1983).

In Chapter 8, a theory of expectancy in music was proposed and empir-

ically evaluated in the context of observed patterns of expectation collected

in previous research. Future developments should extend this approach to a

more comprehensive examination of statistical learning-based systems in the

context of continuous response methodologies (Eerola et al., 2002; Schubert,

2001) where expectancies are elicited throughout listening to a piece of music.

Within such an approach, a detailed examination of any changes in the relative

importance of different features over time would provide interesting data on

dynamic aspects of expectancy. A start could be made in this direction by exam-

ining the weights assigned to long and short-term models of different features

over time. In addition to examining the relationship between the responses of

listeners and those of the model, future work should also focus on examining

relationships between these responses and objective musical features as well as

potential neurophysiological correlates of expectancy (Koelsch et al., 2000).

According to the proposed theory of expectancy, the musical experience

of listeners will have an effect both on the observed patterns of expectation

and the features which influence those patterns. In fact, the theory makes

some predictions about the influences of musical exposure that should be tested

experimentally. It would be predicted, for example, that a model trained on the

music of one culture would predict the expectations of people of that culture

better than a model trained on the music of another culture and vice versa (see

also Castellano et al., 1984). Although, further research is required to examine

these predictions, it is expected that the learning based theory will be able

to account more parsimoniously than existing rule based theories (Narmour,

1990) for both similarities and differences in observed patterns of expectation

between two cultures on the basis of similarities and differences in the music

of those cultures.

One of the advantages of the proposed theory of expectancy is that it can



224 CONCLUSIONS 10.3

be applied to the modelling of developmental trajectories in the acquisition

of mature patterns of expectancy (Schellenberg et al., 2002). Research along

these lines would be capable of examining the basic representational capacities

of infants, how these develop, how new representations are acquired through

increasing exposure and how this process relates to general cognitive develop-

ment and the acquisition of other skills such as language.

While the experimental results support the theory of expectancy at the com-

putational level, further investigation is required to analyse the model at finer

levels of description, to generate hypotheses at these levels and to subject the

hypotheses to experimental evaluation. Such hypotheses might concern, for

example, constraints placed on model order by human working memory lim-

itations, the interaction of the short- and long-term models and the effects of

intra- and extra-opus experience as well as more detailed proposals concern-

ing the manner in which regularities in different melodic features contribute

to melodic expectancy. Finally, experiments with more complex polyphonic

contexts may find the systems developed in the present research to be under-

specified, while continued research with melodic contexts may find the present

systems to be overspecified in some respects.

In Chapter 9, the finite context systems, which proved highly successful

in modelling aspects of perceptual expectancy, failed to meet the intrinsic de-

mands of the task of composing a successful chorale melody. Nonetheless the

experimental approach allowed an examination of some limitations of the sys-

tems examined and their subsequent improvement. While the preliminary re-

sults are promising (see Appendix G), the improved models should be fully

examined using the methodology developed in the present research to identify

in which areas of the task they succeed, if any, and in which they fail and sub-

sequently elaborated on the basis of these findings. While the examination of

more powerful grammars was beyond the scope of the present research, these

should form a key part of future efforts to examine computational constraints

on composition. In particular, the use of short-term models was identified as

an insufficient means of maintaining coherence in intra-opus structure. Future

work might address this limitation though the use of symbolic constraints de-

rived from music theory or music perception (Hall & Smith, 1996; Hild et al.,

1992; Povel, 2004) or through more sophisticated representational structures

and pattern-based stochastic sampling (Conklin, 2003). The methodological

framework developed in the present research represents the beginnings of a

framework for the detailed, empirical examination and comparison of theories

of cognitive processing in composition, the refutation and corroboration of such
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theories at varying levels of description and their subsequent modification and

elaboration.
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APPENDIX A

NOTATIONAL CONVENTIONS

Sets

|S| the cardinality of set S

2S the power set of set S

S × S′ the Cartesian product of sets S and S′

Frequently Encountered Sets

R real numbers

Q rational numbers

Q+ positive rational numbers

Q∗ non-negative rational numbers

Z integers

Z+ positive integers

Z∗ non-negative integers
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Symbols and Sequences

⊥ the null symbol

ε the empty sequence

A+ the set of all non-empty sequences composed

from elements of the alphabet A (the positive closure of A)

A∗ A+
⋃

{ε} (the Kleene closure of A)

aji ∈ A
∗ a sequence of symbols drawn from alphabet A

indexed from i to j, j ≥ i ∈ Z+

ai, i ∈ Z+ the symbol at index i of sequence ajk
ajia

l
k the concatenation of two sequences



APPENDIX B

AN EXAMPLE KERN FILE

The file jugos104.krn in the Essen Folk Song Collection (Schaffrath, 1995)

contains the Yugoslavian folksong Das neue Grab Es hot shi der maren in an

naien Grube. This melody appears in Dataset 4 and was chosen for illustrative

purposes since it is the shortest melody in the datasets used in the present

research (see Chapter 4). It is, in fact, the shortest melody in the entire EFSC.

Figure B.1 shows this folksong in standard music notation and as viewpoint

sequences for each of the attribute types making up the basic event space used

in the present research (see §5.3). The original **kern encoding is shown

below.

onset 48 72 120 144 192 216 264 288

deltast 0 0 0 0 0 0 0 0

dur 24 48 24 48 24 48 24 48

barlength 72 72 72 72 72 72 72 72

pulses 3 3 3 3 3 3 3 3

cpitch 66 67 69 67 66 67 69 67

keysig 1 1 1 1 1 1 1 1

mode 0 0 0 0 0 0 0 0

phrase 1 0 0 0 0 0 0 -1

Figure B.1: An example melody from the EFSC.
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!!!OTL: Das neue Grab Es hot shi der maren in an naien Grube:

!!!ARE: Europa, Suedosteuropa, Jugoslavija, Gottschee, Ober Wetzenbach

!!!YOR: 5, S. 226

!! 1909 aufgezeichnet

!!!SCT: Q0110A

!!!YEM: Copyright 1995, estate of Helmut Schaffrath.

**kern

*ICvox

*Ivox

*M3/4

*k[f#]

*G:

{4f#

=1

2g

4a

=2

2g

4f#

=3

2g

4a

=4

2g}

==

!!!AGN: Ballade, Tod, Geburt

!!!ONB: ESAC (Essen Associative Code) Database: BALLADE

!!!AMT: simple triple

!!!AIN: vox

!!!EED: Helmut Schaffrath

!!!EEV: 1.0

*-



APPENDIX C

SEVEN ORIGINAL CHORALE MELODIES

This appendix contains the seven original chorale melodies used as a basis

for the experiments presented in Chapter 9. The numbering system is that

of Riemenschneider (1941) and BWV numbers are given in brackets after the

title of each chorale. Note that repeated sections, which occur in chorales 249,

365 and 44, are not expanded as discussed in Chapter 5.

249: Allein Gott in der Höh’ sei Ehr (BWV 260)

238: Es wird schier der letzte Tag herkommen (BWV 310)
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365: Jesu, meiner Seelen Wonne (BWV 359)

264: Jesu, meines Herzens Freud’ (BWV 361)

44: Mach’s mit mir, Gott, nach deiner Güt (BWV 377)

141: Seelenbräutigam, Jesu, Gottes Lamm (BWV 409)

147: Wenn ich in Angst und Not (BWV 427)



APPENDIX D

MELODIES GENERATED BY SYSTEM A

This appendix contains the melodies generated by System A as discussed in

Chapter 9. Each melody is numbered and titled according to the original

melody on which it is based and from which it derives its time signature, key sig-

nature, rhythmic structure and phrase structure. Appendix C contains the seven

original chorale melodies used as a basis for the generation of these melodies.

A249: Allein Gott in der Höh’ sei Ehr

A238: Es wird schier der letzte Tag herkommen
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A365: Jesu, meiner Seelen Wonne

A264: Jesu, meines Herzens Freud’

A44: Mach’s mit mir, Gott, nach deiner Güt

A141: Seelenbräutigam, Jesu, Gottes Lamm

A147: Wenn ich in Angst und Not



APPENDIX E

MELODIES GENERATED BY SYSTEM B

This appendix contains the melodies generated by System B as discussed in

Chapter 9. Each melody is numbered and titled according to the original

melody on which it is based and from which it derives its time signature, key sig-

nature, rhythmic structure and phrase structure. Appendix C contains the seven

original chorale melodies used as a basis for the generation of these melodies.

B249: Allein Gott in der Höh’ sei Ehr

B238: Es wird schier der letzte Tag herkommen
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B365: Jesu, meiner Seelen Wonne

B264: Jesu, meines Herzens Freud’

B44: Mach’s mit mir, Gott, nach deiner Güt

B141: Seelenbräutigam, Jesu, Gottes Lamm

B147: Wenn ich in Angst und Not



APPENDIX F

MELODIES GENERATED BY SYSTEM C

This appendix contains the melodies generated by System C as discussed in

Chapter 9. Each melody is numbered and titled according to the original

melody on which it is based and from which it derives its time signature, key sig-

nature, rhythmic structure and phrase structure. Appendix C contains the seven

original chorale melodies used as a basis for the generation of these melodies.

C249: Allein Gott in der Höh’ sei Ehr

C238: Es wird schier der letzte Tag herkommen
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C365: Jesu, meiner Seelen Wonne

C264: Jesu, meines Herzens Freud’

C44: Mach’s mit mir, Gott, nach deiner Güt

C141: Seelenbräutigam, Jesu, Gottes Lamm

C147: Wenn ich in Angst und Not



APPENDIX G

A MELODY GENERATED BY SYSTEM D

This appendix contains the results of a preliminary investigation into the ca-

pacity of System D to generate stylistically successful chorale melodies. As

discussed in §9.5.5, System D was derived through feature selection to reduce

entropy over Dataset 2 (see Table 4.1) using a feature set augmented with ad-

ditional viewpoints in order to address the failure of System C to represent

some salient stylistic constraints of the corpus. System D comprises the view-

points shown in Table 9.8 and exhibits significantly lower entropy than System

C in predicted unseen melodies in Dataset 2. System D was used to generate

a several melodies following the procedure described in §9.4.3 with the seven

chorale melodies shown in Appendix C used as base melodies.

Figure G.1 shows the most successful melody generated by System D us-

ing Chorale 365 as its base melody. In terms of tonal and melodic structure,

it is much more coherent than the melodies generated by System C. The mul-

tiple regression model developed in §9.5.4 to account for the judges’ ratings

of stylistic success predict that this melody would receive a rating of 6.4 on

Figure G.1: Chorale D365 generated by System D.
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a seven-point scale of success as a chorale melody. While these preliminary

results are encouraging, the remaining melodies generated were less success-

ful and System D must be fully analysed using the methodology developed in

Chapter 9 in order to examine its ability to consistently compose original and

stylistically successful melodies.
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ban, K. Ebcioǧlu, & O. Laske (Eds.), Understanding Music with AI: Perspectives

on Music Cognition (pp. 186–205). Cambridge, MA: MIT Press.

Anderson, J. R. (2000). Learning and Memory: An Integrated Approach (Second

ed.). New York: John Wiley & Sons, Inc.

241



242 BIBLIOGRAPHY

Assayag, G., Dubnov, S., & Delerue, O. (1999). Guessing the composer’s mind:

Applying universal prediction to musical style. In Proceedings of the 1999 In-

ternational Computer Music Conference (pp. 496–499). San Francisco: ICMA.

Assayag, G., Rueda, C., Laurson, M., Agon, C., & Delerue, O. (1999). Computer

assisted composition at IRCAM: From PatchWork to OpenMusic. Computer

Music Journal, 23(3), 59–72.

Auh, M. (2000). Assessing creativity in composing music: Product–process–

person–environment approaches. In Proceedings of the 2000 National Confer-

ence of the Australian Association for Research in Education. Sydney, Australia:

UTS.

Auh, M. & Johnston, R. (2000). A pilot study of comparing creativity in com-

posing and story–telling by children aged 3 to 5. In Proceedings of the 2000

UTS Research Symposium (pp. 21–27). Sydney, Australia: UTS.

Auh, M. & Walker, R. (1999). Compositional strategies and musical creativity

when composing with staff notations versus graphic notations among Korean

students. Bulletin of the Council for Research in Music Education, 141, 2–9.

Balzano, G. J. (1982). The pitch set as a level of description for studying musical

pitch perception. In M. Clynes (Ed.), Music, Mind and Brain (pp. 321–351).

New York: Plenum.

Balzano, G. J. (1986a). Music perception as detection of pitch–time constraints.

In V. McCabe & G. J. Balzano (Eds.), Event Cognition: An Ecological Perspective

(pp. 217–233). Hillsdale, NJ: Erlbaum.

Balzano, G. J. (1986b). What are musical pitch and timbre? Music Perception,

3(3), 297–314.

Baroni, M. (1999). Musical grammar and the cognitive processes of composi-

tion. Musicæ Scientiæ, 3(1), 3–19.

Baroni, M., Dalmonte, R., & Jacoboni, C. (1992). Theory and analysis of Euro-

pean melody. In A. Marsden & A. Pople (Eds.), Computer Representations and

Models in Music (pp. 187–206). London: Academic Press.

Begleiter, R., El-Yaniv, R., & Yona, G. (2004). On prediction using variable order

Markov models. Journal of Artificial Intelligence Research, 22, 385–421.

Bell, T. C., Cleary, J. G., & Witten, I. H. (1990). Text Compression. Englewood

Cliffs, NJ: Prentice Hall.



BIBLIOGRAPHY 243

Bergeson, T. R. (1999). Melodic expectancy in infancy. Journal of the Acoustical

Society of America, 106(4), 2285.

Berlyne, D. E. (1974). The new experimental aesthetics. In D. E. Berlyne (Ed.),

Studies in the New Experimental Aesthetics: Steps Towards an Objective Psychol-

ogy of Aesthetic Appreciation (pp. 1–25). Washington: Hemisphere Publishing

Co.

Bharucha, J. J. (1984). Anchoring effects in music: The resolution of disso-

nance. Cognitive Psychology, 16, 485–518.

Bharucha, J. J. (1987). Music cognition and perceptual facilitation: A connec-

tionist framework. Music Perception, 5(1), 1–30.

Bharucha, J. J. (1991). Pitch, harmony and neural nets: A psychological per-

spective. In P. Todd & G. Loy (Eds.), Music and Connectionism (pp. 84–99).

Cambridge, MA: MIT Press.

Bharucha, J. J. (1993). Tonality and expectation. In R. Aiello (Ed.), Musical

Perceptions (pp. 213–239). Oxford: Oxford University Press.

Bharucha, J. J. & Stoeckig, K. (1986). Reaction time and musical expectancy:

Priming of chords. Journal of Experimental Psychology: Human Perception and

Performance, 12(4), 403–410.

Bharucha, J. J. & Stoeckig, K. (1987). Priming of chords: Spreading activation

or overlapping frequency spectra? Perception and Psychophysics, 41(6), 519–

524.

Bharucha, J. J. & Todd, P. (1989). Modelling the perception of tonal structure

with neural nets. Computer Music Journal, 13(4), 44–53.

Blum, A. & Langley, P. (1997). Selection of relevant features and examples in

machine learning. Artificial Intelligence, 97(1–2), 245–271.

Boden, M. A. (1990). The Creative Mind: Myths and Mechanisms. London:

Weidenfield and Nicholson.

Boltz, M. G. (1989a). Rhythm and ”good endings”: Effects of temporal structure

on tonality judgements. Perception and Psychophysics, 46(1), 9–17.

Boltz, M. G. (1989b). Time judgements of musical endings: Effects of expectan-

cies on the ’filled interval effect’. Perception and Psychophysics, 46(5), 409–

418.



244 BIBLIOGRAPHY

Boltz, M. G. (1993). The generation of temporal and melodic expectancies

during musical listening. Perception and Psychophysics, 53(6), 585–600.

Boltz, M. G. & Jones, M. R. (1986). Does rule recursion make melodies easier

to reproduce? If not, what does? Cognitive Psychology, 18(4), 389–431.

Brinkman, D. J. (1999). Problem finding, creativity style and the musical com-

positions of high school students. Journal of Creative Behaviour, 33(1), 62–

68.

Brochard, R., Dufour, A., Drake, C., & Scheiber, C. (2000). Functional brain

imaging of rhythm perception. In C. Woods, G. Luck, R. Brochard, F. Seddon,

& J. A. Sloboda (Eds.), Proceedings of the Sixth International Conference of

Music Perception and Cognition. Keele, UK: University of Keele.

Brooks Jr., F. P., Hopkins, A. L., Neumann, P. G., & Wright, W. V. (1957). An

experiment in musical composition. IRE Transactions on Electronic Computers,

EC-6(1), 175–182.

Brown, P. F., Della Pietra, S. A., Della Pietra, V. J., Lai, J. C., & Mercer, R. L.

(1992). An estimate of an upper bound on the entropy of English. Computa-

tional Linguistics, 18(1), 32–40.

Brown, R. T. (1989). Creativity: What are we to measure? In J. Glover,

R. Ronning, & C. Reynolds (Eds.), Handbook of Creativity (pp. 3–32). New

York: Plenum Press.

Bundy, A. (1990). What kind of field is AI? In D. Partridge & Y. Wilks (Eds.),

The Foundations of Artificial Intelligence (pp. 215–222). Cambridge, UK: Cam-

bridge University Press.

Bunton, S. (1996). On-Line Stochastic Processes in Data Compression. Doctoral

dissertation, University of Washington, Seattle, WA.

Bunton, S. (1997). Semantically motivated improvements for PPM variants.

The Computer Journal, 40(2/3), 76–93.

Cambouropoulos, E. (1996). A general pitch interval representation: Theory

and applications. Journal of New Music Research, 25(3), 231–251.

Cambouropoulos, E. (1998). Towards a General Computational Theory of Musi-

cal Structure. Doctoral dissertation, The University of Edinburgh, Faculty of

Music and Department of Artificial Intelligence.



BIBLIOGRAPHY 245

Cambouropoulos, E., Crawford, T., & Iliopoulos, C. S. (1999). Pattern process-

ing in melodic sequences: Challenges, caveats and prospects. In Proceedings

of the AISB’99 Symposium on Musical Creativity (pp. 42–47). Brighton, UK:

SSAISB.

Camilleri, L. (1992). Computational theories of music. In A. Marsden & A. Pople

(Eds.), Computer Representations and Models in Music (pp. 171–185). Lon-

don: Academic Press.

Carlsen, J. C. (1981). Some factors which influence melodic expectancy. Psy-

chomusicology, 1(1), 12–29.

Castellano, M. A., Bharucha, J. J., & Krumhansl, C. L. (1984). Tonal hierarchies

in the music of North India. Journal of Experimental Psychology: General,

113(3), 394–412.

Chalmers, D. J. (1994). On implementing a computation. Minds and Machines,

4, 391–402.

Chater, N. (1996). Reconciling simplicity and likelihood principles in perceptual

organisation. Psychological Review, 103(3), 566–581.

Chater, N. (1999). The search for simplicity: A fundamental cognitive princi-

ple? The Quarterly Journal of Experimental Psychology, 52A(2), 273–302.
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