
Generating Rhythmic Patterns: a
Combined Neural and Evolutionary

Approach

Marcus Pearce
T

H
E

U N I V E R
S

I T
Y

O
F

E
D I N B U

R
G

H

MSc in Artificial Intelligence
Division of Informatics
University of Edinburgh

September 2000

Abstract

The objective of this research was to design a creative aid to musical composition: a system

that would generate a (user specified) number of drum patterns, within a specified style and

showing a sufficient amount of variation, on any one run. In order to achieve these aims, a

genetic algorithm was implemented using as its critic a multi-layer perceptron, trained on

a set of drum patterns from the style of “drum and bass”. Domain specific knowledge was

incorporated into a number of areas of the GA and an island model was used to generate

multiple solutions. While some degree of success was achieved, experiments conducted

using human subjects questioned the style and comparability of the generated patterns to

human generated patterns. These partial failures of the system to achieve the stated aims

were attributed to shortcomings of the data used to train the ANN critic. Suggestions for

future research are presented in terms of improving the critic, extending the approach and

better evaluation of machine compositions.

Acknowledgements

I would first of all like to thank my supervisor, Alan Smaill, for his patient and careful

guidance during the course of the research reported here. Thanks is also due to Luke

Phillips and Geraint Wiggins for useful discussions during my period of study and for

comments on earlier drafts. I am also grateful to my fellow MSc students for taking part

in the evaluation experiments and to the University of Edinburgh for supplying funds for

required materials. Finally, I thank the EPSRC who provided financial support during my

year of study via studentship no: 99407250.

ii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Aims . 1
1.3 Strategy . 2
1.4 Evaluation . 3
1.5 Overview of the Dissertation . 3

2 Background on Techniques 5
2.1 Overview . 5
2.2 An Introduction to Genetic Algorithms and Genetic Programming. 5

2.2.1 Overview . 5
2.2.2 The Algorithm . 6
2.2.3 The Representation Scheme and Critic 7
2.2.4 Selection and Genetic Operators 7
2.2.5 Genetic Programming . 9

2.3 An Introduction to Artificial Neural Networks 9
2.3.1 Overview . 9
2.3.2 The Perceptron . 10
2.3.3 Backpropagation and the Multi-Layer Perceptron 11

2.4 Summary of Chapter 2 . 13

3 Related Work 14
3.1 Overview . 14
3.2 AI and Music . 14
3.3 Evolutionary Approaches to Algorithmic Composition 15

3.3.1 Why use Evolutionary Techniques? 15
3.3.2 Representation Schemes . 17
3.3.3 Genetic Operators . 19
3.3.4 The Critic . .. 20
3.3.5 Evaluation of Artificial Composers 28

3.4 Algorithmic Composition with Neural Networks 30
3.4.1 Overview . 30
3.4.2 Representation Issues . 31
3.4.3 Hybrid Approaches . 33

3.5 Summary of Chapter 3 . 33

4 System Design and Development 34
4.1 Overview . 34
4.2 The Representation Scheme . 35

4.2.1 Overview . 35
4.2.2 Spatial vs. Sequential Representation 36
4.2.3 Representation of Velocity . 38

iii

4.2.4 Representation of Note Durations 38
4.2.5 Representation of Different Instruments 39
4.2.6 Representation of Tempo . 39
4.2.7 Summary of the Representation Scheme 39

4.3 Data Collection . 40
4.3.1 Overview . 40
4.3.2 Format . 40
4.3.3 The Training Data . 41

4.4 Data Pre-processing . 42
4.4.1 Overview . 42
4.4.2 Conversion Procedures . 43

4.5 Training the ANN . 44
4.5.1 Goals and Issues . 44
4.5.2 Creating the Training, Validation and Testing sets 45
4.5.3 Implementation . 45
4.5.4 Architecture . 45
4.5.5 Results of Training . 48
4.5.6 Discussion . 48

4.6 Developing the Genetic Algorithm . 49
4.6.1 Overview . 49
4.6.2 The Choice of Techniques . 50
4.6.3 Implementation . 52
4.6.4 Design of Generic GA Features 52
4.6.5 Music Specific features of the GA 54
4.6.6 Obtaining Multiple Solutions . 56
4.6.7 Post-processing of the Generated Patterns 57

4.7 An Example Run of the GA . 58
4.8 Summary of Chapter 4 . 59

5 Evaluation of the Generated Patterns 61
5.1 Introduction 61
5.2 Experiment 1 . 62

5.2.1 Experimental Design . 62
5.2.2 Results . 63
5.2.3 Discussion . 63

5.3 Experiment 2 . 64
5.3.1 Experimental Design . 65
5.3.2 Results . 65
5.3.3 Discussion . 66

5.4 Experiment 3 . 66
5.4.1 Experimental Design . 67
5.4.2 Results . 67
5.4.3 Discussion . 68

5.5 Non-experimental Means of Evaluation 68
5.6 Discussion . 69
5.7 Summary of Chapter 5 . 71

6 Conclusions 72
6.1 Discussion . 72
6.2 Areas for Future Research . 74

6.2.1 Improving the Critic .. 74
6.2.2 Extending the Approach . 75
6.2.3 Evaluation . 76

6.3 Conclusions . 76

iv

A Summary of Related Work 85
A.1 Interactive Human Evaluation . 85
A.2 Rule based Evaluation . 86
A.3 Neural Network Evaluation . 87

B Example from Training Data 88
B.1 An Example Drum Pattern . 88
B.2 An Example Chromosome . 88

C Answer Forms 90
C.1 Experiments 1 and 2 . 90
C.2 Experiment 3 . 91

D Sources of Training Data 92
D.1 KeyFax Software . 92
D.2 Sinuso . 92

E Network Performance 93

v

List of Figures

2.1 Single Point Crossover . 8

2.2 The Perceptron Unit . 10

2.3 The Multi-Layer Perceptron .. 11

4.1 Sequential Network Representation . 36

4.2 Spatial Network Representation . 37

4.3 Network Performance on the Test Set . 49

4.4 Generated Pattern: ex0.mid . 59

4.5 Generated Pattern: ex1.mid . 59

4.6 Generated Pattern: ex2.mid . 59

B.1 Example Drum Pattern . 88

B.2 Example Chromosome . 89

E.1 Network Performance on Test Set . 93

vi

List of Tables

4.1 Collected Data . 44

4.2 The Training, Validation and Test Sets . 45

4.3 Results of Network Training . 48

4.4 Initialisation of Note Velocities. 55

4.5 Command Line Arguments Taken by the GA 58

5.1 Results of Experiment 1 . 63

5.2 Results of Experiment 2.1 . 65

5.3 Results of Experiment 2.2 . 66

5.4 Results of Experiment 3 . 67

vii

List of Algorithms

1 The Generational GA . 7

2 The Perceptron Training Algorithm . 10

3 The Cascade Correlation Training Algorithm 47

viii

Chapter 1

Introduction

1.1 Motivation

The motivation for this project was to produce a creative aid to musical composition by de-

veloping a system that would generate short rhythmic sequences based on examples taken

from a particular style. The generated patterns would form libraries of new musical phrases

which the composer would be able to incorporate into his or her own compositions or draw

from as a source of rhythmic inspiration. An important feature of the system was that it

should be able to generate patterns displaying a degree of variation (within the specified

style).

1.2 Aims

The specific aims of the project were to develop a system that would generate a (user spec-

ified) number of short drum patterns on a single run. Furthermore, the generated patterns

should conform to the following criteria:

1. They should be comparable with human generated patterns

2. They should be within a specified style

3. They should show sufficient variation both between and within runs to make the

system a useful tool

4. They should show features that would not naturally be generated by the user

An important supplementary aim was to extend the approach to more than one style of

music. Finally, the system should be practical and intuitive to use.

1

1.3 Strategy

The proposed strategy to achieve these aims was to use a Genetic Algorithm (henceforth

GA) with an Artificial Neural Network (henceforth ANN) critic. In the suggested scheme,

the GA evolved chromosomes representing drum patterns that were deemed fit by an ANN

trained on a set of exemplar patterns from the chosen style. The use of a GA to achieve

these aims was motivated by the following factors:

• GAs provide an efficient means of searching large, complex search spaces such as

the present problem domain (the space of all possible drum patterns).

• An evolutionary approach was attractive since musical composition often involves

the combination and permutation of themes (rhythmic subpatterns in this case).

• The framework of a GA allows a balance of exploitation and exploration of the search

space. This would make possible the generation of patterns showing a certain amount

of variation while still constraining search to areas of high fitness.

• Evolutionary techniques lend themselves to generating multiple solutions on any one

run.

Furthermore, a number of factors influenced the decision to use an ANN critic (see section

3.3.4 for a discussion of these issues):

• The ANN provides a fully automated critic avoiding the problem of the fitness bot-

tleneck associated with interactive human evaluation.

• An ANN can be trained on examples taken from the style of music to be modelled

thereby avoiding both the subjective bias involved in human evaluation and the diffi-

culty (and artificial nature) of formulating explicit evaluation criteria.

• The generalisation abilities of the ANN can be employed to alleviate the determinism

associated with rule based critics, thereby allowing greater diversity in the generated

drum patterns.

• An ANN can be trained on examples from several different styles of music (removing

the need to design a entirely new knowledge base in the case of rule based critics).

2

Only two studies have investigated the application of evolutionary techniques specifically

to rhythmic patterns. [Horowitz, 1994] used an Interactive GA to evolve drum patterns

and reported successful results. The IGA is viewed as less than satisfactory for a num-

ber of reasons outlined in section 3.3.4. This approach was improved by [Burton, 1998]

who automated the critic, using an unsupervised ART network to evaluate candidate drum

patterns. Although success was again reported, a certain homogeneity was noted in the

generated patterns. The present research can be seen as an extension of these studies, at-

tempting specifically to increase the diversity and novelty of the generated drum patterns

through the use of a trained Multi-Layer Perceptron as an automated critic.

1.4 Evaluation

The system was evaluated experimentally on a number of objective measures which directly

related to the research aims stated above. These measures were:

1. A musical Turing test of the patterns generated (the degree to which system and

human patterns could be distinguished)

2. The degree to which the patterns were within the specified style

3. The amount of variation shown by the generated phrases both within runs and be-

tween runs

Experiments designed to evaluate the generated patterns on the basis of these measures

demonstrated that the patterns were only partially successful in meeting these criteria.

Other non-experimental criteria used to evaluate the system were:

• The evaluation of the system by a musician, who uses MIDI drum parts in his compo-

sitions, on the basis of its ability to generate patterns that he considered aesthetically

pleasing and would not naturally compose himself.

• Practical issues such as ease of use and the time it takes to run

1.5 Overview of the Dissertation

The contents of this dissertation are as follows. This chapter has introduced the motivation,

aims, strategy employed to achieve these aims and the evaluation of the system. Chapter

3

2 provides an overview of the main features of genetic algorithms and neural networks

that the reader should be familiar with. Chapter 3 focuses in more detail on the literature

relevant to this research, including the application of evolutionary methods and ANNs to

musical composition. Chapter 4 describes in detail the design and development of the sys-

tem including a discussion and justification for design decisions made. In chapter 5, the

system is analysed and evaluated on a number of measures, both objective and informal.

The final chapter of this dissertation presents a discussion of the research and the conclu-

sions drawn, along with proposals for future work.

4

Chapter 2

Background on Techniques

2.1 Overview

This chapter presents a brief introduction to the concepts and main features of genetic

algorithms and artificial neural networks. These were the two AI techniques used in the de-

veloped system and readers familiar with these techniques may proceed directly to chapter

3.

2.2 An Introduction to Genetic Algorithms and Genetic

Programming

2.2.1 Overview

Genetic Algorithms are general tools for search and optimisation inspired by the biological

theory of natural selection and first proposed by [Holland, 1975]. They have been applied

in a wide range of domains such as optimising circuit board layout and timetabling and

scheduling problems (see [Ross and Corne, 1995] for a review of applications of GAs)

and have been shown to be particularly useful in searching large, unstructured search

spaces. The following is a brief summary of the main features of GAs and GP (see e.g.,

[Goldberg, 1989] or [Heitkotter and Beasley, 2000] for a further details).

A GA typically consists of the following components:

• A representation scheme: this describes the domain specific mapping between the

real-world features of a solution to the problem (thephenotype) and the represen-

tation of that solution to be used by the GA (thegenotype). A candidate problem

5

solution converted into this representation is known as achromosome(or individ-

ual).

• A population: this is the group of chromosomes which are to be evolved. Chromo-

somes in turn are said to be made up ofgeneseach of which may have a particular

value (anallele) and these genes make up the genotype of that individual. In a GA,

the population is typically initialised with a fixed number of randomly generated

chromosomes. The number of individuals in the population is thepopulation size

and is usually fixed for any one run of the GA.

• A selection method: this is a means of selecting individuals from a population by

which chromosomes of higher fitness have a greater probability of being chosen.

• Genetic operators: crossover is a mechanism by which selected chromosomes are

combined to generate new candidate solutions while mutation operators randomly

generate variations on existing material.

• Critic: the critic orfitness functionreturns a measure of how well the solution repre-

sented by a chromosome solves the problem (itsfitness).

• Stopping criterion: this defines when evolution stops and the solutions in the current

population are returned. Typical examples include stopping after a fixed number

of generations, when a chromosome of a particular fitness is obtained or when all

individuals in the population are identical(convergence).

2.2.2 The Algorithm

The sequence of steps shown in algorithm 1 describes how these components (which are

discussed in more detail below) are combined in [Goldberg, 1989]’s Simple GA (SGA).The

algorithm shown is that for agenerational GAsince a whole new population of children

is generated which replaces the entire parent generation. Asteady state GAon the other

hand generates children individually which, if they are fitter than the least fit of the parent

generation, immediately replace that parent.

6

Algorithm 1 The Generational GA

1. Create an initial population of individuals.
2. Evaluation: the critic returns a fitness for each chromosome.
3. Selection:fitter chromosomes selected for an intermediate population.
4. Crossover: apply crossover with a certain probability to all

chromosomes and a randomly selected mate from the intermediate
population to generate two children which are placed in the new
population; otherwise the chromosomes are copied straight into the
next generation unchanged. Repeat until the new population is full.

5. Mutation: mutate all genes with a certain probability.
6. Repeat steps 2 to 6 until the stopping criterion is reached

(each iteration is known as ageneration).

2.2.3 The Representation Scheme and Critic

These are the two main areas in which knowledge about the domain is built into the GA.

The representation scheme used will depend on the problem that needs to be represented

and may be chosen in order to help cut down the search space. As with many areas of AI

where knowledge representation is a critical issue, choosing an appropriate chromosome

representation is a key problem in the design of a GA ([Goldberg, 1989]). Typically, the

chromosome will be a string of characters which, although much of the theory behind GAs

is based on binary strings, are often members of non-binary alphabets chosen because of

their applicability to particular problems.

The role of the critic can be compared to that of the environment in natural evolution:

the fitness of any individual creature is defined by its environment which determines the

degree to which the phenotypical characteristics of the individual help or hinder its ability

to survive and reproduce. In a GA, knowledge of the problem domain is drawn upon to

determine how well a solution represented by a chromosome will solve the problem and

thereby calculate its fitness. There are many ways in which a critic can be implemented. For

example, it may compare candidate solutions to an ideal solution, or calculate fitness based

on a series of formal criteria or rules. Alternatively, a human user may return feedback on

the quality of the solutions represented by the chromosomes (this is known as an Interactive

GA or IGA).

2.2.4 Selection and Genetic Operators

The purpose of selection is to ensure that the fitter chromosomes have a greater chance

of reproducing, thereby propagating their fit genes into the next generation. A number of

7

selection schemes are commonly used in GAs includingrank based selection, tournament

selectionandremainder stochastic sampling.Tournament selection, for example, randomly

selectsN chromosomes from the population and chooses the winner of this tournament to

reproduce. Larger tournaments result in increasedselection pressure,while smaller tour-

naments result in higher sampling error (see section 4.6).

If reproduction were asexual, that is genotypes were copied as they are into the next

generation there would be no means of exploring new areas of the search space not repre-

sented in the current population (besides mutation - see below). Crossover, therefore, is a

means of combining individuals with high fitness to potentially discover new high fitness

areas of the search space. The basic method of crossover, known assingle pointcrossover,

involves randomly selecting a point in the chromosome (thecrossover point) and cutting

both parents at this point.

Parent1: 0000000|00000
Parent2: 1111111|11111
Child1: 0000000|11111
Child2: 1111111|00000

Figure 2.1: Single Point Crossover

Two children are then generated by combining sections from each parent (see figure 2.1).

Crossover is normally applied to selected chromosomes with a certain probability (the

crossover rate).

It is quite possible that after a few generations certainalleleswill have been lost from

the population. In fact a general difficulty with genetic techniques is the tendency for

one relatively fit individual to saturate the population resulting in a population of identical

individuals. When this occurs without the GA having found a global optimum it is said

to have converged prematurely. Mutation is a means of introducing new genetic material

into the gene pool, thereby guarding against premature convergence. A common mutation

operator (using a binary representation) simply flips the value of a gene from 0 to 1 or vice

versa. It is important to note, however, that mutation can also disrupt a population away

from optimal regions of the search space and therefore is typically applied with a small

probability (themutation rate).

Mutation also has an important role as a search operator (some evolutionary techniques

rely on mutation alone to guide search). While crossover contributes to the search process

by combining fit sections of individuals to generate even fitter children, mutation conducts

8

a search by hill-climbing (partially exploring the neighbourhood of the current state and

moving in directions that improve fitness).

2.2.5 Genetic Programming

Genetic programming ([Koza, 1992]) is a variation on the evolutionary theme in which

programs, which generate problem solutions, are evolved. A fit program can be run with

a given input to generate the desired output. The basic elements of these programs are

problem specificterminal andfunctionsets. The initial population contains a number of

programs consisting of randomly combined elements from the terminal and function sets.

The fitness of each program is assessed by running it on a series of inputs calledfitness

casesand then applying the critic to the output of these runs. As in a GA, the fittest

individuals (programs) are chosen by some selection scheme (as described above) and then

crossover is used to generate two offspring from pairs of the selected parents. Typically,

crossover involves the exchange of a randomly chosen subtree of each program. Finally, the

children are mutated with a low probability (this might involve, for example, substitution

of one terminal or function for another) and placed in the next generation.

A notable difference between GAs and GP is that while the chromosome in a GA is

typically (but not always) of a fixed length, in GP the programs evolved can be of any

length. Similarly the problem solutions generated by those programs may be of variable

length.

2.3 An Introduction to Artificial Neural Networks

2.3.1 Overview

Artificial Neural Networks constitute a family of AI techniques, inspired by models of

biological neural systems, which consist of interconnected networks of simple processing

elements callednodes.In contrast to the sequential symbolic processing used in other fields

of AI, the processing elements of ANNs operate in parallel on numerical data (although this

is typically simulated on sequentialvon Neumannstyle machines). For the purposes of this

thesis just the type of ANN used in this research (see section 4.5) is described: thepercep-

tron (see [Haykin, 1999] for a general introduction to neural networks and [Sarle, 1997] for

an excellent online FAQ).

9

2.3.2 The Perceptron

The first neuronal model was developed by [McCulloch and Pitts, 1943] and extended by

[Rosenblatt, 1959]. Theperceptronconsists of a simple unit which performs thresholding

on n inputsx1...xn, each of which may take a value of 0 or 1. There is also a fixed input

called thebias nodewhose value is always 1 and which has an associated weightw0 which

serves to shift the decision boundary away from nought.

w x Σ i i Output

x
1

x
n

w
1

n
w

Weights Threshold

Inputs

x
0

0
w

Bias input

output = 1 if∑wixi ≥ 0
0 if ∑wixi < 0

Figure 2.2: The Perceptron Unit

As shown in figure 2.2, the threshold unit calculates the weighted sum of the inputs.

If this weighted sum is greater than 0 then the output of the unit is 1 else the output is 0.

Algorithm 2 shows the sequence of steps used to train the perceptron.

Algorithm 2 The Perceptron Training Algorithm
1. Initialisation
 Set the weights, W i , to small random values

2. Training
 For each epoch of training
 For each input pattern
 Present pattern
 Calclulate ouput of unit (o)_

i

 Calculate adjustment of weight associated
 with input x and adjust weight .
 Until termination criterion

There are a number of methods for updating the weights: theperceptron training rule, for

example, calculates the new weights as

wi ← wi + ∆wi

∆wi = η(t - o)xi

whereη is the learning rate, a parameter that governs the amount weights are changed on

each epoch of training; t is the desired output for a particular inputxi ; and o is the actual

output of the unit with that input.

10

In this manner, the weights associated with each input are changed by small amounts

on eachepochof training (iteration of the algorithm) in such a way as to reduce the error

between the actual output and the desired output. Over many epochs a weight vector is

found that satisfies all of the input patterns. The perceptron can be trained to classify certain

patterns of inputs such as the boolean functions AND, OR and NOT. An architecture with

any number of these units can be used and the above algorithm applied to each. However, it

has been demonstrated that in order to solve non-linear problems, such as the boolean XOR

function, a more complex architecture is needed consisting of multiple layers of perceptron

units. Furthermore, the perceptron training rule is inadequate for such an architecture.

2.3.3 Backpropagation and the Multi-Layer Perceptron

The multi-layer perceptron (MLP) is a network of perceptron units consisting of aninput

layer, ahidden layerand anoutput layeras shown in figure 2.3. An MLP was used in the

system to be described (section 4.5).

InputLayer

Hidden Layer

Output Layer

Input

 Output

Figure 2.3: The Multi-Layer Perceptron

The backpropagation algorithm (see [Rumelhart and McClelland, 1986]) was devel-

oped to learn the weights in a multilayer perceptron. Once again, an input pattern is pre-

sented to the network and propagated forward through the layers to generate a pattern on

the output units. This output is compared to the desired output for that input pattern and the

error propagated back through the network layers and the weights at each layer updated.

A feature of back propagation is that it requires a continuously differentiableactivation

functionrather than the discontinuous step function used by the original perceptron. One

11

commonly used solution is the sigmoid function which computes an outputo as

o = 1
1+e−y

wherey is the output of the weighted sum of the unit’s inputs,Σwixi. The backpropagation

algorithm attempts to minimise the disparity (or error) between the network output values

and the target values for these outputs. The error function normally used to compute this

disparity is a squared error function which, for one input pattern, is defined as

E = 1
2∑ j (t j -oj)2

wherej is the number of output units of the networkt j andoj are the target and output

values associated with thejth output unit. Backpropagation makes small changes to the

network weights on each iteration to reduce this error. The aim is to find a set of weights

where the errorE is minimised (as close to nought as possible) for all input vectors .

The weight update rule used by backpropagation is very similar to that used in the

perceptron training rule with the exception that a momentum term is often added. For the

weightwji between unitsi andj

wji ← wji + ∆wji

∆wji ← η δ j xji + α∆wji

The first term in the weight update is the same as the perceptron training rule: the error

δ j on unit j multiplied by the input to unit j(xji) multiplied by the learning rate (η). The

second term adds the previous update for that weight (∆wji) multiplied by the momentum

parameter (α). While the learning rate sets the step size or amount by which weights are

changed on each iteration, the momentum parameter governs the degree to which move-

ment over the error surface is maintained in the same direction. These parameters must be

set to appropriate values which will depend on the problem being learned. For an explana-

tion of how backpropagation calculates the error term on the hidden units see, for example,

[Haykin, 1999]. Backpropagation has been improved in a number of ways resulting in al-

gorithms such asExtended-Delta-Bar-Delta, used in the research described here, which

heuristically optimises the learning rate and momentum settings.

Multi-layer perceptrons using the backpropagation training rule have been found to

12

provide a robust approach to learning many types of pattern recognition, function approx-

imation and other classification problems. They exhibit many desirable features such as

the ability to generalise beyond the training set and robustness in the presence of noise in

the training data. Examples of areas in which they have been successfully applied include

learning to recognise handwritten characters, learning to play backgammon and financial

prediction.

2.4 Summary of Chapter 2

This chapter has introduced the main features of GAs and the MLP.

13

Chapter 3

Related Work

3.1 Overview

This chapter contains a review and discussion of research related to the work presented

in this dissertation. In section 3.2 the application of AI techniques to the musical domain

and the field of algorithmic composition are introduced. Section 3.3 presents a review

of the research literature concerning the application of evolutionary techniques to musical

composition. A similar but shorter discussion of ANNs to musical problems can found in

section 3.4. While the aims of many of the studies to be discussed lie outside the limited

domain of this research, the implications of this previous research to the current work are

important and are duly discussed.

3.2 AI and Music

There are a number of ways in which AI techniques have been applied to the musical do-

main. As in much of AI, the motivations involved can be drawn out on a spectrum between

Cognitive Science at one end and Engineering at the other [Wiggins and Smaill, 1999]. In

the former case the aim is to model and understand such features of human musical cog-

nition as: the perception of music; practice, learning and musical expertise; composition,

performance and improvisation; and musical creativity. [Desain and Honing, 1991], for ex-

ample, have investigated a connectionist approach to modeling human rhythm perception.

An intermediate motivation for using applying AI to musical tasks is to aid the field of mu-

sicology. As an example, [Desain and de Vos, 1990] describe a system for the analysis of

the relation between expression and structure which, for example, facilitates the the study

of voice-leading and chord timing.

14

Finally, at the other end of the scale, many studies aim to produce intelligent systems

that will aid or augment the processes of learning, composition or performance of mu-

sic. For example, [Horner and Ayers, 1995] developed a genetic algorithm for harmonising

complex musical progressions and suggested that, as well as providing composers and ar-

rangers with a tool for harmonisation, the system would also provide music theory teachers

with an automated means of both testing new progressions to ensure a solution exists and

also grading students solutions. In the field of performance [Biles, 1994] has developed

a genetic algorithm, calledGenJamthat generates jazz solos in real time and which can

“trade fours” with a human soloist; Biles notes that “in many ways, GenJam is the most

formidable ’opponent’ [he] has encountered.”

The research described here concerns the development of a system to aid the composi-

tion of music. Within this field ofalgorithmic composition, the aims of researchers range

from attempts to produce autonomous composers1 to developing systems which can cre-

ate libraries of useful musical phrases that the composer may draw upon in the process of

composition (e.g., [Biles, 1994]). This latter has been taken as the goal of the current work.

3.3 Evolutionary Approaches to Algorithmic Composition

3.3.1 Why use Evolutionary Techniques?

A number of AI techniques have been applied to various tasks relating to the composition

of music. These range from mathematical models, such as Markov chains, through sym-

bolic methods, such as grammars and knowledge based systems to evolutionary models

and sub-symbolic techniques, including ANNs (see [Papadopoulos and Wiggins, 1999] for

a summary and review of the advantages and disadvantages of several AI techniques for

algorithmic composition). The problem of algorithmic composition as it presents itself to

the AI scientist is neatly summarised by [Jacob, 1995]:

“consider the set of all possible compositions as the solution space, with the

problem at hand being ‘find a composition that sounds good.”’

With this in mind, evolutionary methods such as GAs and GP would seem particularly

applicable to the problem on the strength of their ability to efficiently search large, unstruc-

1[Spector and Alpern, 1994] discuss attempts to produce what they call “constructed artists.”

15

tured problem domains. These techniques also possess other desirable attributes such as

the ability to generate multiple solutions.

It might also be expected that evolutionary techniques would constitute a suitable frame-

work for implementing a compromise between the generation of structured and novel mu-

sical phrases since there is a certain amount of flexibility in the degree to which search is

guided. This is an important feature since a repeated theme in the literature of algorithmic

composition is the tension that lies in the trade-off between structure and novelty. In the

words of [Todd and Werner, 1999]:

“More structure and knowledge built into the system means more reasonably

structured musical output, but a also more predictable, unsurprising output;

less structure and knowledge in the system means more novel, unexpected

output, but also more unstructured musical chaff.”

Indeed, genetic algorithms have enjoyed a certain amount of success in this regard in the

generation of visual art. William Latham (in [Thywissen, 1996]) has said of his evolution-

ary systems for evolving 3-d computer sculptures:

“The machine has given me freedom to explore and create complex ... forms

which previously had not been accessible to me, as they had been beyond my

imagination.”

Finally, [Ralley, 1995] notes that GAs might be particularly appropriate to algorithmic

composition since an important part of musical composition is the “processing of ideas

through systematic permutation and recombination of themes.”

In accordance with these expectations, GAs have been successfully applied to a va-

riety of tasks within the field of musical composition ranging from the evolution of in-

strumental jazz solos2 to drum patterns3. Genetic Programming has also been employed

as an evolutionary technique in a number of studies of algorithmic composition (see e.g.,

[Johanson and Poli, 1998] and [Spector and Alpern, 1994]). Most of these studies have fo-

cussed on a restricted musical domain in an effort to reduce the size of the search space

and, therefore, the time taken to converge to a satisfactory solution. Others, however,

have imposed a certain amount of structure and worked with larger musical segments (see

2See, for example, [Biles, 1994], [Spector and Alpern, 1994] and [Wiggins et al., 1999].
3See, for example, [Horowitz, 1994] and [Burton, 1998].

16

[Jacob, 1995], for example). Appendix A provides brief summaries of the studies dis-

cussed in this review.

Since GAs and GP are general methods, the most interesting features of their appli-

cation to musical tasks lie in those areas in which domain specific knowledge has been

exploited. The obvious places in which this typically takes place are the chromosome rep-

resentation and the critic. However, there are a number of other places such as the initial-

isation of the population and the genetic operators used which also provide opportunities

for incorporating available domain specific heuristics into the GA [Greffenstette, 1987].

The following is a review of previous work which has applied GAs and GP to algorith-

mic composition. We begin with a discussion of the representations and genetic operators

employed and then move on to a more detailed examination of the types of critic used. Fi-

nally, approaches taken to evaluating the systems will be reviewed. Although the aims and

domains of application of many of these studies range outside the limits of the current re-

search, analysis of the success and failure of the various techniques used was instructive in

the design of the system developed here. Furthermore, this study of the literature will pro-

vide an academic context for the present research. (See [Burton and Vladimirova, 1997b]

or [Todd and Werner, 1999] for more complete reviews of the various applications of evo-

lutionary methods to musical composition).

3.3.2 Representation Schemes

A feature of GAs and GP is that they can achieve efficient heuristic search with domain

specific knowledge used only in the representation scheme and critic (the latter is discussed

in section 3.3.4). Of particular interest to the current research is the representation of time

in the chromosome and, especially, the tradeoff between capturing all the relevant features

of a musical phrase and constraining the search space.

In general, the representation schemes in musical applications of GAs and GP have

used implicit time structuring: events are represented without explicit temporal and struc-

tural relations between events (see [Honing, 1990] for a discussion of the representation

of time and structure in music). In a typical scheme, the number of genes in a chromo-

some corresponds to the quantisation of the bar into discrete timesteps where notes may be

placed. Most studies have used a relative time base (e.g., crotchets) rather than represent-

ing absolute time (e.g., seconds), in order to remove unpromising regions from the search

17

space. The metric position of the notes within a bar is, therefore, constrained to those

subdivisions represented in the chromosome. The finest metric subdivision represented

has varied between crotchets (e.g., [Gibson and Byrne, 1991]) and demi-semiquavers (e.g.,

[Spector and Alpern, 1995]).

However, a problem with this type of representation is that it is very restrictive. For ex-

ample, a representation that quantises the bar into semiquaver subdivisions (a chromosome

length of 16 if the tempo is 4/4 and one bar is represented) not only excludes the possibil-

ity of playing demi-semiquavers but also cannot represent triplets or many time signatures

such as 6/8, 5/4 and so on.

One major variation on this theme concerns the primitives used. In the scheme outlined

above, the primitives are “points” - the timing of a note event is described by its position

in the chromosome. An alternative scheme involves the representation of note onset and

duration (see e.g., [Thywissen, 1996], [Phon-Amnuaisuk et al., 1999]). This representation

scheme allows for more natural representation of triplets and “alternative” time signatures

as well as such features as overlapping notes. A similar scheme suggested by [Urwin, 1997]

represents the number of timesteps since the previous note, thereby avoiding the need to

explicitly represent the timestep of the note.

An interesting representation scheme was used by [Horowitz, 1994]. One bar rhythmic

phrases were represented as sequences of notes and rests occurring on “pulse” (assumed

to be semiquavers) subdivisions of the bar. However, also incorporated were values rep-

resenting the “rhythmic activity” ranging from triplet semiquavers to crotchets, “syncopa-

tion” which determined the degree of accentuation of sequential notes with respect to the

beat and “accent structure”. Unfortunately, [Horowitz, 1994] does not give a very detailed

description of how these elements were combined in his representation scheme.

Another important aspect of the current work is the representation of several instru-

ments (the different drums in a drum kit). Both [Burton, 1998] and [Horowitz, 1994] used

a 2-d matrix to represent different drums with time along one axis and instrument number

along the other4. An alternative scheme proposed by [Urwin, 1997] explicitly associates

each note event with an instrument number.

Finally, it is worth noting that with the exception of just a few studies5, non-binary

4A similar scheme has been used in the representation of four voice harmonisation
([Phon-Amnuaisuk et al., 1999]).

5e.g., [Gibson and Byrne, 1991], [Biles, 1994] and [Burton, 1998]

18

alphabets (usually integer encodings) have been used in the representation of musical

phrases. For example, genes are often integers representing the pitch, velocity or dura-

tion of a note on a particular timestep.

We learn from this analysis that, while it is important to represent all the necessary

information in the chromosome, the use of constraints can help to remove musically un-

promising regions from the search space. The issues discussed above were considered

during the design of the representation scheme used in the work described here (see section

4.2).

3.3.3 Genetic Operators

The vast majority of the studies under review have employed the standard crossover opera-

tors described in section 2.2. [Horowitz, 1994] used an interesting variation on this theme

by restricting crossover to similar drum groups (e.g.,. hi-hat and ride cymbal). This was

done in an attempt to provide some continuity, from generation to generation, of instru-

ments which shared similar “roles”.

[Burton, 1998] has investigated a number of crossover methods deemed applicable

to the domain and their effect on population diversity using a GA which evolved drum

patterns. The methods studied were single and multiple point crossover, multiple point

crossover between both similar and dissimilar drum groups, pattern interleaving (in which

individuals are divided into the instruments represented, bits from these instruments inter-

leaved one at a time and then single point crossover applied on the resulting individuals) and

mobius crossover (in which two individuals are concatenated, rotated to a random starting

point and then separated at the centre point). It was found that mobius crossover intro-

duced the most disruption into the population (while use of the other operators resulted in

low disruption) and [Burton, 1998] concluded that this operator could be used to introduce

diversity in the event of premature convergence.

The use of music specific mutation operators has shown much greater popularity in

the literature. The following is a discussion of those most relevant to the evolution of

rhythmic patterns. Some mutation operators used have operated on entire musical se-

quences (the entire chromosome or fragments thereof) while others have operated on in-

dividual notes. Examples of the former include pattern reversal and rotation (see e.g.,

[Biles, 1994], [Ralley, 1995], [Thywissen, 1996], [Wiggins et al., 1999]) while some ex-

19

amples of the latter are note addition, deletion, substitution and exchange between voices

(see e.g., [Horner and Goldberg, 1991], [Phon-Amnuaisuk et al., 1999]). Finally, some stud-

ies have used an operator that mutates the note durations (e.g., [Wiggins et al., 1999]).

In these cases, the mutation operator is not being used simply as a means of ensuring

continuing diversity in the gene pool but also as a search operator (see section 2.2.4). This

use of domain specific knowledge to guide search is very important as a means of reducing

the problem of the fitness bottleneck in those systems that have used human critics (dis-

cussed in section 3.3.4) and also in systems using relatively unconstrained representation

schemes.

[Burton, 1998] has studied the effect of six commonly used mutation operators on pop-

ulation diversity, once again in a GA which evolved drum patterns. It was found that pattern

inversion, reversal and voice swapping had a more disruptive effect than single or multiple

bit (note) substitution or pattern rotation. As with mobius crossover, [Burton, 1998] sug-

gests that these operators could be used to introduce diversity into a population that has

converged prematurely. It is interesting to note that rotation of the drum patterns did not

cause great disruption. This suggests that a “good” drum pattern, when rotated, may often

still be a “good” drum pattern.

This review indicates that the use of mutation operators specific to the musical rep-

resentation used can be a useful technique for guiding search through complex musical

domains. This analysis motivated the inclusion of such operators in the system developed

in the course of this research (see section 4.6.5).

3.3.4 The Critic

This section contains a detailed examination of the use of human, rule based and neu-

ral network evaluation functions in evolutionary musical systems as well as a section on

evolving the critic. The advantages and disadvantages of each method of implementing the

critic are discussed using examples from the literature. This analysis of previous work was

instructive in choosing and designing the critic in the present system.

Human evaluation

Researchers have reported some success using IGAs for algorithmic composition (see Ap-

pendix A.1).

20

Advantages. IGAs are useful for generating music that satisfies the preferences of a par-

ticular user. The advantage of this is that, as noted by [Thywissen, 1996] “people tend to be

far more sophisticated in listening than in creating music”; that is people can say whether

they like a tune or not but may not be able to compose a tune that they like. The other

related benefit is that the developer of the system is relieved of the difficult task of formal-

ising aesthetic merit. Of course the importance of these potential advantages of the IGA

depend on the precise aims of the research.

Disadvantages. However, against these potential advantages of an IGA lie some serious

drawbacks. The first results from the fact that each chromosome must be listened to and

rated by the user which places strict limitations on the population size and number of gen-

erations that can be used. [Biles, 1994] has coined the termfitness bottleneckto describe

this phenomenon.

Researchers have developed a number of means of overcoming this problem including:

seeding the initial population with relevant examples ([Ralley, 1995]) to start the evolution-

ary process in a fit area of the search space; using musically relevant mutation operators to

guide search in promising directions ([Biles, 1994]); and using user-defined rules to guide

evolution to a certain point at which the user takes over the role of critic ([Horowitz, 1994],

[Thywissen, 1996]). These are, in fact, general methods of incorporating domain specific

knowledge into the GA and the use of non-random initialisation, music specific mutation

and rules in the critic have been investigated in this research (see section 4.6.5).

However, the IGA suffers from a second and potentially more serious problem concern-

ing the subjectivity involved. Al Biles reports some anecdotal findings from the mentoring

sessions with GenJam, his IGA for evolving melodic jazz improvisations ([Biles, 1999]).

He reports that people who lack enough knowledge about music (in general, and jazz in

particular) are unable to form opinions about the generated improvisations and often feel

intimidated by having to give an opinion on something they do not understand. Even peo-

ple who do possess the relevant knowledge soon tire from the intensity of having to actively

listen to and criticise music in real time. The inconsistencies introduced due to such factors

as concentration span, mood, familiarity with the domain and general musical preferences

constitute a potentially very serious problem with the IGA6 .

6see [Biles, 1999] for some methods used to alleviate these problems.

21

Summary. These problems might not matter if the aim is to produce a tool that will let

experienced musicians evolve musical phrases that he or she likes. However, the aim of the

present research is to generate drum patterns within a particular style and not simply those

that the user likes. The issues of subjectivity associated with human evaluation also make

the IGA unattractive for this purpose. Furthermore, the fitness bottleneck associated with

the IGA makes it, in general, a less than desirable technique. Finally, from the perspective

of AI such a system is not especially interesting; the user is essentially providing most of

the knowledge to the GA. It would be more desirable, therefore, to automate the critical

evaluation of chromosomes (see the sections on rule based and ANN critics below).

Rule Based evaluation

While [Horowitz, 1994] and [Thywissen, 1996] reduced the fitness bottleneck problem

somewhat by allowing the user to define rules that would guide evolution up to a cer-

tain point, many researchers have employed purely rule based critics in their evolutionary

systems. This method of automating the critic can potentially overcome all the above men-

tioned problems associated with the IGA.

Advantages. The use of rule-based critics has seen most success in domains where ob-

jective critical criteria can be drawn from musical theory. In these areas, the problems of

subjectivity and the fitness bottleneck associated with the IGA can be overcome using sets

of rules. Evolutionary approaches to thematic bridging ([Horner and Goldberg, 1991]) and

four-part harmonisation7 (see e.g., [McIntyre, 1994], [Phon-Amnuaisuk et al., 1999]), for

example, have produced successful results (see Appendix A.2).

Disadvantages. However, in less specific domains governed by more amorphous rules

(such as is the case for drum patterns) the generation of objective critical criteria becomes

a significant problem. [Spector and Alpern, 1994], for example, developed a GP system

that evolved programs to transform a four bar BeBop jazz melody into a new improvisa-

tion. The critic consisted of five rules gleaned from the literature on jazz improvisation

technique. Although, using a case base of 5 Charlie Parker melodies, the system took

just 21 generations to evolve programs that pleased the critic, [Spector and Alpern, 1994]

7See [Phon-Amnuaisuk and Wiggins, 1999], however, for an experimental comparison of the performance of
a GA and a rule based system on the problem of four part harmony and an argument that GAs are not suited to
the problem.

22

conclude that “the response ... does not please us (the authors) particularly well”. Fur-

thermore, it was found that the evolved programs did not generalise well to a new set of

Charlie Parker melodies; the system lacked robustness. These failures were not attributed

to the evolutionary paradigm used, but rather to the simplicity of the critical criteria.

[Wiggins et al., 1999] describe the application of a GA to the problem of jazz impro-

visation making extensive use of domain specific knowledge, both in the chromosome

representation and the mutation operators, in order to help guide evolution in desirable

directions. The critic contained much more detailed criteria than did the fitness function

used by [Spector and Alpern, 1994] and the solos generated by the system were considered

“quite acceptable” up to a point. However, the authors conclude that the rules still failed to

fully capture the relevant features of the domain leading to music that lacked intention and

large-scale structure.

These two studies illustrate the problems associated with rule based critics, especially

when applied to domains where formal rules are not readily available (as is the case for

drum patterns in modern styles of music). The knowledge bases required to describe such

domains need to be large and complex with many context sensitive rules and exceptions to

rules. The construction of such sets of rules poses, not an impossible task, but certainly a

very difficult one. These problems are neatly summarised by [Minsky, 1981]:

“...it seems that we only know some features that can help - but we know

of absolutely no essential features. I do not expect much more to come of a

search for a compact set of rules for musical phrases. (The point is not so much

about what we mean by ‘rule’, as about how large is the body of knowledge

involved.)”

A concise but underspecified knowledge base may suffer from three potential problems.

First, the critical criteria will not describe the domain to a satisfactory level. Second, if the

system is to generate musical phrases in a specified style (as in the present research), the

critic may suffer from the subjective bias of the system designer selecting the rules. A third

difficulty is the avoidance of rigidity in the music generated. This would present a problem

for the current research in which the generation of patterns showing a degree of diversity is

a key issue.

A final problem with rule based critics is that one set of rules will almost certainly only

correspond to one style of music or even one set of examples of a style (see discussion of

23

[Spector and Alpern, 1994]’s system above). A whole new knowledge base will need to

be incorporated to cover a different style of music. This is an issue regarding the current

research since a supplementary aim was to investigate extending the approach to more than

one style of music.

Summary. These difficulties suggest that a purely rule based critic would not have been

suitable for achieving the aims of this research (see also section 4.6.2). In particular, the

lack of a formal theory of drum patterns in popular music would make the generation

of a concise rule base a difficult task, while an underspecified rule base would introduce

problems of subjectivity, lack of variation in the output and failure to capture the relevant

features of rhythmic patterns. Finally, rule-based critics do not provide a parsimonious

means of incorporating more than one style of music into an evolutionary system.

Neural Network evaluation

An ANN critic was used in the research described here to overcome these problems with

rule based critics. This section, therefore, gives a more thorough treatment of this method

of implementing the fitness function.

Advantages. Neural networks are good at complex pattern recognition and feature de-

tection in multi-dimensional space, they can learn non-linear transformations and they are

robust to noise and inconsistency in the training data. These features potentially make them

useful as critics in a GA where fitness assignment is heuristic or uncertain and there are

many degrees of freedom in the information encoded in the chromosome. This would seem

to be the case for many areas of music where, in the words of [Todd and Werner, 1999],

“critics based on learning methods such as neural network models ... can generalise their

judgments sufficiently to leave (artificial) composers some much-needed rule-breaking

‘wiggle room’.”

A second advantage of using a neural network as a critic is that the degree of human ex-

pertise hard coded into the system is reduced; the network learns by example those features

(which may be subtle and context dependent and therefore hard to encapture explicitly in

rules) which distinguish good and bad musical phrases. Extracting critical criteria directly

from a representative set of examples of the domain using an ANN is, arguably, a more

direct (and potentially more accurate) method than constructing sets of rules to describe

24

those examples.

Finally, a network can, theoretically, be trained to differentiate any number of classes

of input. This means that to incorporate a new style of music into the critic, for example,

the network can be retrained on a set of training data which includes that style of music.

There is no need to incorporate an entire set of new rules to cope with the new style.

An early study, focusing on a simple musical domain, demonstrated that ANNs can be

successfully used as an automated critic in musical GAs. An evolutionary system was used

by [Gibson and Byrne, 1991] to evolve simple musical phrases using a three stage process

in which a rhythm and melody were evolved separately using MLPs and finally combined

with other phrases to create a harmony (using simple rules). The complexity of the problem

was significantly reduced by considering only certain chords in C major and limiting the

metric resolution to quaver notes. The authors concluded that, “genetic algorithms with

cooperating neural networks have been shown to produce pseudo-musical composition with

some success”. However, due to the various musical constraints employed the resulting

compositions were not very musically adventurous.

Disadvantages. A major difficulty with the application of ANNs to musical tasks is

the generation of an appropriate training set consisting of both positive examples (that is

“good” musical sequences) and negative examples (“bad” musical phrases). While it is not

too hard to come across examples of aesthetically pleasing music, examples of “bad” mu-

sical phrases are not so readily available.8 [Gibson and Byrne, 1991] tackled this problem

by constructing the training set from examples taken from an interactive run of the GA:

chromosomes rated as fit become the positive examples while those given low fitness are

used as the negative data.

A similar regime was used by [Biles et al., 1996] to train a neural network critic in an

attempt to escape the fitness bottleneck associated with the interactive critic originally used

in GenJam ([Biles, 1994]). They trained a MLP with a single output node on examples of

high and low fitness chromosomes from an interactive run of the GA. It was found, how-

ever, after attempts with a number of different input representations that the network failed,

in every case, to differentiate the training data without overfitting. Biles and his colleagues

note that the human critics, who selected the training data, had extensive experience of

8although the author’s parents would probably argue that numerous examples of the latter can be found in his
record collection.

25

melody in many contexts, evaluated the melodies in a harmonic context and were sensitive

to such factors as variety and novelty. The representation used to train the network lacked

such sensitivity to harmonic and structural context and had no access to features such as

novelty. Furthermore, there would have been a certain amount of noise in the training data

due to subjective issues related to the interactive paradigm. The authors suggest these were

the reasons for the inability of the network to learn the human preference data.

Other work has avoided these problems by taking the negative training data from more

consistent sources. [Spector and Alpern, 1995] describe extensions to their GP system de-

scribed above ([Spector and Alpern, 1994]). Disappointed with the results using critical

evaluation criteria taken from the jazz literature, they investigated the performance of a

trained MLP critic which they expected would extract a deeper structural representation of

the desirable features of jazz melodies than was captured by their rules. A training set was

constructed from four categories of input: two measures of Charlie Parker melodies (the

positive data); one measure of Charlie Parker followed by one measure of silence; a single

measure of Charlie Parker followed by a randomly generated melody; and finally a single

measure of Charlie Parker followed by a measure of Charlie Parker reversed and randomly

manipulated. A three layer MLP was successfully trained on a total of 100 patterns.

The GP system evolved programs which generated a new solo from an existing Charlie

Parker melody taken from the case base. Both melodies were passed to the MLP which

returned a fitness for each program. During testing of the system, a program in the second

generation was assigned maximal fitness. However, the pattern produced by the program

was “quite unsatisfactory.” The authors suggest that the training set had covered too few

types of negative example - “perhaps it would have been a better critic if it had also been

trained to reject melodies that are reasonable except for bizarre rhythmic groupings, etc.”

In addition they note that, “the network had far too small a training set to learn about many

of these kinds of errors.” As a solution, the output of the network was combined with a

subset of the rules employed in their previous experiments ([Spector and Alpern, 1994]).

Although this improved matters, the results were still not entirely satisfactory.

[Biles et al., 1996] noted that on many occasions almost identical chromosomes had

been assigned maximally opposite fitness values by the human critics. The heuristic bias

of the MLP is a smooth interpolation between data points and when this is not the case the

network can make ill-advised generalisations between one point in the space and the next.

26

The central issue would seem to be careful selection of the examples (and in particular the

negative instances) making up the training set; in the words of [Todd and Werner, 1999]:

“We need a system that can be soft when this is useful, but that can still

make hard decisions when they are called for. Neural networks can behave this

way if they are trained properly, using both positive and negative examples.”

This “softness” of a neural network can be a particular problem when it is used as a fitness

function in an evolutionary system. [Spector and Alpern, 1995] note that “if there is a

simple way to exploit a weakness of a critic then it is likely that GP will find it.” Although

this problem was solved using a hybrid rule-based/ANN critic, they suggest the use of a

larger training set, improved training regime and more sophisticated network architecture.

Another way around this problem has been proposed by [Burton and Vladimirova, 1997a]

who used an unsupervised ART network to develop clusters corresponding to drum patterns

from different styles of music (rock, funk, disco, latin and fusion) from a set of training

examples. However, the ART network critic seemed to produce a certain homogeneity in

the generated patterns ([Burton, 1998]) making it inappropriate for achieving the aims of

the current research.

Summary. The potential advantages of using an ANN critic were attractive given the

aims of the present work. The critical criteria are extracted directly from the training data -

example drum patterns in the chosen style - thereby avoiding the difficulties and subjective

bias involved in designing a rule-base. The generalisation ability of the MLP should allow

the generation of diversity and novelty in the evolved drum patterns. Finally, there existed

the possibility of classifying a number of different styles of music using the same network.

However, it has been seen that the choice of positive and negative examples and the

amount of training data used can have a significant impact on the training of the network

and its performance as an evolutionary critic. These issues have been addressed in the

research described here (see sections 4.3 and 4.4). Finally, the exploitation of both the

loose generalisation abilities of an ANN and the strict classification of rules has also been

investigated in the described system (see section 4.6.5).

27

Evolving the Critic

A final approach to developing critics for musical applications has been to evolve an ap-

propriate set of rules. [Horowitz, 1994], for example, discusses the possibility of evolving

populations of parameters (meta-individuals) according to the users preferences – “the user

evaluates the families of rhythms evolved by each of the meta-individuals.” In a similar

manner, [Jacob, 1995] evolved the composer modules and the critics (ear modules) sep-

arately through interaction with the user. Since the critics in these studies are evolved

according to the preferences of the user, they suffer from the problems associated with the

IGA (discussed above).

[Werner and Todd, 1997] (see also [Todd and Werner, 1999]) have developed a rather

more complex scheme in which populations of critics and composers undergo a process

of co-evolution by sexual selection. Although [Todd and Werner, 1999] admit that the re-

sulting songs are not aesthetically pleasing to the human ear, they cite several advantages

of their co-evolutionary scheme over the human, rule-based and ANN critics discussed

above. First, it can help reduce the problem, noted by [Spector and Alpern, 1995], of chro-

mosomes finding shortcuts to gaining high fitness; and second, diversity can be maintained

through subspeciation of the original population. A problem with this approach is that the

evolution of the critic is not bounded by any musical criteria. [Todd and Werner, 1999]

suggest that incorporating basic musical criteria into the critic’s preferences will keep the

songs generated within reasonable musical bounds and that critics who could learn their

musical preferences and composers who could learn their songs within a generation would

increase the speed of adaptation.

The major problem with such a hybrid co-evolutionary system is one of complexity.

Time has not permitted an exploration of this avenue in the current research.

3.3.5 Evaluation of Artificial Composers

The evaluation of artworks is an area of little agreement often coming down to individual

subjective opinion and this, as noted by [Spector and Alpern, 1994], “presents a problem

for AI scientists wishing to produce computational artists”. The appropriate evaluation

methods will depend on the aims and techniques used. In the case of an IGA, subjective

evaluation by the user may be the only way. [Ralley, 1995], for example, states explicitly

that “there is no way to really measure the success or failure of such a system if the solution

28

the user desires is not predetermined and the acceptability of the final melodic material is

entirely up to the user. One means of collecting a more objective aesthetic evaluation has

been the organisation of a concert and collecting the aesthetic judgements of each member

of the audience ([Biles, 1999] describes audience evaluation of GenJam during concerts).

The use of rule based critics opens up the possibility of a more objective, scientific

evaluation of machine generated music. Although most studies have resorted to subjective

evaluation by the creator of the system, [Phon-Amnuaisuk et al., 1999] gave the four part

harmonies generated by the system to a senior music lecturer at the University of Edinburgh

to evaluate according to the criteria he uses for first year undergraduate students’ harmony.

This type of evaluation is particularly appropriate to those studies working in domains

governed by critical criteria derived from music theory. It is less clear how to objectively

evaluate system generated music in less formal domains (such as drumming in modern

popular styles of music).

This problem concerning the evaluation of computer generated works of art has been

discussed in some detail by [Spector and Alpern, 1994] who attempt “to separate those

components of an AI system to which aesthetic judgements should apply from those to

which scientific judgement should apply.” They reject organising a public show and col-

lecting many subjective aesthetic reviews on the grounds of the time involved. Furthermore,

they find working in a genre with formalised valuation criteria unsatisfactory on the basis of

three problems: the existing formalisations are often “dead” forms; adherence to rules may

not be a good indicator of aesthetic value; and finally work such a genre may not generalise

well to other areas where criteria for aesthetic judgement are not so uniformly accepted.

Instead, they advocate factoring aesthetic judgement out of the equation by developing

systems which take critical criteria and a “cultural context” as parameters and which will

work over a wide range of variation of these parameters. In this case, the success of the

system can be assessed across cultures and critical criteria. As an example of this approach,

critical values (taken from the literature on jazz improvisation technique) and a cultural

context (a set of Charlie Parker melodies) were supplied as parameters to their GP system.

It was argued that the variations of Charlie Parker melodies generated by their programs

could be judged scientifically by within these parameters (that is, by the critic) without

raising the issue of aesthetic value.

In spite of this, it is interesting to note that [Spector and Alpern, 1995] found the music

29

generated by the system was not pleasing to their own ears - thereby resorting to the subjec-

tive evaluation typically used - and went on to attempt to extract the critical criteria directly

from the case base using an ANN. This approach is favoured since only the case base of

examples from the musical domain need be supplied to the system which automatically

extracts a critic from those examples.

In the case of the present research, where the goal is to generate musical patterns rep-

resentative of a specified domain using a set of examples supplied as parameters to the

system, an approach analogous to a Turing test for musical phrases is proposed. Aesthetic

judgement is once again factored out of the equation and the patterns generated by the

system are evaluated on the basis of the degree to which subjects, familiar with the musi-

cal domain, can distinguish system generated and human generated rhythmic phrases. This

means of evaluation is particularly suited to a system using an trained ANN critic which has

extracted its (sub-symbolic) evaluation criteria directly from a set of examples of musical

phrases. The subjects can be asked to distinguish the generated patterns from the training

data. This method of evaluating machine generated musical phrases has been investigated

in the present research (see section 5.2).

3.4 Algorithmic Composition with Neural Networks

3.4.1 Overview

There has been extensive interest in recent years in the application of neural networks to

musical tasks ([Todd and Loy, 1991], [Griffith and Todd, 1999]). These can generally by

divided into those tasks which attempt to generate music and those which attempt to analyse

music. Research has tended to focus on the former, finding it to be a much easier problem

to solve. Furthermore, studies of music analysis have tended to focus on relatively low

level features such as rhythm perception ([Desain and Honing, 1991]) or the recognition of

instruments ([Dolson, 1991]) rather than the higher level problem of classifying musical

phrases more relevant to the design of networks for use as critics in evolutionary systems.

The following is a discussion of the application of ANNs to musical composition, focusing

on the issue of representation and concluding with a discussion of the combination of ANNs

with other methods.

30

3.4.2 Representation Issues

In the field of music generation [Todd, 1989] discusses two possible representations of time

in neural networks (see also section 4.2.2). First, the spatial representation of time whereby

the input to a network is an entire musical phrase and the target output the next musical

phrase. In this scheme, time is represented as the spatial position of a note in a sequence of

notes. If each phrase represents a bar length, then the number of fields in the network input

represents the granularity of temporal quantisation. This type of representation, although

simple, has two major disadvantages: first, the length of the pattern and the granularity of

the timesteps are limited by the size and complexity of the resulting network; and second, it

might be argued that it provides an unnatural representation of time which is (by definition)

a sequential and not a spatial concept (although a spatial representation of time is standard

in physics).

In most attempts to use ANNs for the generation of music a very different representation

has been used: the sequential representation. In this scheme, the network is fed a sequence

of past timesteps one by one and is trained to generate the music to be played at the next

timestep. Arecurrentnetwork9 is usually required to memorise the timesteps previously

presented. In order to generate music, the trained network’s output is fed back into the input

units and a measure of music presented to start the feedback loop. This type of network has

generally been used because of its more natural representation of time and since it allows

the input of sequences of arbitrary length and granularity to the network.

It is notable, however, that all of the studies using ANN critics in genetic systems have

employed spatial network representations. This is probably due to the natural application

of the (generally) spatial chromosome representation to the network inputs and the fact that

this type of representation lends itself particularly well to classification problems (where

the output of the network represents a classification, not music). Nonetheless, research

using sequential representations has important implications for temporal representation in

general.

In the scheme used by [Todd, 1989] the duration of a note is proportional to the number

of successive timesteps in which that note is presented. The drawback of this type of im-

plicit representation of duration is that, as for spatial representations, time must be divided

into very small intervals to allow a complete range of temporal intervals and consequently

9The recurrent architecture provides a set of context units which record the state of the network at previous
timesteps (with exponential decay).

31

the the number of timesteps in a piece of music becomes very large. Not only does this

place a computational limit on the granularity that can be represented ([Urwin, 1997]) but

also the learning of contingencies between notes becomes a difficult task. A final problem

is that the generation of notes in one timestep is necessarily limited to a local context of

previous notes. In accordance with this analysis, Peter Todd has said of the melodies gener-

ated that “the problems ... of lack of higher level structure emerge, and these compositions

tend to wander, having no clear direction, and seldom ending up anywhere in particular.”

[Mozer, 1994] attempted to address this problem of incorporating higher level organ-

isation by using a more sophisticated representation scheme, motivated by psychological

and psychoacoustic considerations. In particular, the duration of each note was explicitly

represented in terms of units corresponding to a twelfth of a crotchet length. This allowed

the representation of durations as fine as demi-semiquaver triplets and made the represen-

tation more compact. In spite of this, Mozer remarked of the generated music that:

“While the local contours made sense, the pieces were not musically coherent,

lacking thematic structure and having minimal phrase structure and rhythmic

organisation.”

A number of suggestions were made to aid the learning of global musical structure by

neural networks (including more sophisticated architectures, representation and training

regimes - see [Mozer, 1994] for details).

Given these failures in the melodic and harmonic domain, it is interesting to note that

[Urwin, 1997] successfully trained an ANN to generate drum patterns, once again using

the sequential paradigm. The representation consisted of velocity values (0 representing

the absence of a note) for four instruments (bass drum, snare drum, closed hi-hats and open

hi-hats) and the bar was divided into 64 timesteps. The network was trained to predict the

velocities of each instrument at the next timestep given a window of velocities at previous

timesteps. Given the failures described above, it is interesting that in this purely rhythmic

domain the network succeeded in generating patterns that were misclassified as human

transcribed MIDI drum patterns in 85% of cases. It was concluded, however, that the use

of a small and relatively uniform training set lead to generation of patterns from a limited

area of the whole search space.

Inspired by this success, the system designed in the present research used a similar rep-

resentation scheme to that used by [Urwin, 1997] although translated into a spatial frame-

32

work (see section 4.2).

3.4.3 Hybrid Approaches

An inability to extract higher level features of music seems to be a problem that has dogged

most attempts to compose with recurrent neural networks. This is partly a result of the

fact that these studies limit the context (on which the generated sequence of music is to

be based) to a small window of previous notes. [Papadopoulos and Wiggins, 1999] suggest

that ANNs are less efficient and practical than other techniques “at least as a stand-alone ap-

proach.” They go on to suggest that the integration of different methods will allow artificial

composers to “take advantage of the strengths of each one.” ANNs, as proven techniques

in machine learning, will almost certainly have a role to play in such integrated systems.

HARMONET ([Hild et al., 1992]) is an example of such a system. The aim of this

study was to approximate the function mapping chorale melodies onto their harmonisation

using a training set of 400 four-part chorales composed by Bach. They approached the

problem by decomposing it into sub-tasks: generating a skeleton structure of the harmony

based on local context; generating a chord structure consistent with the harmonic skeleton;

and finally adding ornamental quavers to the chord skeleton. Neural networks were used for

the first and third tasks and a symbolic constraint satisfaction approach was applied to the

second sub-task. The resulting harmonisations were judged by an audience of professional

musicians to be on the level of an improvising organist. The authors conclude that:

“By using a hybrid approach we allow the networks to concentrate on musical

essentials instead of on structural constraints which may be hard if learned by

a network but easy if expressed symbolically.”

The hybrid approach adopted in the research described here (see chapter 4) was inspired by

systems such as HARMONET (as well as those described in section 3.3.4) in which neural

networks (and other techniques) are applied to those compositional subtasks to which they

are best suited.

3.5 Summary of Chapter 3

This chapter has reviewed approaches to musical composition using evolutionary and neu-

ral techniques and discussed the implications for the present research.

33

Chapter 4

System Design and Development

4.1 Overview

The general concept involved in this system is the use of a GA to guide search through

the space of drum patterns to find solutions representing drum patterns in a specified style.

Candidate patterns generated during the process of evolution were evaluated by an ANN

trained (using example patterns from within that style and patterns not within that style)

to classify patterns according to the degree to which they represented acceptable patterns

within the specified style of music.

For the purposes of this dissertation it will be useful to divide the development of the

system into five phases:

1. The representation scheme was designed (section 4.2).

2. The data for training the neural network were collected (section 4.3).

3. The collected data were preprocessed into a suitable format for training the network

(section 4.4).

4. The ANN was designed and trained on the collected data(section 4.5).

5. The GA was developed and run using the neural network as its critic (section 4.6).

This chapter presents each of these phases in turn. An overview of the goals and design

issues of each stage is presented. The design decisions made with respect to each of these

issues is then considered: choices made are justified and steps taken to solve encountered

problems are described. Finally, section 4.7 describes an example run of the GA.

34

4.2 The Representation Scheme

4.2.1 Overview

In order to facilitate interaction between the GA and the trained ANN, when evaluating

the fitness of chromosomes in the evolutionary process, the chromosome representation

scheme was exactly the same as that used for training the ANN. The chosen scheme there-

fore had to satisfy the criteria of both roles. It was clearly desirable that the representation

of a drum pattern should accurately and completely describe all the relevant information

in the data. However, in the case of a GA it was also important to build musical knowl-

edge into the chromosome representation in order to cut down the search space (see section

3.3.2); while in the case of an ANN the use of fewer fields and possible values for those

fields can significantly reduce the complexity of the function that must be learned by a

neural network.

Noting these points and bearing in mind the failure of previous attempts to train an

ANN ([Biles et al., 1996], [Spector and Alpern, 1995]) for use as the critic in evolutionary

systems, the representation chosen constrained the problem in the following ways:

1. Only one bar was represented. A bar length was chosen on the basis that this is

the smallest musical section that would be useful in composition. Furthermore, the

stated aim was to produce a system which generates short rhythmic sequences.

2. Only the bass drum, snare drum, closed hi-hats and open hi-hats were represented.

These comprise the central instruments in the modern drum set and are the basic

essentials required to play drum patterns from most styles of popular music.

3. Only patterns in the time signature of 4/4 were represented.

4. The metric granularity was limited to demi-semiquaver subdivisions of the bar.

5. The note velocities were quantised to discrete values.

6. The duration of a note was not represented.

7. Tempo was not represented.

The reasons for imposing these constraints are explained in the following discussion of

several issues considered during the development of the representation scheme.

35

4.2.2 Spatial vs. Sequential Representation

Most of the studies of music generation using ANNs, discussed in section 3.4, have em-

ployed a sequential representation using a recurrent network architecture (see figure 4.1).

While this type of scheme provides a natural means of generating notes based on a pre-

vious sequence of notes, it is not necessarily suited to the problem of classifying input

sequences. Since this was to be the role of the ANN in the present system a spatial repre-

sentation, shown in figure 4.2, appeared to be a more natural approach. Furthermore, the

concept of sequential representation does not make much sense in the context of the typical

GA representation scheme. In a spatial representation, the position and duration of a note

and its relation to other notes in the pattern are defined by its spatial position in the input

vector (see sections 3.4.2 and 3.3.2).

Timestep:

Input Node:

t = 1

 1

t = 2

t = n

Figure 4.1: Sequential Network Representation

There are, however, several problems with this approach, resulting from limiting the

length of a pattern to the number of input units to the network (assuming the pattern is to

be a fixed musical section; one bar for example). First, the time signature of the patterns

that can be represented is limited. Second, the subdivision of the bar is dependent of the

number of input nodes in the network. In order to appreciate these problems, consider the

following examples where one bar of a single instrument is to be represented. If there are

four input nodes then we can represent notes occurring on crotchet subdivisions in 4/4 (or

quavers in 2/4). Time signatures such as 3/4, 7/8, 5/4 etc. cannot be represented.

Furthermore, notes cannot be placed on metric subdivisions finer than crotchet lengths.

We might try to solve this second problem by increasing the number of network inputs to

16, for example, so that subdivisions as fine as semiquavers are represented. However, it

is still not possible to represent notes occurring on triplet subdivisions of the bar. In fact,

36

the granularity of the spatial representation would need to be incredibly fine in order to

accommodate both triplet and standard subdivisions, resulting in an enormous number of

time steps to be represented (and a correspondingly large number of input nodes to the net-

work). This is potentially a very serious problem for the spatial representation as a general

scheme for the representation of music, since the triplet subdivision is very important in

several styles of music (jazz for example).

In spite of these problems, a spatial representation scheme provides a simple way of

representing a musical pattern as the sequence of characters that typically make up the

chromosome in GAs. As described in section 3.3.2, this is a common means of representing

time in musical applications of GAs and GP. Furthermore, a spatial representation has

typically been used in training the ANN in those studies investigating the use of ANN critics

(reviewed in section 3.3). This type of representation makes the evaluation of chromosomes

simple; the chromosome is presented to the input nodes of a network and the degree to

which that chromosome is classified as a member of the positive training set is output.

Since the styles of music that were used in this system (d&b and rap - see section 4.3) are

generally in the time signature of 4/4 and triplet subdivisions are typically not used (except

in rare cases for flourishes) a spatial representation scheme was employed in this system.

Timestep:

Input Node:

t = 1 t = 2 t = 3 t = n

 1 2 3 n

Figure 4.2: Spatial Network Representation

A final question, then, given that a spatial representation was to be used, concerned the

granularity of the timesteps to be represented; that is to say the length of the chromosome

and consequently the number of fields in the network training data (and the number of

network input nodes). The smallest timestep required in order to capture the main features

of the training data was a semiquaver subdivision of the bar. In order to capture subtleties

such as snare drum rolls, demi-semiquavers were represented (corresponding to a division

of the bar into 32 timesteps).

37

4.2.3 Representation of Velocity

While some studies have used binary representations simply indicating the presence or

absence of a note at each timestep represented (e.g., [Burton, 1998]) a better scheme would

be to represent the velocity (amplitude) of each note. It was decided to represent velocity

on a scale of single decimal place quantisations between nought and one. Therefore, each

timestep in the spatial representation could contain a number from this range indicating

either that no note is played on that timestep (nought) or a note of a specified velocity is

played (0.1 to 1.0). This range of quantised values was chosen to cover a suitable range

of velocities and yet also reduce the range of values that each field in the network training

data could take, thereby making the network’s task somewhat easier.

4.2.4 Representation of Note Durations

A number of possible methods of representing note position and duration in the spatial

representation of a musical sequence were considered. These included the following

• Represent explicitly the note on and note off positions for each note in the pattern.

This introduces the problem of what to do when one note ends at the same point as

another note begins. One solution to this problem would be to create a representation

for that type of event, although this was inadvisable due to the increase in complexity

involved.

• Represent note on positions and allow any note to be truncated by the presence of

a further note-on event. However, the problem of how to cut notes short before the

next note-on event remains.

• Represent notes by two fields, one indicating the presence of an event, the second

indicating the velocity of that event. In this case, the presence of an event with

velocity 0 truncates the previous note without the presence of an audible event. This

is the representation scheme used by [Urwin, 1997].

• Represent note-on position and note-duration explicitly as vector pairs (as used, for

example, by [Thywissen, 1996]).

Since the instrument events represented in the training data were drum hits of short dura-

tion, the representation of note duration was not such an important issue in this system as in

38

others working in the melodic or harmonic domain. Therefore, each note was fixed at a du-

ration of a semiquaver which was time enough for the note to decay fully, even at the high

tempos common in d&b. The only situation in which this representation of duration might

prove too restrictive would be if one wanted to cut drum notes or cymbals short after a very

short period for special effects. In actual fact, this could be simulated by the positioning of

a quiet note on the demi-semiquaver timestep after the note to be cut short.

4.2.5 Representation of Different Instruments

Once again, there were a number of possible means of representing the instruments includ-

ing:

• Sequentially in the representation (as used by [Burton, 1998]).

• Interleaved by timestep in the overall representation.

• [Urwin, 1997] suggests representing instruments as a parameter included in each

note onset representation (in order to make the representation of temporal relation-

ships more concise and hence easier to learn).

The first of these schemes was chosen since it required the least transformation of the

events played on each instrument from the MIDI file representation (each instrument was

on a separate MIDI track in the training data - see section 4.3).

4.2.6 Representation of Tempo

It is notable that most of the studies reviewed in section 3.3.2 did not explicitly represent

tempo in the chromosome. Likewise, tempo has not been represented in the system being

described here. Instead the tempo of the MIDI files output by the GA can be set by the

user, who may be looking for drum patterns for a particular composition and, therefore,

will want to have control over the tempo of the patterns generated.

4.2.7 Summary of the Representation Scheme

One bar patterns of four instruments were represented as a string of 128 numbers between

one and nought, quantised to steps of 0.1. The first 32 of these numbers represented the

39

presence (0.1 to 1.0) or the absence (0.0) of a bass drum on that demi-semiquaver subdivi-

sion of the bar, numbers 33 to 64 the presence or absence a snare drum, numbers 65 to 96

the presence or absence of a closed hi-hat and numbers 97 to 128 the presence or absence

of an open hi-hat. Tempo was to be set by the user. An example drum pattern from the

network training data, shown both in musical notation and in the representation scheme

described above, can be found in Appendix B.

4.3 Data Collection

4.3.1 Overview

There were a number of issues to consider when choosing a format for the musical exam-

ples used to train the network . These included the following:

• The format should contain all the information that will be required in the network

and chromosome representations including information concerning note positions,

durations and instruments as well as information concerning tempo and time signa-

ture.

• Since ANNs require a large amount of training data a large number of data in this

format must be available

• It must be relatively straightforward to convert the format into the representation

chosen for training the ANN

Furthermore, both positive and negative examples of the target classifications had to be

collected. The two obvious choices of data format were the standard MIDI file format or

raw audio format (e.g., .wav files).

4.3.2 Format

The data collected for training the ANN were in the format of MIDI files for the following

reasons (see [Rothstein, 1992] for an introduction to MIDI):

• MIDI files contain all the basic information about a rhythmic pattern that will need

to be represented.

40

• MIDI files containing just drum parts are available for sale or via the Internet. It was

therefore relatively easy to collect a a large number of them.

• a wide variety of software for the processing and playing of MIDI files is available.

4.3.3 The Training Data

Since the aim of this project was to generate drum patterns within a specified style, the

training examples for the neural network were chosen as recognised examples from that

style. It would not, for example, have been sensible for the author to sequence the training

data himself due to the subjective bias involved. This was considered to be a an important

contributory factor in the failure of [Biles et al., 1996] to train an ANN to classify good

and bad jazz improvisations. Therefore, the positive examples in the training set were

taken from Standard MIDI files containing drum patterns in the style of “Drum & Bass”

(henceforth d&b) on disks sold by Keyfax software for use by musicians (see Appendix D

for details). These disks contained MIDI files of drum parts which were up to 100 bars in

length. Using a MIDI sequencer (Logic Audio Gold) the bass, snare and hi-hat tracks were

extracted from these MIDI files, quantised to the level of demi-semiquaver subdivisions

and finally, each bar saved as a MIDI file. These were taken to be reliable and consistent

examples of d&b drum patterns. Patterns in the musical style of “rap” were also obtained

from the same source and processed in the same manner to be used as negative data.

The negative set of examples was constructed from four classes of pattern:

1. Randomly generated patterns containing the same rhythmic pattern on each instru-

ment

2. Different randomly generated patterns on each instrument

3. Semi-random patterns generated by randomly combining random tracks and tracks

taken from patterns in the musical style rap

4. Rap patterns

This scheme was motivated by the desire to model in the network training data the types of

pattern that would be generated by the GA throughout evolution. Initially, since the popula-

tion is randomly initialised, the majority of the chromosomes generated would correspond

to random drum patterns. This motivated the inclusion of classes 1 and 2 in the negative

41

examples. Since there was a (small) possibility that some of the randomly generated pat-

terns would be reasonable drum patterns, class 1 was included in the training set to ensure

that some patterns would be definitively “bad” examples of d&b patterns.

As evolution progresses some structure should begin to emerge in the chromosomes

generated and, therefore, a range of semi-random patterns (class 3) was included in the

negative examples to ensure that these patterns were not counted as having high fitness.

Finally, evolution might be expected to evolve chromosomes that correspond to well

formed drum patterns but lack the features that classify them as d&b patterns. Therefore,

a number of well formed patterns from a different style of music (the rap patterns in class

4 above) were incorporated into the set of negative examples. Rap patterns were chosen as

being significantly different from d&b patterns within the constraints of the chromosome

representation.

A final question concerned the amount of data required to train the network. This was

an important issue since [Spector and Alpern, 1995] concluded that the main reason for the

failure of their attempts to use a trained ANN as the critic in their GP system was the small

number of training examples used (see section 3.3.4 above). A heuristic rule of thumb is

to use ten times the number of training instances as there are input nodes to the network

([Sarle, 1997]). Since the representation consisted of 128 input fields (see section 4.2) this

gave an estimate of 1280 for the required number training patterns. In order to reach this

number a total of 970 one bar MIDI files in the style of d&b were collected and a total of

760 in the style of rap. All three classes of random pattern were generated by an automated

procedure (see the following section).

4.4 Data Pre-processing

4.4.1 Overview

This phase involved the reading of a file in the chosen format, extraction of relevant in-

formation and conversion of this information into the representational format described in

section 4.2.

42

4.4.2 Conversion Procedures

This was achieved using slightly modified versions of two programs, written by Richard

Urwin, calledconvertandparallelise (see [Urwin, 1997] for details of these programs).

The convertprogram takes a MIDI file as input and generates text files containing num-

bers representing the velocities of notes on each subdivision of the bar (time and velocity

were quantised as described in section 4.2). Theparalleliseprogram then takes these files

(four of them in this case corresponding to the four instruments in the MIDI data) and con-

catenates them in such a way that the 32 time steps representing bass drum hits are first,

followed by the snare drum, closed hi-hats and open hi-hats. In this way, a string of 128

numbers is obtained which represents the note velocities on each demi-semiquaver timestep

for each of the four instruments as described above. The positive data (d&b) and the fourth

class of negative data (rap patterns - see section 4.3) were generated in this manner. All

these procedures were automated using UNIX shell scripts.

A slightly different technique was needed for the generation of the random and semi-

random negative examples. The program Sinuso (see Appendix D) was used to generate

format 0 MIDI files (which contain only one track) with randomly generated note lengths.

These were then converted to text files using theconvertprogram described above. A small

program was written inSchemewhich made use of theparallelise program (described

above) to generate data representations that were of the following three types:

• The same randomly generated pattern on each instrument

• Different randomly generated patterns on each instrument

• Each instrument randomly given a randomly generated pattern or a pattern on the

same instrument from a rap MIDI file

In this manner, the first three classes of negative data described in the previous section were

automatically generated.

Table 4.1 shows a breakdown of the total amounts of data in each class finally obtained

for use during training:

Generally, the proportions of positive and negative data for an ANN should match those

found under “natural conditions”. In the case of a GA, the initial populations typically

contain randomly generated chromosomes with low fitness, while in the later generations,

43

Class of Data Number of Examples

d&b (positive) 970

Random (tracks same) 105
Random (tracks different) 105

Semirandom 380
Rsap 380

Table 4.1: Collected Data

nearing convergence, the entire population will be relatively fit. Therefore, equal numbers

of positive and negative instances were included in the data set.

4.5 Training the ANN

4.5.1 Goals and Issues

The ANN was designed and trained in such a way that it correctly classified the training data

and showed good generalisation to unseen patterns. This phase of development involved

completing the following tasks:

• Dividing the data randomly into atraining set, a validation setand atesting set.

The training set is the body of examples used to train the ANN. To guard against

overfitting, the performance of the network during training is measured by its error

on the validation set. This ensures that the network continues to generalise well to

unseen examples. The validation set is also used to decide between different network

architectures and parameters. Finally, the performance of the trained network is

tested on the test set of examples.

• Choosing a means of implementing the ANN.

• Choosing a network type, architecture and parameters.

• Choosing an appropriate learning algorithm.

• Training the network.

• Testing the performance of the network on the test set of examples.

44

4.5.2 Creating the Training, Validation and Testing sets

The data described above were divided at random into three sets, each containing the same

proportions of the five different classes of training pattern, as shown in table 4.2.

Set Proportion of data Number of patterns

Training 70% 1358
Validation 20% 388

Test 10% 194

Table 4.2: The Training, Validation and Test Sets

This division of the data was chosen since it gave a number of training patterns just

over the 1280 required and furthermore, an argument presented in [Haykin, 1999] suggests

that 20% of the data should be assigned to the validation set, which left 10% for the test

set.

4.5.3 Implementation

There were three implementation alternatives available: using a neural network simulator;

coding the neural network myself; and finally, using a neural network construction package.

The first option would not have allowed the use of the trained ANN as part of a system,

while the second would have taken too much time and these were, therefore, rejected in

favour of the third method. The ANN was created and trained using the NeuralWorksTM

software package. It was then automatically converted to a C function which could be

accessed by means of an input and output array, the sizes of which were defined by the

respective sizes of the input and output layers of the network.

4.5.4 Architecture

A MLP was chosen above other types of ANN for the following general reasons (see sec-

tion 4.6.2 for a justification of the use of an MLP, more specifically,as the criticin this

evolutionary system):

• It is a general purpose non-linear regression technique which attempts to minimise

global error

• Any multi-dimensional function can in theory be synthesised

• It can provide very compact distributed representations of complex data sets

45

• It is efficient and robust in the presence of errors or inconsistencies in the training

data

• It has been shown to provide good results on a number of prediction and classification

problems

However, set against these advantages, two serious problems with the MLP are the follow-

ing:

• Learning is slow, often requiring hundreds of thousands of training epochs.

• Choosing the appropriate network architecture and learning parameters is difficult.

In order to alleviate these problems the network was trained using thecascade correlation

paradigm and theExtended-Delta-Bar-Delta(EDBD) training algorithm.

Cascade Correlation. A problem with the design of an MLP neural network is the se-

lection of an appropriate architecture. This is important since, in general, the more hidden

units used the better the performance on the training set but the worse the resulting per-

formance on unseen data (overfitting). There exists a tradeoff between performance and

generalisation. While the input and output layers are generally determined by the data

representations chosen, the optimal number of hidden layers and the size of these layers

are often chosen by trial and error. A number of network architectures are generated and

trained and the architecture with best performance on the validation set is chosen. However,

given the slow nature of training MLPs this can be a time consuming process.

The cascade correlation paradigm ([Fahlman and Lebiere, 1990]) is designed to solve

this problem. This is achieved by training a network with no hidden units and then adding

hidden units one at a time. The task of each of these is to predict the current remaining

output error in the network. New hidden units receive input from all previous hidden layers

and from all input units. This process is repeated until the performance of the network

on the validation set no longer shows any sign of improvement. Algorithm 3 shows the

cascade correlation procedure.

In this manner the optimal number of network hidden layers and units is determined

automatically. This paradigm was used in the training of the MLP.

46

Algorithm 3 The Cascade Correlation Training Algorithm

1. Train the direct connections from the input layer
and bias to the output layer for a fixed number of
iterations or until RMS error stabilises

2. Iterate: 1. Train a new hidden unit so as to maximise a
measure of the correlation between its output and
the residual error at the output for each
training instance until training stabilises when
the inputs to that unit are fixed (“tenured”)

2. Connect the newly tenured unit to all output units
and randomly initialise these connection weights

3. Train all connection weights to output layer (from
(input units and all tenured hidden units) until
RMS error stabilises

3. Until: error no longer decreases

The EDBD Training Algorithm. A second problem with using a MLP with the back-

propagation algorithm (described in section 2.3) is that the learning rate and momentum

parameters must be chosen. Once again, the selection of optimal values often involves a

process of trial and error and the use of inappropriate values can significantly slow down

learning. The EDBD algorithm ([Minai and Williams, 1990]) is an attempt to address this

issue of the speed of convergence of MLPs using the following heuristics:

1. Each adjustable network weight should have its own learning rate and momentum

parameters since a fixed value may not suit all areas of the error surface.

2. Each learning rate and momentum parameters should be allowed to vary from one

epoch to the next since a single region of the error surface may behave differently

throughout time.

3. When the current position in the weight space lies on a relatively flat region of the

error surface along a particular weight dimension, the learning rate parameter for that

particular weight should be increased to speed up convergence.

4. When the error surface in the current region along a particular weight dimension is

convoluted the learning rate parameter should be decreased to ensure the avoidance

of local minima.

47

Using these heuristics the EDBD learning algorithm automatically adjusts the learning rate

and momentum parameters during training. It has been found to significantly increase the

speed of convergence of MLPs to minima in the error surface and was used in the training

of the MLP being discussed.

Other Features

The network was trained to minimise the Root Mean Squared (RMS) error on the validation

set. The sigmoid function was used as the activation function with thresholds of 0.1 and

0.9 for classification. There was one output unit and positive training examples (the d&b

patterns) were associated with a target output of one while the negative examples (all four

classes) were associated with a target output of nought.

4.5.5 Results of Training

The cascade correlation training procedure eventually converged on an optimal network

with one hidden unit which attained a minimum RMS error of 0.1472 on the validation set.

The final RMS values and classification rates (for both the positive and negative training

data and the mean) of the network on the training, validation and test sets is shown in table

4.3.

Set RMS error Positive Negative Mean

Training 0.1284 0.9469 0.9705 0.9587
Validation 0.1472 0.9375 0.9330 0.9352

Test 0.1476 0.9368 0.9278 0.9323

Table 4.3: Results of Network Training

The table shows that the network learned to correctly classify 95% of the training data

and, more importantly, its classification performance generalised well to the test set of

data which was not used at all during training. Figure 4.3 shows a graphical view of the

performance of the MLP on the test set against the desired values (in bold).

4.5.6 Discussion

It is notable that there are a just few instances (especially in the positive data) which are

wildly misclassified while most of the data is correctly classified within the limits. In

the case of the positive examples, all the drum patterns in the style of d&b were taken

48

0 20 40 60 80 100 120 140 160 180 200
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Pattern Number

C
la

ss
ifi

ca
tio

n

Figure 4.3: Network Performance on the Test Set

from the disks without any filtering by the author. It seemed likely that the misclassified

examples would have been “fills”, such as snare drum rolls. In the case of the negative

examples, the most likely explanation was that some of the randomly generated examples

were actually very similar to some of the d&b patterns (especially in the case of the semi-

random patterns). An informal analysis of some of these misclassified training instances

suggested that these hypotheses were correct.

Removing these outliers from the training data resulted in improved performance of

the MLP on the test set (see Appendix E) although time restrictions did not allow the

investigation of the performance of the GA using this network as a critic. Furthermore,

the cascade correlation procedure found a network with 5 hidden units to produce optimal

performance which suggests that a more complex internal representation of the data had

been extracted than in the network described above (which had only one hidden unit).

4.6 Developing the Genetic Algorithm

4.6.1 Overview

A number of design decisions were made during the development of the GA:

49

• Why use a GA rather than some other method?

• Why use an ANN critic?

• How is the GA to be implemented?

• Designing the generic GA features: choosing appropriate techniques for selection,

reproduction, crossover and mutation.

• Designing domain specific features of the GA: genetic operators, the initialisation of

the population and the integration of the critic into the system.

• Choosing a system for obtaining multiple solutions from the GA.

• Choosing a playable output format for the system considering the issues of ease of

conversion from the chromosome representation into the format and the use of a

generally accepted and widely used format.

4.6.2 The Choice of Techniques

Why use a GA?

A GA was chosen to achieve the aims specified in section 1.2 of this dissertation. The use

of a GA was motivated by several factors (see also section 3.3.1):

• GAs provide an efficient means of searching large, complex search spaces such as

the present problem domain (the space of all possible drum patterns). In this case,

the size of the search space is 11128 (128 genes each with 11 possible values), which

is larger than that estimated for Chess (for which exhaustive search is generally con-

sidered beyond the capabilities of any computing device).

• The framework of a GA allows a balance of exploitation and exploration of the search

space (through the use of varying amounts and forms of domain specific knowledge)

and, thereby, of the amount of structure and novelty present in the generated patterns.

• An evolutionary approach is attractive since musical composition often involves the

combination and permutation of themes (the recombination of rhythmic subpatterns

in the case of drum patterns).

50

• Evolutionary techniques lend themselves to generating multiple solutions on any one

run. A stated aim was to generate a number of patterns on any one run.

The number of studies of algorithmic composition using GAs far outweighs the number

using GP. Furthermore, the use of GP has, in general, failed to produce the same degree

of success that has been achieved using GAs. For these reasons, a genetic algorithm was

chosen above the GP paradigm in the present research project.

Why use an ANN critic?

GAs have achieved some success in searching musical domains for aesthetic musical phrases

in previous work (see section 3.3). There are, however, only two studies that have focussed

exclusively on the evolution of drum patterns. [Horowitz, 1994] used an IGA (including

user specified parameters to initially guide evolution) to evolve drum patterns and reported

successful results. However, the IGA was considered a less than satisfactory model for

achieving the current aims for the following reasons:

• The fitness bottleneck limits the number and size of generations that can be used

• Subjective bias during the evaluation of chromosomes

• A desire to automate the entire process of drum pattern generation using AI tech-

niques

[Burton, 1998] extended this work by automating the critic, using an unsupervised ART

network to evaluate candidate drum patterns bases on their propinquity to existing clusters,

corresponding to styles extracted from the training set. The resulting patterns were reported

to be similar to the training data (a measure of success) but rather homogeneous. The use

of an MLP in this system was motivated by the following factors (see also section 3.3.4):

• The MLP provides a fully automated critic avoiding the problem of the fitness bot-

tleneck associated with interactive human evaluation.

• An MLP can be trained on examples taken from the style of music to be modeled

thereby avoiding both the subjective bias involved in human evaluation and the diffi-

culty of formulating explicit evaluation criteria.

51

• The generalisation abilities of the MLP can be employed to alleviate the determinism

associated with rule based critics, thereby allowing greater diversity in the generated

drum patterns and also the homogeneity in the output of the GA using an unsuper-

vised ANN

• An MLP can be trained on examples from several different styles of music, removing

the need to design a entirely new knowledge base in the case of rule based critics.

4.6.3 Implementation

The GA was implemented in Java since its functional object-oriented paradigm is suited to

the design of a GA and it is the language that the author is most familiar with. Java also has

the attractive feature of cross-platform compatibility. Interaction with the neural network,

a C function output by the NeuralWorksTM program, was achieved by means of the Java

Native Interface (JNI).

4.6.4 Design of Generic GA Features

Generational reproduction is generally preferred over steady state reproduction because

the replacement of the parent generation with a whole new generation makes the former

method less susceptible than the latter to sampling error due to noise in the fitness func-

tion. Furthermore, it has been demonstrated that the steady state GA exerts a particularly

high selection pressure, mainly because the worst member of the population is always re-

placed ([Goldberg and Deb, 1991]). In this system a relatively low selection pressure was

desired so that individuals would not be driven to find shortcuts to high fitness that the

neural network (as a sloppy classifier) might have allowed (this problem was noted by

[Spector and Alpern, 1995]).

Selection methods used in GAs vary with respect to two features: the selection pres-

sure they exert on evolution and their sampling error. The purpose of selection is to balance

the tradeoff between exploration and exploitation: it must ensure that individuals of higher

fitness have a higher chance of reproducing, but also that individuals of lower fitness have

some chance of reproduction since they may contain genetic fragments (schemata) of high

fitness. The degree to which selection favours fit chromosomes is known as theselection

pressureand an intermediate level is generally required: too much will lead to premature

52

convergence while too little will cause evolution to occur too slowly. Therefore, selec-

tion generally involves some method of stochastic sampling of schemata in the population

according to the fitness of the chromosomes containing those schemata. This stochastic

process is prone tosampling error- that is, the possibility that high fitness schemata are

not chosen for reproduction.

A probabilistic form of binary tournament selection was chosen due to the low selection

pressure it exerts (for the above reason). Also, however, [Goldberg and Deb, 1991] found,

in a comparative analysis of selection schemes, that linear ranking and a probabilistic bi-

nary tournament give better expected performance (defined by growth of the fitter chromo-

somes and time to satisfactory convergence) than proportionate reproduction. They state a

preference for binary tournament selection due to its better time complexity. It is also par-

ticularly easy to implement since it requires no global information about the relative fitness

of a chromosome in the population. However, tournament selection is still prone to sam-

pling error since each tournament is carried out individually ([Hancock, 1994]). Finally,

in light of the low selection pressure, due to generational reproduction and a probabilis-

tic binary tournament, a form of elitism was employed whereby the fittest member of the

population is automatically copied into the next generation.

Standard single point crossover was used, following most of the studies reviewed in

section 3.3. The mutation operator flipped genes (with a probability defined by the muta-

tion rate) to one of the available velocity values between 0.0 and 1.0 with equal probability.

Both crossover rate and mutation rate were to be set by the user via command line argu-

ments to the program. The representation scheme was as described in section 4.2 and the

initial population was initialised randomly: each gene was assigned a velocity value from

the available possibilities between 0.0 and 1.0 with equal probability. The fitness of each

chromosome was assessed by the trained ANN described in section 4.4 which took as in-

put an array of 128 values between 0.0 and 1.0 and returned a fitness (between 0.0 and

1.0) based on its generalised classification of the pattern as a member (or otherwise) of the

positive data set (d&b patterns).

The stopping criterion of the GA was designed to be set via two command line argu-

ments to the program: the first is a fitness between 0.0 and 1.0; the second is a maximum

number of generations. The former specifies that evolution should stop when there is one

chromosome in the population of the specified fitness, while the latter specifies that evolu-

53

tion should stop, and the fittest individual in the population be returned, if the generation

count reaches the given limit.

4.6.5 Music Specific features of the GA

The output from the generic GA as described above was unsatisfactory for a number of

reasons. First, the distribution of notes across metric subdivisions did not match that in the

training data. For example, the output patterns generally contained a number of notes on

demi-semiquaver subdivisions of the bar (that is notes on timesteps resulting solely from

the division of the bar into 32) while the training patterns contained very few notes on these

timesteps. In fact, there were in general far too many notes in most of the patterns gener-

ated. This problem was addressed by a more sophisticated initialisation of the population

.

A second problem was that the patterns generated tended to be fairly similar and this

was solved by the use of domain specific mutation operators. Finally, there were some

desirable features of the training data lacking in the patterns generated. Particularly note-

worthy was the failure to evolve patterns that contained closed hi-hats on the quaver notes

of the bar. Problems such as these were addressed by the introduction of rules into the

critic.

Incorporation of domain specific knowledge into various areas of the GA improved

both the quality of the output and convergence times. The problems and the steps taken to

solve them are discussed in more detail below.

Initialisation

It was found that the drum patterns generated contained far too many notes and, in par-

ticular, too many on timesteps resulting from the division of the bar into 32 steps. This

was partly because the chromosome was initialised with all possible velocities with equal

probability resulting in a population of chromosomes 90% of whose timesteps would, on

average, contain notes. Since the mutation operator used also changed the velocities to

new values chosen with the same probabilities there was little provision for reducing the

number of notes in a pattern throughout evolution.

In light of this, an informal analysis was made of the distribution of velocities in the

training data and the population was initialised in accordance with this, as shown in table

54

4.4. In addition, it was noted that demi-semiquaver notes were seldom used in the training

data, while in the rare cases where they were it was for ornamental rolls on the snare drum

or closed hi-hats. Therefore, timesteps corresponding to these subdivisions were initialised

in all cases to 0.0 indicating the absence of a note. The probabilities calculated above took

account of this fact. Furthermore, the “bitflip” operator was also adapted so that it changed

velocity values according to this probability distribution.

Velocity Value Probability

0.0 0.5
0.1 0.0
0.2 0.025
0.3 0.025
0.4 0.025
0.5 0.025
0.6 0.05
0.7 0.1
0.8 0.1
0.9 0.1
1.0 0.05

Table 4.4: Initialisation of Note Velocities

It is worth considering why the network did not detect these low fitness features of

chromosomes. An informal analysis of the network weights showed that the weights were

very small for most of the inputs corresponding to demi-semiquaver timesteps suggesting

that these inputs had very little effect on classification. A greater proportion of notes on

these timesteps in the negative training data might have resulted in the assignment of low

fitness to those chromosomes containing many notes on these steps.

Mutation operators

As noted above, the generated patterns displayed a tendency towards homogeneity. In order

to encourage more diversity the following additional mutation operators were implemented:

• a quaver timestep in the bar is randomly selected as a rotation point. Each instrument

is then rotated so that that timestep becomes the first timestep. This was inspired

by the experiments conducted by [Burton, 1998] suggesting that this operator does

not cause a lot of disruption in the population. It should, however, generate useful

variations on existing material and exploit the possibility of chromosomes being of

low fitness simply because they are slightly “out of phase”

55

• the genes in each instrument are reversed. This operator was applied with very low

probability and was designed to ensure the continuing presence of new genetic ma-

terial in the population. It was found to be highly disruptive by [Burton, 1998].

The use of these operators resulted in an increased diversity in the drum patterns generated

by the system.

Rules

The final problem found with the generated patterns was that they failed to exhibit certain

desirable features of the training data. These features were:

• Quaver length hi-hats played on the closed hi-hats and starting on the first timestep.

• Not placing an open hi-hat on the same timestep as a closed hi-hat.

• Not playing more than two open hi-hats in a bar.

• Not placing a bass drum on the same timestep as a snare drum (and vice versa).

Chromosomes lacking these desirable features (and possessing other desirable features)

were still given high fitness by the network. It is suggested that this resulted from the

“loose” generalisation of the network discussed in section 3.3.4. Another potential reason

for the failure to evolve patterns with hi-hat notes on quaver subdivisions of the bar was

that these were also present in most rap patterns. This would have resulted in small weights

for these timesteps since they failed to distinguish the data. Consequently those inputs to

the network would have had little effect on fitness.

In order to solve this problem, four rules were added to the critic (corresponding to the

four problems cited above) in the manner of [Spector and Alpern, 1995]. The fitness was

defined as the output of the network minus a penalty term proportional to the degree to

which an individual violated these four rules. It is worth noting that, with the exception

of the presence of quaver length hi-hats, these did not impose any structural constraints

defining where notes should be played.

4.6.6 Obtaining Multiple Solutions

A stated aim of the research was to develop a system that would generate a number of drum

patterns on each run. One of the attractive features of evolutionary techniques is that whole

56

populations of solutions are evolved and therefore multiple solutions can be generated.

This feature was one reason a GA was chosen to achieve the objectives of this research.

However, the fact that a population tends to converge to a point where the entire population

is overrun by one very fit chromosome (or small variations thereof) poses a problem: the

system must be able to generate a set of patterns exhibiting a certain amount of internal

diversity for them to be useful. There exist a number of methods for generating multiple

solutions to a problem (excluding the trivial one of re-running the GA).

The most effective of these is a technique calledfitness sharingwhich essentially pe-

nalises chromosomes for being too similar to others in the population by reducing their

fitness (see [Goldberg and Richardson, 1987]). However, this was found to increase sig-

nificantly the time complexity of fitness evaluation in the current system. A very differ-

ent approach is to use anisland modelwhich initialises and evolves several independent

populations of chromosomes with periodic migration between subpopulations (see e.g.,

[Gordon et al. 1992]). An island model has several advantages: first, it increases the paral-

lel nature of search that is the strength of the GA; second, migration represents a continuing

source of genetic diversity; and finally, it allows multiple solutions to be evolved. It has

been found to improve results over single population GAs even when the total number of

chromosomes is the same.

For these reasons, the GA was implemented as an island model with the number of

islands set by the user. Migration occurred as a swapping of chromosomes between ran-

domly selected islands. The degree of migration must be balanced since too much will

drive local differences between the islands out, while too little will remove the beneficial

effects on convergence and diversity. This was achieved via two command line parameters

to the system: the migration frequency (how many generations pass before each migration)

and the migration rate (the proportion of the population that migrate).

4.6.7 Post-processing of the Generated Patterns

The chromosomes generated by the GA were converted into the format of MIDI files for

the following reasons :

• a wide variety of software for the processing and playing of MIDI files is available.

• since the MIDI file is a widely used format the generation of drum patterns in this

57

format will ensure maximum usability and compatibility.

Each chromosome generated by the GA was written to a text file and then converted into

a MIDI file using a slightly modified version of theconvertprogram, written by Richard

Urwin, and described in section 4.4.2 above. The modifications made involved writing the

instrument tracks to the following MIDI note numbers: bass drum track on note number

36; snare drum track on note number 40; closed hi-hat track on note number 46; and open

hi-hat track on note number 56. These conform to the General MIDI (GM) format. The

user may specify the tempo of the resulting MIDI files which can be played using any MIDI

player.

4.7 An Example Run of the GA

In terms of evaluating the system it will be instructive to examine an example run of the

GA. The GA is run with a command line call taking the following arguments:

$java Rhythms <1> <2> <3> <4> <5> <6> <7> <8> <9>

The parameters 1 through 9 are described in table 4.5 (see section 4.6 for further details).

Number Parameter Values

1 Generation Size positive integer
2 Generation Limit positive integer
3 Fitness Limit decimal value between 0.0 and 1.0
4 Crossover Rate decimal value between 0.0 and 1.0
5 Mutation Rate decimal value between 0.0 and 1.0
6 Number of Islands positive integer
7 Migration Frequency positive integer
8 Migration Rate decimal value between 0.0 and 1.0
9 Output Filename String with less than 4 characters

Table 4.5: Command Line Arguments Taken by the GA

In this example, the GA was run with the following command line arguments which

were found, through a process of trial and error, to produce good results:

$ java Rhythms 200 300 0.95 0.6 0.01 3 20 0.1 ex

Evolution continued until three patterns (one from each island) attained a fitness of 0.95

(from a maximum of 1.0) after 98 generations (16 minutes on a Pentium 3 600MHz PC

running Linux). The three generated patterns (ex0.mid, ex1.mid and ex2.mid) are shown

58

in figures 4.4, 4.5 and 4.6 in musical notation (the bass drum is on the lowest line of the

stave, the snare drum two lines above it, the open hi-hats one line above the snare and the

open hi-hats on the top line).

An analysis of the patterns shows that, while they show a certain amount of variation,

they tend to be complicated. Although they were not canonical examples of a d&b drum

patterns, they were certainly interesting rhythmically and pleased the author by being very

different to patterns he tends to generate himself (either using a sequencer or on the drum-

set). On the whole, the patterns generated by the GA are “well formed”, although some

show a tendency to being cluttered and jerky. A more objective analysis of the patterns gen-

erated by the system, in relation to the aims stated in section 1.2, can be found in chapter

5.

Figure 4.4: Generated Pattern: ex0.mid

Figure 4.5: Generated Pattern: ex1.mid

Figure 4.6: Generated Pattern: ex2.mid

4.8 Summary of Chapter 4

This chapter has included a detailed description of the design and development of the sys-

tem through its various stages. The choice of representation scheme has been described

59

and justified. The collection and pre/post-processing of the training data was covered. Sec-

tions concerning the design and training of the neural network explained the design choices

made and described the results of training. Finally, a section covering the design and imple-

mentation of the GA described its various features, including the incorporation of domain

specific knowledge and the method chosen to obtain multiple solutions. Difficulties and the

steps taken to solve them have been presented. An example run of the GA and the drum

patterns generated have also been described.

60

Chapter 5

Evaluation of the Generated

Patterns

5.1 Introduction

One area that is often neglected in studies of algorithmic composition is a rigorous evalua-

tion of the compositions generated by the system. Typically, papers will include a sentence

suggesting that the author(s) found the output of their own system “pleasing” in some way

with a comment such as “while it is difficult to objectively evaluate their quality, I can

say with certainty that [the generated musical phrases] rival the carefully prepared demo

sequences distributed with most drum machines!” [Horowitz, 1994]!

In the present study an attempt has been made to evaluate in more objective terms

whether the system fulfills the specified aims. In fact, aesthetic judgement has been re-

moved from the evaluation of the generated patterns. This chapter describes three experi-

ments: the first was a musical Turing Test of whether subjects could discriminate human

from system generated patterns (section 5.2); the second asked subjects to classify the pat-

terns according to style (section 5.3); and the final experiment asked for judgements of

the diversity present in groups of three system generated patterns taken from both between

and within runs (section 5.4). In a less objective manner a musician was asked to evaluate

the system (section 5.5) and finally, the system was informally judged on its usability and

practicality (section 5.6).

The experiments were carried out using 19 human subjects from the School of Artificial

61

Intelligence at Edinburgh University. All experiments were conducted in one session with

all 19 subjects present in order to maintain extraneous influences constant across subjects.

The questions pertaining to experiments one and two were answered with respect to the

same set of drum patterns in an attempt to reduce the amount of listening the subjects

would have to do. As noted by [Biles, 1999] subjects find active listening and criticism

of music an extremely tiring task. The subjects were asked to state on a scale of between

nought and five their knowledge/experience of the musical styles involved.

The patterns used in the experiments were generated using the parameters for the ex-

ample given in section 4.7. All MIDI drum parts, both human and system generated, were

one bar in length and recorded at a tempo of 150 BPM using the GS Roland 909 drum

set. It was explained to the subjects that all patterns (both human and system generated)

were quantised and recorded using electronic drum sounds. The answer sheets given to the

subjects can be found in Appendix C.

All experiments involve testing hypotheses about means and due to the small sample

sizes involved the t-test was used. In the case of a one-sample t-test N was calculated as the

number of subjects minus one, while in the case of the two sample t-test it was calculated

as the number of subjects minus two (for further reading [Cohen, 1995] is an excellent text

on experimental methods in AI).

5.2 Experiment 1

This evaluation of the drum patterns attempted to factor aesthetic judgement out of the

equation as described in section 3.3.5. The system was designed to generate patterns in

the style of d&b using knowledge extracted from a set of example drum patterns in that

style. Therefore, a musical Turing Test was designed in which the subjects were asked to

discriminate system generated patterns and human generated patterns from the training set.

The system was considered to have succeeded if the subjects were unable to distinguish

system from human generated patterns.

5.2.1 Experimental Design

A set of drum patterns was constructed containing 10 system generated patterns taken from

different runs of the GA and 10 human generated patterns randomly selected from the

62

ANN training set. These 20 patterns were played in a randomised order to the subjects who

were asked to state for each pattern heard whether they thought it was system or human

generated. Subjects were also asked to state at the end of the experiment on what basis they

were discriminating.

The proportions of system and human generated patterns correctly classified were ex-

tracted from the obtained results and the following hypotheses tested with a one sample

t-test against the known mean of 0.5 (that expected if subjects were discriminating ran-

domly).

• Null hypothesis one: the mean proportion of human generated patterns correctly

classified is the same as that expected if the subjects were answering at random.

• Null hypothesis two: the mean proportion of system generated patterns correctly

classified is the same as that expected if the subjects were answering at random.

5.2.2 Results

The results of this experiment are shown in table 5.1.

Mean Std. Deviation Deg. Freedom t p

Human 0.516 0.224 18 0.311 0.241
System 0.679 0.181 18 4.241 0.999

Table 5.1: Results of Experiment 1

The results provided two statistical results using 95% confidence intervals. First, we

could retain null hypothesis one and second, we could reject null hypothesis two in favour

of the following hypothesis:

• Hypothesis two: the sample mean proportion of system generated patterns correctly

classified is greater than that expected if the subjects were answering at random.

5.2.3 Discussion

While these results demonstrate that the subjects could distinguish most system generated

from human generated patterns it is worth noting that over 20% of the system generated

patterns were, on average, misclassified as human generated patterns. This indicates some

degree of success. In particular, the only subject to rate his knowledge of the domain as

five out of five (and who was the only subject to classify all patterns correctly according

63

to style in experiment two) misclassified 40% of the system generated patterns as human

generated. A score of 50% would have indicated random classification and success on the

part of the system. However, the average experience/knowledge professed by the subjects

(two out of five) was very low. Given time the experiment would ideally be repeated with

more knowledgeable subjects.

It is interesting that the classification performance of the subjects on the human gener-

ated patterns was no better than random. This suggests two things: first, that the familiarity

of subjects with the domain was low as noted above; and second, a bias towards classifying

patterns as system generated. This latter may account, in some part, for the high number

of system patterns correctly classified. Some reasons for this bias were suggested by an

informal collection of the criteria on the basis of which the subjects distinguished system

and human generated patterns.

It seemed that they were, in general, looking out for negative features1 of the patterns

which would classify them as system generated. A sense that they were being asked to

“catch the system out” may have lead them to overclassify the patterns as system gener-

ated. Those subjects who were looking for features of human generated patterns searched

for “smoothness”, “coherency”, “large scale structure”, “subtleties” and such features as

whether it qualified as part of a song or similarity to rhythms they had heard in songs.

Given that the drum patterns were short, lacking musical context and in an unfamiliar style

for most subjects, the use of these criteria may have lead to the bias towards classifying

patterns as system generated.

[Urwin, 1997], in a similar experiment, asked subjects to assume that a pattern was

human generated if they were unsure (and obtained 85% misclassification of the system

generated patterns). However, this may well have produced a bias in the opposite direction.

Techniques to counter these kinds of bias warrant further investigation.

5.3 Experiment 2

This experiment was designed to evaluate whether the generated patterns were in the in-

tended style by asking subjects to specify a style for system and human generated patterns.

1Examples of these features were lack of originality, randomness (or how chaotic the patterns seemed), pre-
dictability and mechanicality lead to classification as system generated. It is interesting to note that both extreme
conformity to the prototype of a style and extreme randomness in a pattern classified it as system generated in the
eyes (or ears) of the subjects.

64

If the proportion of system generated patterns correctly classified according to style was

equal to or greater than the proportion of human generated patterns correctly classified

then the system generated patterns could be considered to be in the correct style.

5.3.1 Experimental Design

A set of drum patterns was constructed containing 10 system generated patterns taken from

different runs of the GA, 10 human generated patterns randomly selected from the ANN

training set and 10 human generated “techno” drum patterns. Techno was chosen since it is

a distinct musical style from d&b but typically has a similar, fast tempo. These 30 patterns

were played in a randomised order to the subjects who were asked to state for each pattern

heard the style of the pattern from a choice of “drum&bass”, “techno” and “other”.

The mean proportions of human and system generated patterns correctly classified ac-

cording to style were collected from the experimental data and the following hypothesis

was tested with a two sample t-test. In the case of system generated patterns “correctly

classified” refers to classification in the intended style (d&b). The option “other” was

counted as an incorrect classification in all cases.

• Null hypothesis: there is no difference in the mean proportions of human and system

generated patterns correctly classified according to style.

5.3.2 Results

The results of this experiment are shown in table 5.2.

Human Mean System Mean Deg. Freedom t p

0.729 0.568 17 2.181 0.978

Table 5.2: Results of Experiment 2.1

Within a confidence interval of 95%, we could reject the null hypothesis in favour of

the following hypothesis:

• Hypothesis one: the mean proportion of correctly classified human generated pat-

terns is significantly higher than the mean number of system generated patterns.

Given this result a further one-sample t-test was run against the known mean 0.33 (the

expected result assuming the subjects were answering at random) using the null hypothesis:

65

• Null hypothesis: the mean proportion of correctly classified system patterns is equal

to the mean expected if subjects were answering at random.

The result of this test is given in table 5.3.

System Mean Known Mean Deg. Freedom t p

0.568 0.333 18 3.474 0.999

Table 5.3: Results of Experiment 2.2

We could, therefore, within a confidence interval of 0.99, reject the null hypothesis in

favour of the following hypothesis:

• Hypothesis one: the mean proportion of correctly classified system generated pat-

terns is greater than the proportion expected if the subjects were answering randomly.

5.3.3 Discussion

The results clearly demonstrated that fewer system generated patterns than human gen-

erated patterns were correctly classified according to style. However, the proportion of

correctly classified system generated patterns was significantly greater than that expected

with random choice and this indicates a degree of success. Furthermore, the only subject

to claim 100% knowledge of the domain, classifiedall the system patterns as being in the

style of d&b.

The mean proportion of human generated patterns correctly classified was not very

high, once again indicating the low level of expertise of the subjects. The lack of knowledge

of the musical styles professed by the subjects might lead one to question the reliability of

the judgements made in this experiment. In the light of this, the experiments should ideally

be repeated with more knowledgeable subjects. A final point is that, since membership of

a stylistic group is probably not a discrete concept, a better experiment might have asked

for judgements of thedegreeto which the patterns were considered d&b patterns.

5.4 Experiment 3

This experiment was designed to evaluate the amount of musical variation in the patterns

generated both within one run and between runs of the GA compared to the amount of

66

variation in the training data. This measure of variation was chosen as more musically rel-

evant than an analysis of the patterns themselves (using Hamming distance, for example).

Finally, an intermediate degree of variation was desired since too much would take the pat-

terns out of the intended style. The variation in the training data was chosen as a reasonable

indication of a desirable amount.

5.4.1 Experimental Design

A set of drum patterns was constructed containing 20 groups of three patterns. Five of

these groups of three were constructed from patterns taken from within individual runs of

the GA, another five from patterns taken from different runs of the GA and the final ten from

patterns randomly selected from the training set. Subjects were played these 20 groups of

patterns in a randomised order and asked to indicate on a scale of one to five how much

variation they considered there to be within each group. The total amount of variation for

the human, the within-run and the between-run groups was calculated for each subject and

converted to a fraction between nought and one by dividing it by the maximum possible

score. The mean of these values across subjects was then collected.

The mean variation of the within-run and between-run groups was compared to the

mean variation of the human groups in a two sample t-test with the following null hypothe-

ses:

• Null hypothesis one: there is no difference between the mean perceived variation of

the within-run groups and the human groups.

• Null hypothesis two: there is no difference between the mean perceived variation of

the between-run groups and the human groups.

5.4.2 Results

Table 5.4 shows the results of this experiment.

Human Mean System Mean Deg. Freedom t p

Within-run 0.601 0.509 17 2.961 0.996
Between-run 0.601 0.502 17 3.055 0.996

Table 5.4: Results of Experiment 3

67

These statistical results showed that within a 99% confidence interval we could reject

both null hypotheses in favour of the following hypotheses:

• Hypothesis one: the mean perceived variation of the human groups of patterns is

greater than that of the within-run groups of system generated patterns.

• Hypothesis two: the mean perceived variation of the human groups of patterns is

greater than that of the between-run groups of system generated patterns.

5.4.3 Discussion

The level of variation within the system generated patterns (both within and between runs)

perceived by the subjects was clearly lower than that perceived in the human generated

patterns randomly selected from the training set. However, the variation in both cases

corresponds to “quite a bit” on the answer sheets filled in by the subjects (see Appendix

C). In this light, the experiment demonstrated that the subjects, on average, perceived a

moderate amount of variation in the system generated patterns. This indicates a reasonable

degree of success on this evaluation measure.

5.5 Non-experimental Means of Evaluation

An amateur musician who regularly uses MIDI drum parts in his own compositions was

given the system to use and asked to answer the following questions (answers are shown in

italics):

1. How would you rate the ability of the system to generate patterns that you

would not normally have composed but nevertheless consider “good” patterns

and which you would use in your compositions?The system produced some tech-

nically good and pleasurable-to-the-ear drum patterns most of which tended to be

different to those that I sequence myself.

2. Are there any reasons you would not use the system?As all components of the

music being produced must gel rhythmically, a randomly produced drum sequence

would mean that all other tracks must be based around that sequence. Also, some of

the patterns were slightly busy and chaotic.

68

3. Are there any reasons you would be particularly interested in using the system?

For the production of open minded and unprejudiced rhythmic sequences, avoiding

the need to stick to previously heard and unvaried sequences.

5.6 Discussion

The degree to which the implemented system achieves the aims stated in section 1.2 can

now be evaluated. The aims of this research were to develop a system that would generate

a (user specified) number of drum patterns on a single run. The system has achieved this

basic goal. Furthermore, the system generated patterns should conform to the following

criteria.

1. They should be comparable with human generated d&b patterns:the results of

experiment one indicate that, on average, 20% of the system generated patterns were

misclassified as human generated patterns by the subjects. Furthermore, the only

subject to rate his knowledge/familiarity with d&b music as five out five misclassified

40% of the system generated patterns. These results suggest some level of success

although the subjects’ lack of familiarity with the styles of music involved made

interpretation of the results difficult.

2. They should be within the specified style:experiment two suggests that 57% of

the system generated patterns were on average considered in the correct style (d&b)

which is significantly above that expected with random decisions, but significantly

lower than the average percentage of system patterns correctly classified (73%).

Again the only subject to rate his familiarity with the musical styles as 100% clas-

sified all of the system generated patterns as being in the style of d&b. Again, this

indicates a modicum of success in satisfying this goal, although the low familiarity

of the subjects with the styles involved puts a question mark over the reliability of

these results.

3. They should show sufficient variation both between and within runs to make

the system a useful tool:the subjects perceived a moderate amount of variation in

the system generated patterns, both between and within runs. This indicates success

in achieving this aim even though the human generated patterns were perceived to

contain more variation.

69

4. They should show features that would not naturally be generated by the user:

the computer musician evaluated the system favorably in terms of it’s ability to gen-

erate patterns that were unbiased by human preference and experience and therefore

different to those that he naturally produced. It was noted, however, that the patterns

were sometimes a little “busy and chaotic.”

An important supplementary aim was to extend the approach to more than one style of

music. Preliminary investigations into training the network to distinguish rap and d&b

patterns failed to produce entirely satisfactory results and a lack of time prevented any

further examination of this area. This remains a topic for future work.

A final evaluation measure was the practicality and ease of use of the system. The

example run in section 4.7 took 16 minutes to complete (with three MIDI files generated)

and this is typical for the system. This is considered (by the author) to be fast enough to

make the system practical to use, although the time required increases with the number of

solutions (and hence islands) required. While this could be solved by running each island

(or indeed individual) on a different processor it is unlikely that the typical musician would

have access to multi-processor computers or a network suitable for this purpose.

A second issue, relates to the ease of use of the system. While the command line

interface is fairly simple to master, it should be noted that the intended users are musicians

who may not be computer literate. In light of this, a GUI would be a more appropriate

interface and, furthermore, the expression of the GA parameters in musical, rather than

scientific terms, would make the system more intuitive to use.

A few points made by the subjects concerning the experiments are worth noting. First, it

was suggested that the short duration of the patterns (just one bar) may have forced subjects

to quick and unreliable decisions while the lack of musical context for the drum patterns

made the evaluation difficult. Second, the merging of experiments one and two may have

lead to unreliable decisions since subjects had to answer two different questions (relating

to whether the pattern was system or human generated and what style it was in) about the

same pattern. Once again, this may have forced hurried and unreliable responses from the

subjects.

Therefore, some suggestions for better designed experiments would be to use separate

experiments for each individual test, to use more knowledgeable subjects and to use longer

patterns. Finally, the problem of the bias towards classifying patterns as system generated

70

should be addressed.

5.7 Summary of Chapter 5

This chapter has presented three formal experiments for the evaluation of the system based

on the criteria set out in section 1.2. The results of all these experiments have been dis-

cussed in relation to the aims of the research . A less objective evaluation of the system by

a musician has also been presented. Finally, the system was evaluated in terms of its ease

of use and practicality as an aid to composition.

71

Chapter 6

Conclusions

6.1 Discussion

This research was motivated by a desire to produce a system that would function as a

creative aid to the composer, through the automatic generation of libraries of drum patterns

within a specified style. The specific objectives were that the system should generate a

number of drum patterns, within the specified style and comparable with human generated

patterns, on any one run. Furthermore, these patterns should show sufficient variation both

within and between runs to make the system a useful tool. A genetic algorithm using an

ANN critic was employed to achieve these aims.

The implemented system has been successful to the extent that the system generates

a user specified number of drum patterns on any one run, and that these patterns show a

degree of variation both within and between runs. Furthermore, the patterns were consid-

ered to be different to those typically generated by a human composer. The success of the

system generated patterns on the criteria of style and comparability with human generated

patterns is more equivocal. The system did not seem to be able toreliably generate patterns

that would be misclassified as human generated patterns although the fact that 20% were

misclassified constitutes some degree of success. Furthermore, it was questionable whether

the generated patterns were in the style of d&b, although the inexperience of the subjects

with this style of music made the reliability of the results hard to evaluate.

In summary, then, this research has achieved some of the aims set out in section 1.2 and

failed (or achieved equivocal success) on others. This is not seen to be a failure of the GA

framework, which allowed efficient search of a large and complex search space, the gener-

ation of multiple solutions and an elegant means of balancing exploration and exploitation

72

throughout the search process. Instead, the problems seem to lie with the ANN critic

employed in this research in order to avoid the problems associated with human and rule-

based critics (see section 3.3.4). A large training set composed of reliable examples of d&b

patterns was constructed to avoid the difficulties experienced in past ([Biles et al., 1996],

[Spector and Alpern, 1995]) and the classification performance of the trained network was

good on the test set. However, the need for a more sophisticated initialisation of the chro-

mosome and the use of constraints in the critic suggest that it provided sloppy evaluation

in the context of the GA. The following is an analysis of potential reasons for this.

The reasons for these problems are likely to concern the training data. The set of

training instances was constructed from all the d&b patterns on the disks. Analysis of

network performance (see figure 4.4) shows that some of the data were wildly misclassified

by the trained network. The removal of such instances improved the performance of the

network (section 4.5.6). Furthermore, the negative training instances covered only a small

region of the space of patterns which do not qualify as d&b patterns. As an example,

an informal analysis of the network weights showed that the weights were very small for

most of the inputs corresponding to demi-semiquaver timesteps suggesting that these inputs

had very little effect on classification. A greater proportion of notes on these timesteps in

the negative training data might have resulted in the assignment of low fitness to those

chromosomes containing many notes on these steps (this problem is described in section

4.6.3).

In light of problems such as these it would seem that the negative training data were

not satisfactory. A better means of generating the negative examples might have been to

“invert” each positive example. In this scheme, a negative instance would be generated by

taking a positive example and changing all timesteps with non-zero velocity to zero and

those timesteps where no note was played to a randomly selected non-zero velocity.

A final problem was that the difference between a rap pattern and a d&b pattern may

be one of tempo, percussion sounds used and large scale features (e.g., consistency) rather

than structural patterns within a bar. For example, many d&b patterns are simply old funk

“breakbeats” recorded at a faster tempo. Similarly, while a rock beat and a rap beat may

have the same structural features a rock beat is identified by features such as a deep, loud

snare drum and slightly open hi-hats, in contrast to the more crisp electronic sounds typi-

cally used in rap.

73

However, the automation of the critic in evolutionary musical systems is clearly a dif-

ficult task1, as demonstrated by the equivocal success of previous work (see section 3.3.4).

The present research has contributed to this body of work by improving on previous at-

tempts to train ANNs for use as critics. While the results have not been absolutely suc-

cessful, the moderate degree of success achieved warrants further investigation into these

techniques for musical composition.

6.2 Areas for Future Research

6.2.1 Improving the Critic

The use of an MLP as the automated critic in musical GAs is attractive due to the possibility

of extracting critical criteria directly from a set of example musical phrases, the ability to

generalise from these examples and the ability to differentiate different styles of music.

However, the research presented here has identified a serious problem with this approach:

the generalisation of the network is often too unconstrained. Future research might examine

a number of solutions:

1. Improve the training data: the training examples must be carefully chosen and, in

particular, the set of negative examples must consider all possible cases of examples

which are not within the target classification.

2. Use more complex architecture: the use of a recurrent network would remove the

need for a negative training set. In this scheme the network would be trained to pre-

dict the drums to be played on the next timestep given those played on the previous

timesteps (see section 3.4). The fitness of a chromosome would then be the extent

to which the predictions of the network for each timestep correspond to the notes

actually played on those timesteps.

3. Use a more complex representation: the use of a more sophisticated representation

could have two effects. First, it might make important musical features more acces-

sible to the network. Second, it might be possible to make the representation more

compact and therefore facilitate the extraction of temporal relations between notes

1Attempts to automate the critic in evolutionary systems for generating visual art have also found this to be a
formidable task. See, for example, [Baluja et al., 1994] and [Machado and Cardoso, 2000].

74

by the ANN. For example, a representation suggested by [Urwin, 1997], represents

notes as triples of time since last event, event number (instrument) and event velocity.

4. Use some other learning technique: other learning techniques, such as unsupervised

learning or symbolic learning techniques could be used to extract critical criteria

from a set of examples. However, an attractive feature of the MLP is its ability to

generalise from the data set.

5. Use hybrid critics: as noted in section 3.4 a promising approach to generating music

is break the problem down and apply different techniques to those subproblems to

which they are suited (e.g., [Hild et al., 1992]). A similar approach might be taken

to the problem of evaluating the fitness of candidate musical phrases in an evolution-

ary system. [Todd and Werner, 1999] have recommended that “musicians intent on

creating algorithmic composition systems with the spark of human creativity would

do well to adopt [a] combination of co-evolution, learning and rule-following”.

6.2.2 Extending the Approach

As noted in chapter 3, this research, although restricted to a limited domain, exists in the

wider context of the field of algorithmic composition. To the extent that the system gener-

ates musical fragments, the approach described here could be extended in several ways to

a play a wider role in this field. First, more than one style of music could be covered; the

ANN critic used here could be trained to classify patterns according to style. An exciting

possibility would then be to generate patterns that combined elements from different styles

of music. This could be achieved using the island model approach used in the present re-

search by assigning each island the task of generating patterns in a different style and using

migration to generate populations containing individuals representing different styles of

music. The critic could be set up to assign fitness based on different styles of music.

A second interesting area to investigate would be the extension of the approach to gen-

erating drum patterns that match the rhythmic properties of melodic sequences. The musi-

cian questioned about the system in section 6.5 noted that a drawback of the system is that

there is no way of ensuring that the patterns generated will be compatible with the user’s

compositions.

Finally, the representation scheme should be augmented to cover longer rhythmic phrases

75

with a more flexible representation of metric time steps and time signature and using more

instruments. The ability to represent higher level musical features is also an area worthy of

attention when representing larger and more complex musical blocks. A possible way of

incorporating higher level features would be to introduce a meta-system which would com-

bine the elements generated by the present system in some way. The appropriate techniques

for such a system remain problems for future research.

6.2.3 Evaluation

An attempt has been made in this research to evaluate the success of the system objectively

on a number of measures. Specifically, subjective aesthetic judgement has been removed

from the evaluation process through the use of a musical Turing test. Several problems

have been identified with the experiments made to evaluate the drum patterns generated

by the system, on the basis of which, some recommendations can be made for the future

work. First, and most important, the subjects should be suitably experienced with the rele-

vant domain. Second, while the experiments should not force subjects to listen to too many

musical phrases, the experiments should be limited to one judgement per musical phrase.

Third, the patterns should be long enough to allow the subjects to make a considered de-

cision (i.e., longer than one bar). Finally, means of countering the bias shown by subjects

towards classifying patterns as system generated should be investigated.

6.3 Conclusions

Although steps were taken to improve the approach in the light of previous failures, this

investigation of the application of a GA with an ANN critic to the problem of generating

drum patterns has fulfilled its aims with only equivocal success. In particular, the compa-

rability of the generated patterns to human generated patterns and the degree to which they

represented the intended style were criteria on which the majority of the generated patterns

failed the experimental evaluation. However, the fact that some of the generated patterns

fulfilled these criteria was seen as a minor success. Failures have been attributed to short-

comings of the trained ANN in the evolutionary system and, in particular, the training set

used. Issues remaining for future research include improving the critic in evolutionary sys-

tems, extending the approach to more complex musical phrases and improving the methods

76

used to evaluate the musical phrases generated by the system.

77

Bibliography

[Baluja et al., 1994] S. Baluja, D. Pomerleau, T. Jochem. Towards

Automated Artificial Evolution for Computer-

Generated Images.Connection Science, volume 6,

pages 325-354, 1994.

[Biles, 1994] J.A. Biles. GenJam: A Genetic Algorithm for Gen-

erating Jazz Solos. InProceedings of the Interna-

tional Computer Music Conference, 1994.

[Biles, 1999] J.A. Biles.Life with GenJam: Interacting with a

musical GA. Presented at the 1999 IEEE Systems,

Man and Cybernetics Conference. Tokyo, 1999.

Available at http://www.it.rit.edu/jab/

[Biles et al., 1996] J.A. Biles, P.G. Anderson and L.W. Loggi.

Neural Network Fitness Functions for a

Musical IGA. Technical Report, Rochester

Institute of Technology 1996. Available at

http://www.it.rit.edu/jab/SOCO96/ SOCO.html

[Burton, 1998] A.R. Burton.A Hybrid Neuro-Genetic Pattern

Evolution System applied to Musical Composition.

Unpublished DPhil thesis, University of Surrey,

1998.

[Burton and Vladimirova, 1997a] A.R. Burton and T. Vladimirova. A Genetic Algo-

rithm Utilising Neural Network Fitness Evaluation

for Musical Composition. InProceedings of the

1997 International Conference on Artificial Neural

Networks and Genetic Algorithms, pages 220-224,

1997.

[Burton and Vladimirova, 1997b] A.R Burton and T. Vladimirova. Applications of

Genetic Techniques to Musical Composition. Sub-

mitted to theComputer Music Journal. 1997.

78

[Cohen, 1995] P. Cohen.Empirical Methods for AI. Cambridge,

The MIT Press. 1995.

[Desain and de Vos, 1990] P. Desain and S. de Vos. Autocorrelation and the

study of musical expression. InProceedings of

the 1990 International Computer Music Confer-

ence. San Francisco: Computer Music Associa-

tion, 1990.

[Desain and Honing, 1991] P. Desain and H. Honing. Quantisation of musical

time: a connectionist approach. In P.M Todd and

D. G. Loy (Eds.)Music and Connectionism. Cam-

bridge, Mass.: MIT Press, 1991.

[Dolson, 1991] M. Dolson. Machine tongues XII: Neural Net-

works. In P.M. Todd and D.G. Loy, (Eds.),Music

and connectionism. MIT press, 1991.

[Fahlman and Lebiere, 1990] S. Fahlman and C. Lebiere. The cascade-

correlation learning architecture. In D. S. Touret-

sky, ed., Advances inNeural Information Process-

ing Systems 2, Morgan Kauffmann, San Mateo,

CA, 1990.

[Gibson and Byrne, 1991] P.M Gibson and J.A. Byrne. Neurogen: Musical

composition using Genetic Algorithms and Coop-

erating Neural Networks. InProceedings of the

Second International Conference of Artificial Neu-

ral Networks, pages 309-313, 1991.

[Goldberg and Deb, 1991] D.E Goldberg and K. Deb. A comparative analysis

of selection schemes used in genetic algorithms. In

G.J.E Rawlins, (Ed.),Foundations of Genetic Al-

gorithms, pages 69-93. Morgan Kaufmann, 1991.

[Gordon et al. 1992] V.Gordon, D. Whitley and A. Bohn. Dataflow par-

allelism in Genetic Algorithm. In R. Manner and

B. Manderick, editors,Parallel Problem Solving

from Nature 2, pages 553-542, Amsterdam. Else-

vier Science, 1992.

[Goldberg, 1989] D.E Goldberg.Genetic Algorithms in Search, Opti-

misation and Machine Learning. Addison-Wesley,

1989.

[Goldberg and Richardson, 1987] D.E Goldberg and J. Richardson. Genetic algo-

rithms with sharing for multimodal function op-

timisation. In J.J Greffenstette (ed.),Proceedings

79

of the Second International Conference on Genetic

Algorithms, LEA, Hillsdale, NJ, 1987.

[Greffenstette, 1987] J. Greffenstette. Incorporating problem-specific

knowledge into Genetic Algorithms. In L. Davi

(ed.), Genetic Algorithms and Simulated Anneal-

ing, chapter 4, pages 42-60. Pitman, 1987.

[Griffith and Todd, 1999] N. Griffith and P. M. Todd (Eds.)Musical Net-

works: Parallel distributed perception and per-

formance, Cambridge, MA: MIT Press/Bradford

Books, 1999.

[Hild et al., 1992] H. Hild, J. Feulner and W. Menzel. HARMONET:

a neural network for harmonising chorales in the

style of J.S. Bach. In R.P Lippman, J.E Moody

and D.S. Touretsky (Eds.)Advances in Neural In-

formation Processing Systems 4 (NIPS 4), pages

267-274, Morgan Kaufmann, 1992.

[Honing, 1990] H. Honing. The representation of time and struc-

ture in music. InProceedings of the 1990 Music

and the Cognitive Sciences Conference, edited by

I. Cross and I. Delieg. Contemporary Music Re-

view. London: Harwood Press, 1992.

[Hancock, 1994] P.J.B Hancock. An empirical comparison of selec-

tion methods in evolutionary algorithms. InPro-

ceedings of the AISB workshop on Evolutionary

Computation. 1994.

[Haykin, 1999] S. Haykin.Neural Networks: A Comprehensive

Foundation. Prentice Hall International, 1999.

[Heitkotter and Beasley, 2000] J. Heitkotter and D. Beasley (Eds.).The

Hitch-Hiker’s Guide to Evolutionary Compu-

tation: a list of Frequently Asked Questions,

USENET: comp.ai.genetic. 2000. Available at

ftp://rtfm.mit.edu/pub/usenet/news.ans wers/ai-

faq/genetic

[Holland, 1975] J.H. Holland.Adaptation in Natural and Artificial

Systems. University of Michigan Press, 1975.

[Horner and Goldberg, 1991] A. Horner and D.E. Goldberg. Genetic Algorithms

and computer assisted music. InProceedings of the

1991 International Computer Music conference,

pages 479-482, 1991.

80

[Horner and Ayers, 1995] A. Horner and L. Ayers. Harmonisation of Musi-

cal Progressions with Genetic Algorithms. InPro-

ceedings of the 1995 International Computer Mu-

sic Conference, pages 483-484, 1995.

[Horowitz, 1994] D. Horowitz. Generating Rhythms with Genetic

Algorithms. In Proceedings of the 1994 Interna-

tional Computer Music Conference, 1994.

[Jacob, 1995] B.L. Jacob. Composing with Genetic Algorithms.

In Proceedings of the 1995 International Com-

puter Music Conference, 1995.

[Jacob, 1996] B.L. Jacob. Algorithmic Composition as a model

of Creativity.Organised Sound, vol. 1, no. 3, pages

157-165. Cambridge University Press, 1996.

[Koza, 1992] J.R Koza.Genetic Programming. MIT Press, 1992.

[Johanson and Poli, 1998] B. Johanson and R. Poli. GP-Music: an interac-

tive genetic programming system for music gen-

eration with automated fitness raters. InProceed-

ings of the third International conference on Ge-

netic Programming, GP ’98. MIT Press. 1998.

[Machado and Cardoso, 2000] P. Machado and A. Cardoso. The Assessment of an

Evolutionary Art Tool. In G. Wiggins (ed.),Pro-

ceedings of the AISB 2000 Symposium on Creative

and Cultural Aspects and Applications of AI and

Cognitive Science, Birmingham, UK, 2000.

[McCulloch and Pitts, 1943] W.S. McCulloch and W. Pitts. A logical calculus

of the ideal imminent in nervous activity.Bulletin

of Mathematical Biophysics, 5, pages 115 - 133.

1943.

[McIntyre, 1994] R.A McIntyre. Bach-in-a-Box: the evolution of

four-part Baroque harmony. InProceedings of the

IEEE conference on Evolutionary Computation,

pages 852-857, 1994.

[Minai and Williams, 1990] A. Minai and R. Williams. Acceleration of Back-

Propagation through learning rate and momentum

adaptation.International Joint Conference on Neu-

ral Networks, Vol. 1, pages 676-679. 1990.

[Minsky, 1981] M. Minsky. Music, mind and meaning.Computer

Music Journal.5(3):28-44, 1981.

81

[Mozer, 1994] M.C. Mozer. Neural Network Architectures for

temporal pattern processing: Exploring the ben-

efits of psychophysical constraints and multiscale

processing.Connection Science, 6, pages 247-280,

1994.

[Papadopoulos and Wiggins, 1999] G. Papadopoulos and G. Wiggins. AI methods

for algorithmic composition: a survey, a critical

view and future prospects. InProceedings of the

AISB’99 Symposium on Musical Creativity, Edin-

burgh, UK, 1999.

[Phon-Amnuaisuk et al., 1999] S. Phon-Amnuaisuk, A. Tuson and G. Wiggins.

Evolving Music Harmonisation. InICANNGA ’99,

Slovenia, 1999.

[Phon-Amnuaisuk and Wiggins, 1999] S. Phon-Amnuaisuk and G. Wiggins. The four-part

harmonisation problem: a comparison between ge-

netic algorithms and a rule-based system. InPro-

ceedings of the AISB’99 Symposium on Musical

Creativity, Edinburgh, UK, 1999.

[Putnam, 1994] J.B. Putnam.Genetic Programming of mu-

sic. Technical Report, New Mexico institute

of mining and technology, 1994. Available at

http://www.nmt.edu/jefu/notes/ep.ps

[Ralley, 1995] D. Ralley. Genetic algorithms as a tool for Melodic

Development. In Proceedings of the Interna-

tional Computer Music Conference, pages 501-

502, 1995.

[Rosenblatt, 1959] F. Rosenblatt. The perceptron: a probabilistic

model for information storage and organisation in

the brain.Psychological Review, 65, pages 386-

408. 1959.

[Ross and Corne, 1995] P.M. Ross and D. Corne. Applications of Genetic

Algorithms.AISB Quarterly, 89:32-30, 1995.

[Rumelhart and McClelland, 1986] D.E. Rumelhart and J.L. McClelland.Parallel dis-

tributed processing: exploration in the microstruc-

ture of cognition(vols. 1 and 2). Cambridge, MA:

MIT Press. 1986.

[Rothstein, 1992] J. Rothstein.MIDI: a comprehensive introduction.

Oxford University Press, Oxford, 1992.

82

[Sarle, 1997] W. Sarle (ed.). Usenet Neural Network

FAQ, comp.ai.neural-nets, 1997. Available at

ftp://ftp.sas.com/pub/neural/FAQ.html

[Spector and Alpern, 1994] L. Spector and A. Alpern. Criticism, Culture and

the Automatic Generation of Artworks. InPro-

ceedings of the twelfth national conference on Ar-

tificial Intelligence, AAAI-94, 1994.

[Spector and Alpern, 1995] L. Spector and A. Alpern. Induction and recapit-

ulation of deep musical structure. Inproceedings

of the IFCAI-95 workshop on artificial intelligence

and music, 1995.

[Thywissen, 1996] K. Thywissen. Genotator: An Environment for In-

vestigating the Application of Genetic Algorithms

in Computer Assisted composition. InProceedings

of the 1996 International Computer Music Confer-

ence, pages 274-277, 1996.

[Todd, 1989] P.M Todd. A connectionist approach to algorith-

mic composition.Computer Music Journal, Vol.

13, No. 4, pages 27-43, 1989.

[Todd and Loy, 1991] P.M. Todd and D.G. Loy, editors.Music and con-

nectionism. MIT press, 1991.

[Todd and Werner, 1999] P.M. Todd and G. Werner. Frankensteinian ap-

proaches to Evolutionary Music composition. In

N. Griffith and P. M. Todd (Eds.)Musical Net-

works: Parallel distributed perception and per-

formance, Cambridge, MA: MIT Press/Bradford

Books, 1999.

[Urwin, 1997] R. Urwin. Connectionist Methods for Musical

Rhythm Composition. Unpublished Undergraduate

dissertation, University of Edinburgh, 1997.

[Werner and Todd, 1997] G. Werner and P.M Todd. Too many love songs:

sexual selection and the evolution of communica-

tion. In P. Husbands and I. Harvey (Eds.),Proceed-

ings of the Fourth European Conference on Artifi-

cial Life, pages 434-443, 1997.

[Wiggins and Smaill, 1999] G. Wiggins and A. Smaill. Musical Knowledge:

What can Artificial Intelligence bring to the Musi-

cian? In Miranda (ed.),Readings in Music and Ar-

83

tificial Intelligence, Harwood Academic Publish-

ers, 1999.

[Wiggins et al., 1999] G. Wiggins, G. Papadopoulos, S. Phon-Amnuaisuk

and A. Tuson. Evolutionary methods for Musical

Composition.International Journal of Computing

Anticipatory Systems, 1999.

84

Appendix A

Summary of Related Work

A.1 Interactive Human Evaluation

Author(s) Description

[Biles, 1994] GenJam is an IGA which evolves melodic jazz
improvisations, including improvised responses
to human played phrases. It’s performance is
described as “competent with some nice moments.”

[Horowitz, 1994] Evolves multitimbral drum patterns.The user sets
rhythmic parameters which guide evolution to a
point where the user takes over evaluation. The
patterns “rival the carefully prepared demo
sequences distributed with most drum machines.”

[Putnam, 1994] A GP system evolved programs to generate melodic.
waveforms. Evaluation was via feedback from a WWW
interface. The generated music was described as
“unpleasant and irritating.”

[Ralley, 1995] A GA was seeded with stochastically generated
variations on a user supplied melody. The system
produced “a large number of interesting variations
on initial material” but showed “a propensity
towards homogeneity.”

[Jacob, 1995] GAs were used to evolve a stochastic music generator
and critic in tandem. Generated melodic phrases
were arranged into larger pieces for user evaluation.

[Thywissen, 1996] Evolved musical phrases or combinations of phrases.
Phrases were evaluated by rhythmic, harmonic and
melodic rules as well as a subjective evaluation
procedure. The system generated “interesting music.”

85

A.2 Rule based Evaluation

Author(s) Description

[Horner and Goldberg, 1991] Used a GA to search for sequences of
operations that would transform an
initial note set into a final note
set using a deterministic critic.
Results were “musically pleasing.”

[McIntyre, 1994] Used a GA to generate four-part
Baroque harmonies based on an input
melody in the key of C major using
a three tiered critic.

[Spector and Alpern, 1994] A GP system to evolve programs that
generated a four bar continuation
of a four-bar Charlie Parker melody.
Results did not please the authors.

[Horner and Ayers, 1995] A GA for evolving four-voice
harmonisation of chord progressions
using rules derived from musical
theory.

[Werner and Todd, 1997] A system for evolving simple melodies
using co-evolution between the music
generators and the critic, thereby
producing increased diversity.

[Wiggins et al., 1999] A GA for the generation of instrumental
jazz solos using rules from jazz
literature and musical mutation operators.
The results were “quite acceptable” but
lacked high-level structure.

[Phon-Amnuaisuk et al., 1999] A GA for evolving 4-part harmonies for
user specified melodies using music
theoretic knowledge. The results were
given 30% on average by a music
lecturer.

86

A.3 Neural Network Evaluation

Author(s) Description

[Gibson and Byrne, 1991] Used a GA to generate simple musical phrases
using MLPs for rhythm and melody evaluation,
and simple rules for harmonisation.Produced
“pseudo music with some success.”

[Spector and Alpern, 1995] Extended their GP approach described in A.2
above by training a MLP on Charlie Parker
melodies. Results were “unsatisfactory”
and a hybfid ANN/rule based critic used.

[Biles et al., 1996] Trained an ANN on good and bad jazz solos
taken from interactive runs (see [Biles, 1994]
above). The network failed to learn the
training data.

[Johanson and Poli, 1998] A GP system to generate short musical
sequences using an MLP trained on data from
interactive runs. Generated “interesting
and pleasant sequences”. But not with any
consistency.

[Burton, 1998] Trained an ART network to cluster drum
patterns from different styles of music
and used propinquity to a cluster as the
fitness function in a GA. Generated patterns
were similar to the training data but rather
homogeneous.

87

Appendix B

Example from Training Data

B.1 An Example Drum Pattern

An example drum pattern from the training set in musical notation (the bass drum is on the

lowest line of the stave, the snare drum two lines above it, the closed hi-hats one line higher

and the open hi-hats on the top-line of the stave):

Figure B.1: Example Drum Pattern

B.2 An Example Chromosome

The same drum pattern is shown as a chromosome using the representation scheme de-

scribed in section 5.2). The first column corresponds to the bass drum, the second to the

snare drum, the third to closed hihats and the fourth to open hihats. Each row represents a

semiquaver subdivision of the bar on which a note may fall.

88

1.0 0.0 0.7 0.0
0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0
0.0 0.0 0.5 0.0
0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0
0.0 1.0 0.5 0.0
0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0
1.0 0.0 0.5 0.0
0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0
0.0 0.0 0.8 0.0
0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0
0.0 1.0 0.5 0.0
0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0
1.0 0.0 0.0 0.5
0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0
0.0 0.0 0.4 0.0
0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0

Figure B.2: Example Chromosome

89

Appendix C

Answer Forms

C.1 Experiments 1 and 2

You will be played a series of drum patterns. For each drum pattern indicate in the table

below whether you think the pattern is human generated (with an “H”) or system generated

(with an “S”) and also which musical style you think the drum pattern is in (from a choice

of “techno” , “drum and bass” or “other”) by ticking the appropriate box.

pattern no. Human/System Techno Drum&Bass Other style

1
2
3
4
5
6
7
8
9
10
.
.
.
.

25
26
27
28
29
30

90

C.2 Experiment 3

You will be played groups of three patterns. For each group indicate how much variation

there is within a group (i.e., how different the patterns seem to you) by ticking the relevant

box in the table below.

Variation none a little quite a bit a lot loads

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

91

Appendix D

Sources of Training Data

D.1 KeyFax Software

Examples of drum patterns in the following styles were taken from the following floppy

discs:

Drum and Bass: Dangerous Drums
MIDI Breakbeats

Rap: MIDI Breakbeats
L.A Riot

available from: KeyFax Software

PO Box 4408

Henley-on-Thames

Oxon RG9 1FS

www.keyfax.com

D.2 Sinuso

A program used to generate type 0 Standard MIDI files, with a randomly generated distri-

bution of notes. This program is available from:

http://www.iwaynet.net/˜ryand/sinuso

Calling:

sinuso -ch 10 -m 1 -nocc -f example

will generate a MIDI file called example.mid containing a pattern one bar long on channel

10 with randomly generated note lengths.

92

Appendix E

Network Performance

Outliers were removed from the network training data and the network retrained. Figure

E1 shows the performance of the trained network on the test data against the target outputs

(in bold). As the figure shows, the performance was greatly improved by the removal of

outliers from the training set. There were, however, still several misclassified data points in

the positive training data. Once again it is suggested that these are drum fills although time

constraints have not allowed a verification of this conjecture.

0 20 40 60 80 100 120 140 160 180
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Pattern Number

C
la

ss
ifi

ca
tio

n

Figure E.1: Network Performance on Test Set

93

