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Statistical learning plays an important role in acquiring the structure of cultural communication signals
such as speech and music, which are both perceived and reproduced. However, statistical learning is
typically investigated through passive exposure to structured signals, followed by offline explicit recog-
nition tasks assessing the degree of learning. Such experimental approaches fail to capture statistical
learning as it takes place and require post hoc conscious reflection on what is thought to be an implicit
process of knowledge acquisition. To better understand the process of statistical learning in active con-
texts while addressing these shortcomings, we introduce a novel, processing-based measure of statistical
learning based on the position of errors in sequence reproduction. Across five experiments, we
employed this new technique to assess statistical learning using artificial pure-tone or environmental-
sound languages with controlled statistical properties in passive exposure, active reproduction, and
explicit recognition tasks. The new error position measure provided a robust, online indicator of statisti-
cal learning during reproduction, with little carryover from prior statistical learning via passive exposure
and no correlation with recognition-based estimates of statistical learning. Error position effects
extended consistently across auditory domains, including sequences of pure tones and environmental
sounds. Whereas recall performance showed significant variability across experiments, and little evi-
dence of being improved by statistical learning, the error position effect was highly consistent for all
participant groups, including musicians and nonmusicians. We discuss the implications of these results
for understanding psychological mechanisms underlying statistical learning and compare the evidence
provided by different experimental measures.
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perception

In real-world auditory environments, people are faced with an
ever-changing sequence of sounds. The identity of the source, and
significance to the listener, are often encoded in statistical regular-
ities that unfold over time. Statistical regularities underlie the
acoustics of many natural sound classes (McDermott et al., 2013;
Turner, 2010) but are particularly prominent in symbolic cultural

communication signals, such as bird song, speech, and music. For
these cultural communicative signals, statistical learning plays an
important role in the acquisition of internal cognitive representa-
tions of signal structure (Christiansen & Chater, 2016; Hay et al.,
2011; Huron, 2006; Pearce, 2018; Romberg & Saffran, 2010;
Takahasi et al., 2010; Wells et al., 2009). Cultural communicative
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signals such as speech and music are further distinguished from
other natural sensory phenomena by the fact that we not only per-
ceive but also reproduce them, especially during learning. Accord-
ingly, research increasingly focuses on integrated theories
encompassing both comprehension and production (e.g., Pickering
& Garrod, 2013). Yet, as we outline below, most evaluations of
human statistical learning have used post hoc measures of percep-
tion to evaluate learning of signal structure. In the present
research, we introduce and evaluate a new measure of dynamic
statistical learning based on errors made while reproducing sound
sequences with embedded statistical regularities. We use these
error patterns to evaluate combined effects of passive exposure
and active reproduction of statistically structured information and
compare this new approach to existing measures of statistical
learning.
Statistical learning is thought to represent a largely implicit pro-

cess of acquiring an internal cognitive model of the statistical reg-
ularities underlying an environmental domain. Contemporary
accounts conceive of statistical learning as arising from underlying
processes of learning and memory such as chunking (Christiansen,
2019; Perruchet, 2019).1 More specifically, Christiansen (2019)
proposed that statistically based chunking provides a way of over-
coming the now-or-never bottleneck (Christiansen & Chater,
2016), arising from a limited ability to process and store informa-
tion that arrives sequentially, with each element being perceived
only for a fleeting instant. According to this account, learning of
statistical regularities in the input can allow commonly co-occur-
ring elements to be chunked and passed on as more abstract units
for use in higher-level chunk-and-pass processing. There is
increasing evidence of a close relationship between statistical
learning and chunking, although it remains unclear whether one
precedes the other (Perruchet, 2019; Perruchet & Pacton, 2006) or
the two processes operate in parallel (Isbilen et al., 2020; McCau-
ley & Christiansen, 2019).
Much of the literature on statistical learning relies on measures

referred to as reflection-based by Christiansen (2019), most typi-
cally a comparative familiarity judgment following passive expo-
sure to a structured auditory or visual stream. For instance,
Saffran, Newport, and Aslin (1996) passively exposed adults to
sequences of syllables constructed by concatenating triplets of syl-
lables (dubbed words) such that boundaries between words were
indicated by lower transitional probabilities than syllable transi-
tions occurring within words. Statistical learning of the probabilis-
tic structure of these sequences was subsequently assessed using
an explicit two-alternative forced-choice (2AFC) recognition task
discriminating words from either nonwords or part-words differing
by one syllable. The results showed above-chance performance for
recognizing words against both nonwords and part-words, with an
additional analysis showing better performance for words exhibit-
ing greater compared to lower transitional probabilities.
This basic statistical learning paradigm—passive exposure fol-

lowed by a 2AFC posttest—has been highly influential and dem-
onstrated sensitivity to statistical properties of pitch sequences
(Saffran et al., 1999), pitch interval sequences (Saffran & Griepen-
trog, 2001; Saffran et al., 2005), and synthesized instrumental tim-
bres (Tillmann & McAdams, 2004). Under certain conditions,
nonadjacent statistical dependencies can be learned in sequences
of syllables (Newport & Aslin, 2004) and tones (Creel et al.,
2004). Statistical learning has also been demonstrated for sequences

of abstract visual shapes (Fiser & Aslin, 2002; Kirkham et al., 2002),
audio-visual sequences (Mitchel & Weiss, 2011), and sequential pat-
terns of tactile finger stimulation (Conway & Christiansen, 2005). In
spite of this apparent domain generality, differences in statistical
learning have been observed across domains (Conway & Christian-
sen, 2006; Emberson et al., 2011; Johansson, 2009; Saffran, 2002).
This has led to a proposal that statistical learning reflects a set of do-
main-general mechanisms with modality-specific neural implementa-
tions subject to different biases (Frost et al., 2015), although more
recent work (Siegelman, Bogaerts, Elazar, et al., 2018) suggests that
at least some of these modality differences may instead reflect previ-
ous experience with the class of stimuli, particularly speech.

According to a recent estimate, the 2AFC recognition task was used
in 60% of all studies on statistical learning between 1996 and 2016
(Frost et al., 2019). However, this task suffers from distinct and severe
disadvantages as a measure of statistical learning (Christiansen, 2019;
Frost et al., 2019; Isbilen et al., 2020; Siegelman et al., 2017). First, as
an offline measure recorded after learning has taken place, it provides
no insight into the dynamic time course of learning (i.e., rate and trajec-
tory) nor integration with knowledge acquired through prior learning.
Second, the binary nature of the 2AFC task provides a limited window
into the fine-grained nature of the knowledge acquired, and while per-
formance is typically above chance across a sample, a large minority of
participants typically perform at chance level. Finally, rather than
directly accessing the psychological mechanisms involved in implicit
statistical learning, 2AFC recognition performance is an indirect mea-
sure that relies on conscious reflection about what has been learned,
which may add significant noise and underestimate effects of statistical
learning. Importantly, these limitations are not only methodological,
but they also place significant limitations on our theoretical understand-
ing of the psychological representations and processes involved in sta-
tistical learning (Siegelman, Bogaerts, et al., 2018).

As a result of these limitations, Christiansen (2019) argued the
case for greater use of what he calls processing-based measures,
often used in research on implicit learning (Reber, 1967, 1989),
which allow online investigation of statistical learning dynami-
cally as it is taking place. Perhaps the most prominent example of
such a measure is the serial reaction time (RT) task (SRT; Nissen
& Bullemer, 1987) often used as a measure of motor sequence
learning (e.g., Willingham et al., 2000). In the SRT, participants
respond to each element in a sequence by pressing the correspond-
ing button in a spatialized array as quickly as possible. The key
relevant SRT finding is that participants’ RTs become faster for
deterministically repeating sequences than for random sequences
(Robertson, 2007). Hunt and Aslin (2001, 2010) extended the SRT
to statistically structured visual sequences along the same lines as
those used by Saffran, Newport, and Aslin (1996), finding faster
reaction times to the second and third elements of a triplet than to
the first (which had a lower transitional probability) and showing
that these effects depend on computation of both joint bigram
probability and conditional bigram probability.

In the auditory domain, Misyak et al. (2010a) used an SRT task
to examine learning nonadjacent dependencies in sequences of ar-
tificial words, finding a trajectory of decreasing RTs for predict-
able compared to unpredictable words throughout training,

1 Here, “chunk” is defined as a cognitive grouping or unit composed of
subelements such as tones or syllables (Perruchet & Pacton, 2006;
Perruchet, 2019).
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followed by an increase when presented with a block of ungram-
matical sequences, then recovery of the trajectory for a final block
of grammatical items. The learning trajectory was successfully
simulated by a cohort of 30 simple recurrent networks (SRNs;
Elman, 1990), each with different random initialization (Misyak et
al., 2010b). Franco and Destrebecqz (2012) noted that SRT learn-
ing could reflect an associative process of conditional probability
estimation (represented computationally by the SRN) or, alterna-
tively, chunking in memory (represented by models such as
PARSER; Perruchet & Vinter, 1998). They attempted to tease
apart these accounts by presenting two blocks of a visual SRT task
with distinct grammars L1 and L2, which were either disjoint or
conflicting, followed by a recognition task presenting L2 words,
L2 part-words, and nonwords. Consistent with associative learning
rather than chunking, recognition performance did not differ
between the disjoint and conflicting conditions, and performance
for part-words was better than for nonwords.
Siegelman, Bogaerts, et al. (2018) developed a processing-

based measure related to the SRT in which participants self-pace
through a statistically structured set of visual sequences before
undertaking a traditional recognition task. Statistical learning was
indicated by a trajectory of faster RTs for predictable (with high
transitional probability) than unpredictable elements. The rate of
learning was faster for elements with greater transitional probabil-
ity and slower when preceded by learning a different grammar for
the same visual shapes, highlighting the advantages of processing-
based measures. The primary limitation of the SRT task and
related processing-based measures of statistical learning based on
RTs is their low signal-to-noise ratio.
Another processing-based measure of statistical learning is the

Hebb repetition effect (HRE; Hebb, 1961), a serial recall task in
which one of the set of sequences to be recalled is covertly
repeated periodically throughout a session, leading to better recall
performance for the repeated sequence than the filler sequences
(Page et al., 2006; Page & Norris, 2009). This neatly isolates the
ability to learn repeated sequences from general short-term mem-
ory (STM) capacity and provides an online measure of learning.
An interesting phenomenon that has emerged from research on the
HRE is that errors made during recall are themselves learned, in
some cases cancelling out learning of the repeated sequence itself
(Lafond et al., 2010). This highlights that fact that learning takes
place during both presentation and recall of the Hebb sequence.
Rey et al. (2020) introduced a variant of the HRE in which partici-
pants read aloud a sequence of visually presented letters, in which
a triplet of letters reoccurred periodically. The results showed a
progressive reduction in speech onset latency for the predictable
second and third letters in the Hebb sequence but only when the
filler sequences were sufficiently differentiated (i.e., by using con-
sonants compared to vowels), noisy (i.e., with increased alphabet
size), or short with respect to the length of the Hebb sequence.
This suggests that learning from the filler sequences can disrupt
detection of the Hebb sequence. Furthermore, there was evidence
of faster learning for the second than the third letter of the
sequence (see also Kim et al., 2009; Turk-Browne et al., 2005),
suggesting an associative mechanism of conditional probability
estimation, represented computationally by the SRN, rather than a
chunking mechanism, represented by models such as PARSER
and TRACX (French et al., 2011; Mareschal & French, 2017).
One disadvantage of the HRE is that it has low test–retest

reliability, resulting partly from the fact that it relies on comparing
recall performance between the filler and Hebb sequences
(Bogaerts et al., 2018).

In the present work, we introduce and evaluate a new process-
ing-based measure of statistical learning based on errors in mem-
ory recall. This contrasts with research using the SRT (Misyak et
al., 2010a) and target detection tasks (Batterink et al., 2015;
Franco et al., 2015), which do not require participants to memorize
and recall sequences, and with the Hebb repetition paradigm,
which does not present sequences containing internal statistical
regularities but rather creates regularity by repeating entire
sequences throughout the experimental session. We focus on recall
of statistically structured sequences for two reasons, both alluded
to above. First, learning of many cultural systems such as language
and music is based not on mere exposure but on active reproduc-
tion through imitation (Heyes, 2018). This motivates an examina-
tion of learning during active reproduction in its own right but also
in comparison to the learning that takes place during passive expo-
sure, as investigated by the bulk of research in statistical learning.
Second, as noted above, it is thought that an intimate relationship
exists between implicit statistical learning and basic processes in
memory encoding and storage such as chunking (Christiansen,
2019; Perruchet, 2019). Therefore, a memory-based task such as
recalling a statistically structured sequence may yield a very
direct, processing-based probe of statistical learning as it is
actually happening.

Research using sequence reproduction to investigate implicit
learning goes back to Miller (1958). In his experiment, participants
learned letter strings through repeated exposure and recall. The let-
ter strings were generated either without an overt structure or via
an artificial grammar. Miller found that recall performance was
better for the grammatical strings (see also Redington & Chater,
2002). Reber (1967) also reported better recall performance for
grammatical compared to random items. Somewhat more recently,
Karpicke and Pisoni (2004) presented participants with a repro-
duction task for sequences generated by one of two artificial gram-
mars, differing only in the mapping from spatial position to colors.
They compared three conditions: visual only (colored lights),
verbal labels only (spoken color names), and multimodal (lights
and names). Across all three conditions, reproduction in a subse-
quent test phase was better for sequences from the trained versus
untrained grammar. In a subsequent recognition memory test, par-
ticipants were more likely to judge sequences from the trained
grammar as familiar than sequences from the untrained grammar,
regardless of whether the sequence was actually old or new. While
performance in the recognition memory task was better for items
that contained frequently occurring bigrams and trigrams, there
was no difference in recall performance for these items. In a
closely related study, Conway et al. (2010; Experiment 2) also
found better reproduction performance for grammatical than non-
grammatical stimuli on a reproduction task. Here, Conway et al.
used verbal recall of auditory sequences composed of four artifi-
cial syllables generated by an artificial grammar.

Notably, these auditory implicit learning studies have not com-
pared effects of active reproduction with passive exposure, nor
have they examined dynamic assessment of progressively increas-
ing acquisition of knowledge during recall-based statistical learn-
ing tasks. Doing so in the present research allows us to investigate
whether knowledge acquired during passive exposure shares
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overlapping representations with knowledge acquired during recall
(see Lafond et al., 2010) and better understand the trajectory of
learning through recall of auditory sequences (see Siegelman,
Bogaerts, et al., 2018).
If processing-based measures do indeed reflect more directly

and accurately the underlying psychological mechanisms of statis-
tical learning, we would expect to observe them diverging signifi-
cantly from reflection-based measures. In other words, individuals
who show strong evidence of statistical learning on processing-
based measures should not necessarily do so on reflection-based
measures (and vice versa). A handful of studies have addressed
this question in the visual (Bertels et al., 2012; Isbilen et al., 2020;
Kim et al., 2009; Siegelman, Bogaerts, Kronenfeld, & Frost, 2018)
and auditory (Batterink et al., 2015; Franco et al., 2015; Isbilen et
al., 2020; Misyak et al., 2010a) domains. The results are somewhat
mixed, with some studies finding significant correlations (Isbilen
et al., 2020; Siegelman, Bogaerts, Kronenfeld, & Frost, 2018) but
the majority finding no relationship. The question therefore
remains unresolved, especially for auditory recall paradigms (Isbi-
len et al., 2020), where it has not been addressed at all for nonlin-
guistic stimuli.
The present research examined statistical learning during

sequence reproduction using auditory sequences with systemati-
cally controlled statistical structure in three ordered contexts: pas-
sive exposure, active sequence reproduction, and explicit sequence
recognition. We investigated in detail the relationships between an
existing processing-based measure (sequence recall), a new
dynamic processing-based measure based on error position effects
during reproduction, and the most widely used reflection-based
measure of statistical learning (2AFC sequence recognition). Most
importantly, we asked how these three measures might differen-
tially index statistical learning from both passive exposure and
active reproduction. Combining these approaches allowed us to
investigate the effects of implicit statistical learning on auditory
sequence reproduction, affording a finer-grained analysis of the
representations that are learned at the level of individual events.
We expected our new processing-based measure of error position
effects to show more detailed sensitivity to the statistical proper-
ties of the stimuli and to allow for dynamic tracking of statistical
learning over time (cf. Karpicke & Pisoni, 2004).
For the active sequence reproduction task, like Karpicke and

Pisoni (2004) and Conway et al. (2010), we adapted the electronic
children’s toy “Simon” from the 1970s. Simon is a simple game
device that produces sequences of lighted buttons with corre-
sponding tones. The user has to reproduce each sequence using
buttons on the device. The length of the sequence is increased by
one when the entire sequence is successfully reproduced and ter-
minated whenever an error is made. This game has been used to
probe STM in various populations including cochlear implant
patients (Cleary et al., 2001), 8–9-year-old children (Pisoni &
Cleary, 2004), older and younger adults with impaired hearing
(Humes & Floyd, 2005), and musicians (Tierney et al., 2008).
Generally, performance on the Simon task is better in the audio-
visual condition than either unimodal condition.
In the set of five experiments reported here, all participants com-

pleted an active sequence reproduction task (Simon) using sequences
from an artificial language (Experiment 1a being the only exception).
In most experiments, before undertaking the Simon task, participants
were first familiarized with one of the artificial languages through

passive exposure to artificially constructed pure-tone sequences with
systematically controlled statistical structure (Experiments 1b, 4, and
5 being the exceptions). After the Simon task, participants completed
a 2AFC sequence recognition task (all experiments except Experi-
ment 5).

In Experiment 1, we examined whether active reproduction of
statistically structured sequences results in statistical learning, as
assessed by our new processing-based measure based on analysis
of error positions (Experiment 1b). We also confirmed, for the
same stimulus materials, that learning takes place using the tradi-
tional 2AFC recognition task following both passive exposure
(Experiment 1a) and active reproduction (Experiment 1b). Having
demonstrated that the error position effect captures statistical
learning, we examined how the measure can be deployed to assess
statistical learning in dynamic situations. Specifically, Experiment
2 examined the effects on statistical learning of combining passive
exposure and active reproduction, assessed using both the reflec-
tion-based 2AFC recognition task and processing-based error posi-
tion effects in reproduction. In doing so, we assessed whether
these measures show improved learning when reproduction is pre-
ceded by passive exposure and whether this depends on the length
of the exposure. We also probed whether acquired knowledge is
carried over from passive exposure to active reproduction.

Experiments 3, 4, and 5 were control experiments. Experiment
3 controlled for the possibility that the effects observed in Experi-
ments 1 and 2 reflect some artifact of the experimental design by
using randomly generated unstructured sequences in either (or
both) the passive familiarization and active reproduction tasks.
Experiment 4 controlled for the possibility that the effects
observed in Experiments 1 and 2 were driven by the colored lights
that accompanied each tone sequence in the Simon reproduction
task, while also investigating whether the error position effect
extends to sequences of environmental sounds and to participants
with musical training. Experiment 5 controlled for the possibility
that the effects observed in Experiments 1 and 2 were driven by
the spatial assignment of tones to buttons in the reproduction task
by randomizing the tone-to-button assignment across participants.
Specific hypotheses are presented in the introductions to each
experiment.

The remainder of the article is organized as follows: the next
section introduces the general method common to all experiments,
followed by sections presenting additional methods, results, and
cumulative discussion for Experiments 1 to 5. The final section
presents a general discussion of the results and their implications
for future research. The experimental data are available at https://
osf.io/t7k34/?view_only=b4df53733f264f91948951f263e8eb3d.

General Method

Participants

For Experiments 1–4, participants were recruited using the
Birkbeck and University College London participant pools. They
were right-handed, were aged from 16 to 45, and reported no his-
tory of speech, language, or hearing difficulties. Other than the
musicians in Experiment 4, all participants reported having no
prior musical training, and none reported having absolute pitch. In
Experiment 5, participants were recruited online (see below). All

4 KRISHNAN, CAREY, DICK, AND PEARCE

T
hi
s
do
cu
m
en
ti
s
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

Ps
yc
ho
lo
gi
ca
lA

ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le
is
in
te
nd
ed

so
le
ly

fo
rt
he

pe
rs
on
al
us
e
of

th
e
in
di
vi
du
al
us
er

an
d
is
no
tt
o
be

di
ss
em

in
at
ed

br
oa
dl
y.

https://osf.io/t7k34/?view_only=b4df53733f264f91948951f263e8eb3d
https://osf.io/t7k34/?view_only=b4df53733f264f91948951f263e8eb3d


experiments received prior ethical approval from the Birkbeck
Research Ethics Committee.
The minimum number of participants per condition was deter-

mined by estimates of effect size in the literature. For recognition
tests following passive exposure, Saffran et al. (1999) reported a
large effect size (d ! 1.2); when assuming a slightly smaller effect
size (d = .8), a sample size of 15 gives 90% power to detect an
effect of statistical structure on recognition when using a one-
tailed t-test to test difference from a constant. For detecting effects
of statistical learning using reproduced sequence length, Tierney
et al. (2008) reported a large effect of musical expertise on audi-
tory sequence learning using the Simon task (d = 2.11). Given the
current paradigm is much shorter, we thus used an effect size of
half that (d = 1.05) for power analysis, which indicated a sample
size of 17 in each group would provide 90% power to detect dif-
ferences in sequence lengths (using one-tailed t-tests to test differ-
ences between two independent means). Therefore, we collected
samples of 17þ participants in all experiments. In most cases (all
but Experiment 3a), we overrecruited due to higher participant
uptake than anticipated. Recruitment was always terminated at 30
participants. For the online study (Experiment 5), there were 24
possible tone-to-button assignments, so we recruited 48 partici-
pants (24 assigned to each language).

Stimuli

Passive Familiarization

Following previous research (e.g., Saffran et al., 1999), a struc-
tured artificial pure-tone language was created, consisting of iso-
chronous tone sequences using an alphabet of four tones. These
tones were sinusoids of 300-ms duration that formed the notes of a
C-major chord (262 Hz [C4]; 327.5 Hz [E4]; 393 Hz [G4]; 524 Hz
[C5]). All tones were normalized for equal root-mean-square am-
plitude and had 50-ms onset and offset ramps; there was no addi-
tional gap between tones.
The artificial language consisted of four tone words (sequen-

ces of three tones), which were chosen so that when randomly
concatenated together, the longer sequences thus created would
have particular statistical properties. In particular, each of the
four tones would be equiprobable overall (i.e., a uniform zeroth-
order probability of occurrence), but the first-order transition (or
bigram) probabilities between tones would be greater within
than between tone words. For the familiarization phase of pas-
sive exposure, an artificial language block of 690 tones was cre-
ated by randomly concatenating 230 tone words, subject to two
conditions: First, no tone word appeared twice consecutively;
second, within-word bigrams never appeared between tone
words. As a result of these constraints, each tone word could be
followed by one of two other tone words. A second structured
artificial language (L2) was created by reversing the tone words
of the first (L1), and the same process applied to create familiar-
ization sequences for passive exposure. We use the terms fami-
liarized language and nonfamiliarized language to refer to the
artificial language presented and not presented, respectively, dur-
ing passive familiarization.
A third artificial language was also constructed, for use as a con-

trol, by creating sequences in which the four tones appear with
equal probability. We refer to this as the unstructured language.

The unstructured language has the same uniform zeroth-order
probabilities as L1 and L2 but is also uniform at the level of first-
order (and higher) transitional probabilities (i.e., every tone has an
equal probability of occurrence regardless of the preceding tone).
For the familiarization phase, a block consisted of 690 tones from
the unstructured language.

Table 1 shows the tone words, within-word transitions, and
between-word transitions for L1, L2, and the unstructured lan-
guage. Table 2 gives the corresponding transition matrices.

Active Reproduction

Stimuli for the Simon active reproduction task were 10 distinct
sequences created by concatenating seven consecutive tone words
from L1, L2, or the unstructured language. Each sequence thus
had 21 tones.

Sequence Recognition

A 2AFC test was used to assess statistical learning of the
probabilistic structure of the tone sequences previously pre-
sented. Tone words from L1 were paired exhaustively with tone
words from L2 to create 16 distinct pairs of tone words. Each
pair was presented three times, producing 48 trials in total,
except for Experiment 4, as described in the experiment-specific
procedure section.

Two randomized orders of presentation were constructed. The
order of presentation of the two tone-words in a pair was counter-
balanced between orders such that a pair presented with L1 first
and L2 second in one order appeared with L2 first and L1 second
in the other order. The use of the two orders of presentation was
counterbalanced across participants and artificial language used
for passive familiarization.

Apparatus and Procedure

Each experiment could optionally include three components: (a)
a phase of passive familiarization through exposure to tone
sequences, (b) an active sequence reproduction task, and (c) a
2AFC sequence recognition task. Not every experiment included
all three components, but in all experiments, components were
presented in the order given above. The presence and nature of
each component for each experiment is summarized in Figure 1.

Except for Experiments 4 and 5, data were collected using a
second-generation iPad with custom-designed apps using the
touchpad for the reproduction and recognition tasks, and Sennhe-
iser HD-25 headphones were used to present the auditory stimuli.
Experiment 4 instead used a laptop and gamepad, while Experi-
ment 5 was run online, as described in the experiment-specific pro-
cedure sections.

Passive Familiarization

Participants were exposed to a continuous sequence of tones
via headphones. One block consisted of 690 tones, lasting
about 3.5 min. Depending on the experiment (see Figure 1),
L1, L2, or the unstructured language was presented in one or
three blocks. Participants were informed they would be listen-
ing to a stream of sounds but that they did not need to pay
attention to them and were not informed about the presence of
any regularities in the stimulus. During this time, participants
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in Experiments 1–3 completed the Edinburgh Handedness In-
ventory and a short questionnaire about their natural language
background.

Active Reproduction

Participants performed an audio-visual sequence reproduction
task, similar to the Simon game (Cleary et al., 2001; Karpicke &
Pisoni, 2004). For each sequence presented, participants experi-
enced a number of trials, with the sequence length increasing by
one on each trial until either a reproduction error was made or the
end of the sequence was reached.

The gaming interface comprised an arrangement of four buttons
each with a different color, where colored buttons were arranged
in a circular configuration (see Figure 2). Four tones (262 Hz
[C4]; 327.5 Hz [E4]; 393 Hz [G4]; 524 Hz [C5]) were each
uniquely paired with a single button (see Figure 2 for pairings).
Tone/button pairings were randomly set prior to data collection
and were fixed throughout Experiments 1–4. Except in Experiment
4, each button was illuminated, and the associated tone was played
simultaneously during exposure and reproduction.

The task on each trial was to listen to the sounds presented by
the interface and then, following a cue (an icon presented at the

Table 2
Transition Matrices for Structured Artificial Language 1 (Top), Structured Artificial Language 2 (Middle), and the Unstructured
Language (Bottom)

C4 E4 G4 C5

C4 .167 .667 0 .167
E4 .167 .167 .667 0
G4 0 .167 .167 .667
C5 .667 0 .167 .167

C4 .167 .167 0 .667
E4 .667 .167 .167 0
G4 0 .667 .167 .167
C5 .167 0 .667 .167

C4 .25 .25 .25 .25
E4 .25 .25 .25 .25
G4 .25 .25 .25 .25
C5 .25 .25 .25 .25

Note. Each cell represents the probability of a transition from the tone listed for the corresponding row to the tone listed for the corresponding column.
Recurring decimals have been rounded to three decimal places.

Table 1
The Structured and Unstructured Artificial Languages

Description L1
L1
TP L2

L2
TP

Unstructured
language TP

Tone words C4-E4-G4
E4-G4-C5
G4-C5-C4
C5-C4-E4

G4-E4-C4
C5-G4-E4
C4-C5-G4
E4-C4-C5

Within-word transitions (high probability) C4!E4
E4!G4
G4!C5
C5!C4

.667

.667

.667

.667

C4!C5
E4!C4
G4!E4
C5!G4

.667

.667

.667

.667

.25

.25

.25

.25
Between-word transitions (low probability) C4!C5

C4!C4
E4!C4
E4!E4
G4!E4
G4!G4
C5!G4
C5!C5

.167

.167

.167

.167

.167

.167

.167

.167

C4!E4
C4!C4
E4!G4
E4!E4
G4!C5
G4!G4
C5!C4
C5!C5

.167

.167

.167

.167

.167

.167

.167

.167

.25

.25

.25

.25

.25

.25

.25

.25
Other transitions C4!G4

E4!C5
G4!C4
C5!E4

0
0
0
0

C4!G4
E4!C5
G4!C4
C5!E4

0
0
0
0

.25

.25

.25

.25

Note. The table shows the tone words of Structured Artificial Languages 1 (L1) and 2 (L2), the within-word tone transitions with high transitional proba-
bility (TP), the between-word tone transitions with low TP, and finally tone transitions that never appeared in the stimulus sequences. The final column
shows the corresponding (uniform) first-order probabilities in the unstructured language. Recurring decimals have been rounded to three decimal places.
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center of the display), reproduce the sounds in the same order by
pressing the corresponding buttons on the interface. The first trial
of a sequence always started with one tone. If all the sounds pre-
sented in a trial were reproduced correctly, on the next trial, the
sequence length was incremented by one tone. As soon as an error
was committed in a trial, the trial immediately terminated, and the
participant’s score for that sequence was recorded as the sequence
length in the previous trial (which by definition had to have been
correctly reproduced in its entirety). After an incorrect response,
the next trial presented the first element of a new sequence. The
goal of the task was to achieve as high a score as possible. The
score for each sequence was displayed on the bottom of the screen
and was updated after every trial.
A response time of 3 s was allowed between each button press.

If no response was recorded during this time, the experiment auto-
matically moved to the next sequence, recording a missing
response for the current sequence. To introduce participants gently
to each sequence while not making the experiment too long and
fatiguing, for Experiments 1–4, the interstimulus interval (ISI)
between items varied according to sequence length. ISI was
always consistent within a trial but varied across trials according
to sequence length as follows: length 1–3: 500 ms; length 4–6:
400 ms; length 7–12: 200 ms. From length 13–17, the ISI
decreased by 10 ms for each tone added until it reached a constant
value of 150 ms from length 17–21, producing interonset intervals
ranging from 800 to 450 ms.
A sequence was terminated when the participant reproduced the

full sequence length of 21 items or when they reproduced the

sequence incompletely or incorrectly. Participants could then take
a short break before beginning the next sequence. A message was
displayed after termination of a sequence. The next trial started
when the participant pressed the button labeled “Play next” on this
message.

At the beginning of each experiment, participants completed
three practice sequences of six items. If a participant reproduced
less than four items on either practice sequence, the three practice
sequences were rerun until a minimum of four items were success-
fully reproduced for at least two practice sequences. The 10 test
sequences were then presented. Sequences were composed from
L1, L2, or the unstructured language depending on the experiment.

Sequence Recognition

A 2AFC task was used to assess sequence recognition in
Experiments 1–4 with a visual display showing two loudspeakers
enabling participants to respond. Both speakers were illuminated
when a stimulus was played. Participants were instructed to
respond at the end of each trial by pressing one of the speakers,
corresponding to the stimulus played first (left) or second (right).

Two tone words were played one after the other, and participants
were then asked to select the one they felt was most familiar based
on the tasks they had just completed. Prior to undertaking the recog-
nition task, participants were familiarized with the response buttons;
the left button was associated with the tone word that came first, and
the right button with the tone word that was presented second. Partic-
ipants responded by pressing the appropriate button; this also

Figure 1
A Summary of the Experimental Conditions Differentiating Each of the Experiments
Reported Below

Note. Where present (all experiments except Experiments 1b, 4, and 5), passive familiariza-
tion always appeared first, followed by the active reproduction task where present (all
experiments except Experiment 1a), followed by the sequence recognition task where pres-
ent (all experiments except Experiment 5). L = language.
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advanced the experiment to the next trial. Participants heard three
practice trials prior to testing but were given no feedback about their
choices.
The tone words were separated by an ISI of .75 s. The maxi-

mum intertrial interval was 3 s but could be shorter depending on
the participant’s RT to the previous trial.
For all recognition trials, one of the tone words was from L1,

and the other was from L2. For participants exposed to L1, the cor-
rect choice was the tone word from L1, while for participants
exposed to L2, the correct choice was the tone word from L2.

Experiment 1

The purpose of this experiment was to examine whether the
positions of errors made in the sequence reproduction task
reflected online statistical learning of sequential regularities during
the task itself. We hypothesized that, with increasing exposure,
errors would increasingly occur disproportionately at points of low
transitional probability (i.e., at between-word positions). We also
hypothesized that both passive exposure (Experiment 1a) and
active reproduction (Experiment 1b) of the same structured tone
sequences would induce statistical learning as assessed by subse-
quent recognition performance.

Participants and Procedure

Forty-one participants (M age = 22.02, SD = 3.76) completed
the experiment, randomly assigned to one of two conditions. In
Experiment 1a (familiarization only), participants (N = 20, M age
= 21.35, SD = 3.13, 14 female, two undisclosed) were passively
exposed to three blocks (!10.5 min) of structured tone sequences,
counterbalanced across participants. They then completed the

recognition task (without first performing the reproduction task).
In Experiment 1b (reproduction only), participants (N = 21, M age
= 22.67, SD = 4.26, 10 female) received no passive familiarization
but completed the active reproduction task with 10 structured
sequences, counterbalanced across participants, followed by the
recognition task for the corresponding artificial language.

Results and Discussion

Experiment 1a (Familiarization Only)

For the recognition task, tone words from the familiarized lan-
guage were chosen over those from the nonfamiliarized language
on 61.88% of trials (95% CI [56.74, 67.01]), significantly greater
than chance (50%), t(19) = 4.54, p , .001, Hedges’ g = 1.41 (see
Figure 3). This replicates previous findings (e.g., Saffran et al.,
1999) for the present stimulus materials.

Experiment 1b (Reproduction Only)

For the recognition task, tone words from the language used in
the reproduction task were chosen on 62.1% of trials (95% CI
[58.46, 65.75]), significantly greater than chance performance
(50%), t(20) = 6.50, p, .001, g = 1.97. Furthermore, there was no
significant difference in recognition performance between Experi-
ments 1a and 1b, t(39) = .07, p = .94, g = .02, suggesting that
active sequence reproduction in Experiment 1b promoted statisti-
cal learning to a similar extent as passive familiarization in Experi-
ment 1a. Recognition performance for both experiments is plotted
in Figure 3.

Figure 3
Mean Proportions of Correct Responses for the Recognition Task
in Experiments 1a (Familiarization Only) and 1b (Reproduction
Only)

Note. Chance performance is at 0.5, shown by the horizontal line, and
asterisks indicate performance differing significantly from chance. Error
bars represent 95% confidence intervals around the mean.

Figure 2
The Interface Used for the Simon Reproduction Task

Note. Panel A: The display used for the custom iPad version of the Simon
task (Experiments 1–3). The musical note values (C4, E4, etc.) show the
tone frequency paired with that button. Panel B: The display used for the
laptop and online versions of the task (Experiments 4–5). For Experiment
4 with the laptop, the gamepad shown in the bottom right was used, and
musical notes show the tone frequency used for the tone condition (envi-
ronmental sound screen not shown). For online Experiment 5, participants
used a keyboard to respond (not shown); tone frequency to button map-
ping was different for each participant (see Experiment 5, “Participants
and Procedure”). See the online article for the color version of this figure.
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In the reproduction task itself, we examined error positions
within the sequence by distinguishing sequences with errors
between two consecutive tone words versus within a tone word.
We defined between-word errors as those occurring on the first
element of a tone word such that the (lower) transitional probabil-
ity spans the boundary between the previous and new word. We
defined within-word errors as those committed when reproducing
the second or third element of a tone word. We excluded sequen-
ces in which an error was made on the first sequence element
(where there is no prior context), as well as those where no errors
were made (i.e., the participants reproduced an entire sequence of
21 elements). Data were missing for two sequences. In the remain-
ing data, there were 100 sequences containing a between-word
error (48%), 62 sequences containing a within-word error (30%),
37 sequences containing an error on the first element (18%),2 and
nine sequences containing no errors (4%). After removing sequen-
ces with no errors and sequences with errors on the first element,
the pattern of error positions (between:within, 62:38) was signifi-
cantly different from that predicted by chance (between:within,
30:70), v2(1) = 77.66, p, .001, V = .61.3 Participants were signifi-
cantly more likely to make errors between tone words than within
a tone word, suggesting an online effect of dynamic statistical
learning of regularities during the active reproduction task (see
Figure 4).
Finally, we turn to recall performance. Participants correctly

reproduced an average of 10.40 elements (95% CI [9.47, 11.32]).

Experiment 2

Experiment 1 showed that active sequence reproduction
engages statistical learning mechanisms, which can be assessed by
error position effects during performance of the task. To investi-
gate whether passive exposure before active reproduction leads to
enhanced statistical learning, Experiment 2 combined initial pas-
sive exposure of varying durations with active sequence reproduc-
tion; statistical learning was again assessed via error position
effects and recognition performance.

We hypothesized two effects: (a) processing-based measures of
statistical learning during sequence reproduction (recall and error
position effects) would be facilitated by prior passive exposure to
structured sequences (Experiment 2a), and this facilitation would
be less effective with a shorter period of exposure (Experiment 2b)
and (b) recognition performance would improve when participants
both passively listened to and actively reproduced structured
sequences, compared with either passive exposure or active repro-
duction alone.

Participants and Procedure

Sixty participants (M age = 25.18, SD = 6.40, 29 female) com-
pleted the experiment and were randomly assigned to one of two
conditions. In Experiment 2a (familiarization þ reproduction),
participants (N = 30, M age = 24.23, SD = 5.81, 17 female) were
passively familiarized with L1 or L2 (counterbalanced), just as in
Experiment 1a. They then undertook the reproduction task (as in
Experiment 1b) before completing the recognition task. The proce-
dure for Experiment 2b (short familiarization þ reproduction; N =
30, M age = 26.13, SD = 6.90, 14 female) was exactly the same,
except that passive familiarization consisted only of one block
(!3.5 min) rather than three blocks. Participants in Experiment 2b
completed the Raven’s progressive matrices during the passive
familiarization in addition to the handedness inventory and lan-
guage questionnaire completed during exposure in all experiments
(see “General Method”).

Results and Discussion

Experiment 2a (Long Familiarization1 Reproduction)

Participants chose tone words from the familiarized language
over those from the nonfamiliarized language on 59.03% of test
trials (95% CI [54.93, 63.13]), at a level significantly greater than
chance, t(29) = 4.32, p , .001, g = 1.1 (see Figure 5). Perform-
ance did not differ significantly from that following passive
familiarization only (Experiment 1a), t(48) = .85, p = .40, g =
.24, demonstrating that including an active reproduction task
between passive familiarization and sequence recognition had
no additional impact (either beneficial or detrimental) on recog-
nition performance. Furthermore, performance did not differ

Figure 4
Relative Frequency of Errors Committed Between Tone Words in
the Reproduction Task for Experiment 1b (Reproduction Only)

Note. Chance performance is shown in the rightmost bar, and asterisks
indicate performance differing significantly from chance.

2 The relatively large number of errors made at the first sequence
element might at first seem surprising, but recall that such errors can be
made after listening to a sequence of any length up to 20 tones.

3 After removing the first tone, there were 20 positions at which errors
could be made, six of which corresponded to between-word positions
(30%), while the remaining 14 corresponded to within-word positions
(70%).
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significantly from that following active reproduction only
(Experiment 1b), t(49) = 1.04, p = .30, g = .29, demonstrating
that adding passive familiarization had no additional impact on
recognition performance over and above the effect of statistical
learning in the reproduction task.
On the reproduction task, data were missing for two sequences,

and in the remaining data, there were 122 sequences containing a
between-word error (41%), 126 sequences containing a within-
word error (42%), 40 sequences containing an error on the first
element (13%), and 10 sequences containing no errors (3%). The
proportion of errors made between relative to within tone words
(49:51) was significantly different from that predicted by chance
(30:70), v2(1) = 43.51, p, .001, V = .38 (see Figure 6).
Finally, we turn to recall performance. Participants correctly

reproduced an average of 8.85 elements (95% CI [7.80, 9.89]).

Experiment 2b (Short Familiarization1 Reproduction)

Participants chose tone words from the familiarized language
over those from the nonfamiliarized language on 57.43% of test
trials (95% CI [54.08, 60.79]), significantly greater than
chance, t(29) = 4.34, p , .001, g = 1.11 (see Figure 5). Again,
performance did not differ significantly from passive familiar-
ization only (Experiment 1a), t(48) = 1.49, p = .14, g = .42, or
active reproduction only (Experiment 1b), t(49) = 1.82, p = .08,
g = .51. Furthermore, performance did not differ significantly
between the long (Experiment 2a) and short (Experiment 2b)
familiarization conditions, t(58) = .59, p = .56, d = #.15, sug-
gesting that longer periods of exposure conferred no additional
benefit to statistical learning.

On the reproduction task, data were missing for two sequen-
ces, and in the remaining data, there were 137 sequences con-
taining a between-word error (46%), 101 sequences containing
a within-word error (34%), 55 sequences containing an error on
the first element (18%), and five sequences containing no errors
(2%). Participants were more likely to make errors between
than within tone words (58:42), differing significantly from
chance, v2(1) = 86.1, p , .001, V = .54 (see Figure 6). There
was no difference in error position effects between Experi-
ments 2a and 2b, v2(1) = 3.09, p = .08, V = .08. The distribution
of error positions pooled across Experiments 2a and 2b did not
differ from that of Experiment 1b, v2(1) = 3.17, p = .08, V =
.07. These results demonstrated no positive effect of prior pas-
sive familiarization—regardless of its duration—on the
observed pattern of error positions, over and above the statisti-
cal learning that took place online during the reproduction task.

Finally, participants correctly reproduced an average of 8.10
elements (95% CI [7.21, 9.08]), which did not differ from Experi-
ment 2a, t(58) = .98, p = .33, g = .25, suggesting no effect of lon-
ger passive exposure on recall. However, Experiment 2a and 2b
participants pooled together (M = 8.50, [7.8, 9.2]) unexpectedly
reproduced shorter sequences than in Experiment 1b, t(79) = 2.85,
p = .006, g = .71. A completely post hoc speculation is that this
may have been due to fatigue from the longer passive exposure
task and the concurrently presented Raven’s matrices test (a possi-
bility we controlled for in Experiment 3, below).

Experiment 3

Contrary to our hypotheses, when passive exposure and active
reproduction were combined, or when the duration of passive ex-
posure was increased, we found no enhancement of statistical
learning, assessed either by recognition performance, error

Figure 6
Relative Frequency of Errors Committed Between Tone Words in
the Reproduction Task for Experiment 2a (Familiarization þ
Reproduction) and 2b (Short Familiarization þ Reproduction)

Note. Chance performance is shown in the rightmost bar; and asterisks
indicate performance differing significantly from chance.

Figure 5
Mean Proportions of Correct Responses for the Recognition Task
in Experiment 2a (Familiarization þ Reproduction) and 2b
(Short Familiarization þ Reproduction)

Note. Chance performance is at 0.5, shown by the horizontal line, and
asterisks indicate performance differing significantly from chance. Error
bars represent 95% confidence intervals around the mean.
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position effects, or memory recall. In fact, recall performance was
poorer relative to Experiment 1b, perhaps because of the longer
and more demanding experimental session.
Experiment 3a controlled for this possibility by combining

passive exposure to unstructured sequences, followed by the
reproduction task with structured sequences. This achieved a
session length equivalent to Experiment 2b without creating
additional opportunities for statistical learning. If the poor
recall performance in Experiment 2b compared to 1b was due
to the longer session length, recall performance in Experiment
3a should be no different from Experiment 2b.
Experiment 3b provided a complementary control condition,

combining passive exposure to a structured artificial language
with reproduction of unstructured sequences. Here, we would
expect error positions to be as predicted by chance. Further-
more, if statistical learning were to influence recall, participants
should reproduce shorter sequences than in Experiment 2b,
which was identical to Experiment 3b in all respects (including
session length) except that it presented structured rather than
unstructured sequences in the reproduction task. Recognition
performance in Experiments 3a and 3b should be above chance
and no different from Experiment 2b unless passive exposure
or active reproduction with unstructured sequences attenuate
the effects of statistical learning.
Experiment 3c provided a baseline control condition, with

unstructured sequences used for both passive familiarization and
active reproduction. Since there was no opportunity whatsoever
for statistical learning, there should be no error position effects in
the reproduction task, and performance should be at chance in the
recognition task.

Participants and Procedure

Sixty-seven participants (M age = 22.63, SD = 4.05, 41 female)
completed the experiment. In general, the procedure was identical
to that of Experiment 2b (short familiarization þ reproduction)
except for the following: (a) In Experiment 3a (N = 17, M age =
22.41, SD = 3.30, nine female), unstructured sequences were used
for passive familiarization (see “General Method”); (b) In Experi-
ment 3b (N = 30, M age = 24.5, SD = 4.57, 16 female), unstruc-
tured sequences were used for active reproduction; and (c) In
Experiment 3c (N = 20, M age = 20, SD = 1.78, 16 female),
unstructured sequences were used for both passive familiarization
and active reproduction. Since the length of exposure did not
appear to have an effect on reproduction or recognition in Experi-
ment 2, only a single block of passive familiarization was used in
Experiment 3 (as in Experiment 2b: short familiarization þ
reproduction).

Results and Discussion

Recognition performance for Experiments 3a, b, and c is shown
in Figure 7. Error position effects in the reproduction task F7 are
shown in Figure 8.

Experiment 3a (Unstructured Familiarization 1
Structured Reproduction)

In the recognition task, participants recognized sequences from
the artificial language they had encountered in the reproduction
task significantly better than chance (M = 56%, 95% CI [50.77,
61.24]), t(16) = 2.25, p = .039, g = .75. Performance was not

Figure 7
Mean Proportions of Correct Responses for the Recognition Task in Experiments
3a (Unstructured Familiarization þ Reproduction), 3b (Familiarization þ
Unstructured Reproduction), and 3c (Unstructured Familiarization þ
Unstructured Reproduction)

Note. Chance performance is at 0.5, shown by the horizontal line, and asterisks indicate per-
formance differing significantly from chance. Error bars represent 95% confidence intervals
around the mean.
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significantly different from Experiment 2b, where both familiar-
ization and reproduction sequences were structured, t(45) = #.47,
p = .64, g = .14.
In the reproduction task, data were missing for one sequence,

and in the remaining data, there were 85 sequences containing a
between-word error (50%), 46 sequences containing a within-
word error (27%), 31 sequences containing an error on the first
element (18%), and seven sequences containing no errors (4%).
Participants made more errors between tone words than within
tone words (65:35), differing significantly from the pattern pre-
dicted by chance, v2(1) =75.92, p , .001, V = .67, but not from
that observed in Experiment 2b, v2(1) = 1.60, p = .21, V = .07.
Participants reproduced an average of 9.99 elements (95% CI

[8.82, 11.17]), which was significantly greater than that achieved
in Experiment 2b, t(45) = 2.37, p = .02, g = .71, but no different
from that achieved in Experiment 1b, t(36) = .53, p = .60, g = .17.
This suggests that session length was not responsible for the rela-
tively poor recall performance in Experiment 2b.

Experiment 3b (Structured Familiarization 1 Unstructured
Reproduction)

Participants recognized tone words from the familiarized lan-
guage significantly better than chance (M = 58.54%, 95% CI
[55.06, 62.02]), t(29) = 4.81, p , .001, g = 1.23, even after repro-
ducing unstructured sequences. Recognition performance did not
differ from Experiment 3a, t(45) = .82, p = .42, g = .24, nor from
Experiment 2b, t(58) = .45, p = .65, g = .11.
In the reproduction task, even though the unstructured language

was used, we analyzed error position effects in the same way as
before, comparing errors made at positions that would correspond

to between- and within-word positions had a structured language
been used. There were 77 sequences containing a between-word
error (26%), 192 sequences containing a within-word error (64%),
27 sequences containing an error on the first element (9%), and
four sequences containing no errors (1%). Proportions of errors at
between- versus within-word positions (29:71) closely conformed
to chance (30:70), v2(1) = .24, p = .62, V = .03, and differed signifi-
cantly from those observed in Experiment 3a, v2(1) = 46.58, p ,
.001, V = .34, and Experiment 2b, v2(1) = 42.17, p, .001, V = .29.

Finally, we turn to recall performance. Despite error position effects
being at chance unlike in Experiment 2b, average sequence length
reproduced (M = 8.67, 95% CI [7.88, 9.46]) did not differ significantly
from that in Experiment 2b, t(58) =#.83, p = .41, g =#.21.

Experiment 3c (Unstructured Familiarization1 Unstructured
Reproduction)

As expected, recognition performance was at chance (M =
50.1%, 95% CI [45.49, 54.72]), t(19) = .04, p = .965, g = .01. It
was also significantly less accurate than performance in Experi-
ment 2b, t(48) = #2.58, p = .013, g = .73.

In the reproduction task, there were 52 sequences containing a
between-word error (26%), 126 sequences containing a within-
word error (63%), 22 sequences containing an error on the first
element (11%), and no sequences containing no errors (0%). Pro-
portions of errors at between- versus within-word positions
(29:71) did not differ from chance, v2(1) = .052, p = .82, V = .02,
nor from Experiment 3b, v2(1) , .001, p = .98, V = .001. These
results confirm the absence of above-chance recognition perform-
ance and error position effects when participants are given no op-
portunity for statistical learning.

Figure 8
Relative Frequency of Errors Committed Between Tone Words in the
Reproduction Task for Experiments 3a (Unstructured Familiarization þ
Reproduction), 3b (Familiarization þ Unstructured Reproduction), and 3c
(Unstructured Familiarization þ Unstructured Reproduction)

Note. Chance performance is shown in the rightmost bar, and asterisks indicate performance
differing significantly from chance.
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Since it afforded no opportunity whatsoever for statistical learn-
ing, Experiment 3c provided a baseline to assess effects of statisti-
cal learning on reproduced sequence length. The results were
somewhat contradictory, showing that baseline performance (M =
8.36, 95% CI [7.66, 9.05]) was poorer than in Experiment 1b (M =
10.4), t(39) = #3.43, p , .001, g = #1.05, and Experiment 3a (M
= 9.99), t(35) = #2.43, p = .02, g = #.78, but not significantly dif-
ferent from Experiment 2a (M = 8.85), t(48) = #.69, p = .50, g =
#.19, or Experiment 2b (M = 8.1), t(48) = .32, p = .75, g = .09.
This raises the question of cohort effects producing differences
between experiments that exceed any potential effects of statistical
learning. To address this, we pooled data from those experiments
(1b, 2a, 2b, and 3a) in which there were opportunities for statistical
learning to influence recall. The cross-experiment mean sequence
length (M = 9.16, [8.63, 9.7]) did not differ significantly from the
baseline provided by Experiment 3c, t(116) = #1.29, p = .20, g =
#.31. Indeed, the difference in mean performance was less than a
single sequence element. These results suggest that statistical
learning—and the apparent emergence of chunking evidenced by
the error position effects—has very little consistent and reliable
impact on recall performance.

Experiment 4

The results of Experiments 1, 2, and 3 demonstrate that error
position effects provide a robust measure of dynamic statistical
learning during the Simon reproduction task. However, these
effects have been demonstrated only for sequences constructed
from a particular set of pure tones, which were always accompa-
nied by a corresponding and simultaneously occurring visual
sequence in that the colored response button corresponding to
each tone flashed when that tone was played. Above-chance recog-
nition performance in Experiments 2 and 3a demonstrates auditory
learning, but it remains possible that an independent, parallel pro-
cess of visual statistical learning of color sequences was responsi-
ble for the error position effect.
To unambiguously establish that the error position effect

resulted purely from auditory statistical learning and extended
beyond the pure tones used in the previous experiments, Experi-
ment 4 used an altered Simon reproduction task where we replaced
the tones with four environmental sounds and eliminated the flash-
ing colored lights that previously corresponded to each tone. This
was intended to ensure that participants would encode and remem-
ber the sequence of sounds presented to them before translating
them into a sequence of movements to press the corresponding
buttons during recall (these movements would be visually guided
initially but could become proprioceptively guided throughout the
task).
This experiment also extended the paradigm to formally trained

musician participants so as to assess whether the error position
measure of statistical learning was influenced by musical training.
Since Tierney et al. (2008) found that musicians were able to
reproduce longer auditory sequences (spoken color names) than
nonmusicians (but cf. Carey et al., 2015), we hypothesized that
musicians would show better recall performance in the reproduc-
tion task than nonmusicians. However, since musicians do not
appear to show better statistical learning ability than nonmusicians
in artificial grammar learning studies (Loui et al., 2010; Rohrmeier

et al., 2011), we hypothesized that error position effects would not
differ between the groups.

Participants and Procedure

Nineteen nonmusicians (M age = 26.5, SD = 2.5, nine female)
and 20 musicians (M age = 22.8, SD = 2.9, 13 female) with no
reported history of hearing, visual, or neurological impairments
completed the experiment after giving informed consent; all were
paid for their participation. Nonmusicians were recruited as
before, except that all had completed or were enrolled in a univer-
sity master’s or doctorate degree to approximate the education
level of the musician group. Musicians were recruited from con-
servatories in London; all but one was completing, or had com-
pleted, a performance degree. All had at least 10 years of
continuous formal musical training (M 14.0 years, SD = 3.3 year)
on piano, guitar, voice, recorder, or orchestral instruments and
began music practice on average at the age of 6.5 years (SD = 1.9
years).

In general, the procedure was identical to that of Experiment 1b
(reproduction only) with the following differences. Participants
completed the Simon reproduction task for 20 sequences, 10 of
which included tones and synchronously timed colored lights as
before, while the other 10 used environmental sounds with no col-
ored lights associated with each sound. For environmental-sound
stimuli, the interface presented four colored buttons (red, blue,
green, and yellow) as for tone sequences but added a picture of the
corresponding sound superimposed on each button. Crucially, and
unlike the tone condition, the colored buttons did not flash during
presentation of the environmental sound corresponding to that
button.

Tone sequences and environmental-sound sequences were pre-
sented five at a time and were interleaved. The same language was
used to generate the sequences of tones and environmental sounds,
but distinct sequences were used for the two conditions. Partici-
pants were randomly assigned to one of two presentation orders
such that one group completed five tone sequences first, while the
other group completed five environmental-sound sequences first.
As in Experiment 1b, there was no initial stage of passive familiar-
ization; after completing the reproduction task, participants per-
formed a 2AFC recognition task, in a shorter, 32-trial format with
16 trials each for environmental-sound and pure-tone stimuli.

The environmental-sound stimuli were four short environmental
sounds taken from Leech et al. (2009): a camera shutter, a drink
being poured, a phone being dialed, and a doorbell. These were
chosen as they were short and easy to recognize, as shown by
Krishnan et al. (2013) who found that both children and adults had
high mean accuracy scores for these four sounds in an environ-
mental-sound identification task. The duration of each original
sound was shortened to 300 ms using Adobe Audition such that
they had the same length as the pure tones used in the previous
experiments. Analogous to the tone experiments, each button was
paired with a fixed 300-ms environmental sound (red button,
phone dial; blue button, drink pour; green button, camera shutter;
yellow button, doorbell).

The experiment was conducted in a sound-attenuated room and
presented using an Apple 13-in. Macbook Pro laptop with Psycho-
physics Toolbox Version 3 (Brainard, 1997) in MATLAB (2010a;
64 bit). Auditory stimuli were presented through Sennheiser HD-
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380 Pro headphones, via an ESI UGM 96 24-bit external sound
card, connected to the laptop by USB. Participant responses were
collected using a Logitech Precision gamepad in the Simon
sequence reproduction tasks, and the laptop keyboard was used for
the 2AFC recognition task. Participants held the gamepad while
sitting in front of the laptop, which was placed on a desk.

Results and Discussion

In the recognition task, performance was above chance for pure-
tone stimuli (M = 63.50%, 95% CI [58.10%, 68.92%]), t(38) =
5.05, p , .001, g = .81, and environmental-sound stimuli (M =
57.30%, [51.68%, 62.92%]), t(38) = 2.63, p = .012, g = .42 (see
Figure 9). Musicians and nonmusicians did not differ significantly
in their recognition performance for either pure-tone stimuli, t(37)
= 1.24, p = .22, g = .39, or environmental-sound stimuli, t(37) =
.55, p = .59, g = .17.
Three musicians were removed from the error position analyses

due to technical difficulties accessing their data; thus, error posi-
tion analyses are from 19 nonmusicians and 17 musicians. Error
position data are shown in Figure 10.
For the pure-tone reproduction task, there were 164 sequences

containing a between-word error (46%), 129 sequences containing
a within-word error (36%), 29 sequences containing an error on
the first element (19%), and no error-free sequences (0%). The
proportion of errors made between relative to within words
(56:44) was significantly different from that predicted by chance
(30:70), v2(1) = 94.12, p, .001, V = .51.
For the environmental-sound reproduction task, there were 145

sequences containing a between-word error (41%), 149 sequences
containing a within-word error (42%), 62 sequences containing an
error on the first element (17%), and no error-free sequences (0%).

The proportion of errors made between relative to within words
(49:51) was significantly different from that predicted by chance
(30:70), v2(1) = 52.26, p , .001, V = .38, but not significantly dif-
ferent from the error position effect observed for tone sequences,
v2(1) = 2.35, p = .13, V = .06. Furthermore, the error position
effect did not differ between musicians and nonmusicians for tone
sequences, v2(1) = .008, p = .93, V = .005, or for environmental-
sound sequences, v2(1) = .31, p = .58, V = .03. The error position
effect was observed consistently across levels of musical training
for both pure-tone sequences and environmental-sound sequences.
Furthermore, the effect was not dependent on the particular pure
tones used in Experiments 1, 2, and 3, nor on the sequence of col-
ored lights presented alongside tone sequences. Rather, the effect
extended to statistically structured sequences of natural sounds
presented without accompanying colors.

Overall, participants correctly reproduced an average of 11.04
elements (95% CI [9.97, 12.11]) in the tone condition and 9.20
elements ([8.07, 10.34]) in the environmental-sounds condition. A
mixed-design analysis of variance with sound type (tone, environ-
mental sound) as a within-subject variable and group (musician,
nonmusician) as a between-subjects variable showed that partici-
pants reproduced significantly longer tone versus environmental-
sound sequences (Greenhouse-Geisser corrected), F(1, 37) =
26.46, p , .001. Musicians also reproduced significantly longer
sequences overall than nonmusicians, F(1, 37) = 16.24, p , .001,
with an average of 11.83 elements reproduced ([10.43, 13.22])
compared with an average of 8.32 reproduced by nonmusicians
([7.16, 9.49]). There was no interaction between sound type and
group, F(1, 37) = 1.16, p = .288. The better recall performance for
musicians than nonmusicians for both tone and natural sound
sequences may reflect differences in cognitive abilities such as
working memory rather than statistical learning ability given that

Figure 9
Mean Proportions of Correct Responses for the Recognition Task in Experiment
4, for the Environmental Sound Sequences (Left) and Tone Sequences (Right)

Note. Chance performance is at 0.5, shown by the horizontal line, and asterisks indicate per-
formance differing significantly from chance. Error bars represent 95% confidence intervals
around the mean.
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no differences were observed between the groups in either recog-
nition performance or error position effects as measures of statisti-
cal learning.

Experiment 5

There is one remaining factor that may have influenced the error
position effect observed in the preceding experiments, namely the
consistent pairing of tones/sounds and buttons across participants.
The advantage of using a single tone-button assignment for all par-
ticipants is that it minimizes potential item effects on estimates of
cross-participant variability and therefore increases sensitivity to
potential individual differences (see below) or group effects (see
Experiment 4). However, it is possible that the error position
effects could be driven in part by the specific spatial configuration
that was chosen, to the extent that the tone words in both lan-
guages correspond to spatially contiguous buttons. Specifically,
the elements were mapped to buttons such that all the responses
within a “tone word” would go in either a clockwise or counter-
clockwise direction. Therefore, increased errors between versus
within words could also be a consequence of visuomotor factors.
Experiment 5 addressed this question by fully randomizing

tone-to-button assignment in the Simon reproduction task across
both structured artificial languages. We predicted that error posi-
tion effects would still be observed when there was no consistent
spatial mapping of tones to buttons across participants.

Participants and Procedure

Forty-eight participants (M age = 24.06, SD = 5.65, 18 female)
completed the experiment. In general, the procedure was identical
to that of Experiment 1b (reproduction only) with the following

differences: (a) Participants were recruited online via Prolific and
undertook a web-based version of the Simon sequence reproduc-
tion task; (b) There was no prior familiarization phase, nor any
subsequent recognition task; and (c) For each language, each par-
ticipant was assigned to one of the 24 possible unique assignments
of tone frequency to colored button.

Results and Discussion

On the reproduction task, there were 214 sequences containing
a between-word error (45%), 162 sequences containing a within-
word error (34%), 104 sequences containing an error on the first
element (22%), and no sequences containing no errors (0%). The
proportion of errors made between relative to within tone words
(57:43) was significantly different from that predicted by chance
(30:70), v2(1) = 129.7, p , .001, V = .52 (see Figure 11). It was
also significantly different from the proportions observed in
experiments with unstructured reproduction: Experiment 3b (struc-
tured familiarization þ unstructured reproduction), v2(1) = 49.55,
p , .001, V = .28; Experiment 3c (unstructured familiarization þ
unstructured reproduction), v2(1) = 36.04, p , .001, V = .26. By
contrast, the error position effect in the present experiment was
not significantly different from that observed in any of the experi-
ments with structured reproduction: Experiment 1b (reproduction
only), v2(1) = .89, p = .34, V = .04; Experiment 2a (familiarization
þ reproduction), v2(1) = 3.28, p = .07, V = .07; Experiment 2b
(short familiarization þ reproduction), v2(1) = .01, p = .94, V =
.003; Experiment 3a (unstructured familiarization þ structured
reproduction), v2(1) = 2.23, p = .14, V = .07.

Finally, we turn to recall performance. Participants correctly
reproduced an average of 6.99 elements (95% CI [6.46, 7.52]).

Figure 10
Relative Frequency of Errors Committed Between Words in the Reproduction
Task for Experiment 4 With Environmental Sounds (Leftmost Bar) and Pure
Tones (Middle Bar)

Note. Chance performance is shown in the rightmost bar, and asterisks indicate performance
differing significantly from chance.
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These results confirm that the error position effect persisted
when the spatial position of the buttons associated with each tone
was randomly assigned across participants, thus demonstrating
that it was not dependent on a particular spatial configuration of
the response buttons. The error position effect was also not signifi-
cantly weaker than that observed in the previous experiments with
structured sequence reproduction (Experiments 1b, 2a, 2b, and
3a).

Pooled Analyses Across Experiments

Pooling data across experiments provides sufficient power to
address two questions of interest. First, can the error position
effect illustrate the trajectory of learning across the reproduction
task? Second, does performance on the reproduction task correlate
with performance on the recognition task? The analyses reported
below are Pearson correlations (except where noted), with Bayes
factors (BF) also computed.

Error Position Effect Across Sequences

The error position effect observed for structured sequences in
Experiments 1b, 3a, 4, and 5 (and not observed for unstructured
sequences in Experiments 3b and 3c) must result from online sta-
tistical learning during the reproduction task. To examine in more
detail the time course of this learning, we conducted a correlation

analysis of how the error position effect changed across the 10
sequences making up the active reproduction task, pooled across
multiple experiments for the structured languages and, separately,
the unstructured language. The results showed a significant linear
increase in proportion of between-word errors for structured
sequences (Experiments 1b, 2, 3a, 4, and 5), r(8) = .83, p , .01,
BF = 7.41, but no significant change for unstructured sequences
(Experiments 3b and 3c), r(8) = #.1, p = .79, BF = .63. Siegelman,
Bogaerts, Kronenfeld, and Frost (2018) found that learning fol-
lowed a logarithmic rather than a linear trajectory in their RT-
based measure of visual statistical learning. The same is true for
structured sequences in the present experiments where a logarith-
mic trajectory, r(8) = .91, p , .01, BF = 27.23, shown in Figure
12, provided a better fit than a linear trajectory, BF = 7.93. These
results confirm the dynamics of learning across the reproduction
task, suggesting a logarithmic trajectory of learning.

Across all experiments with structured sequences in the repro-
duction task (Experiments 1b, 2, 3a, 4, and 5), the error position
effect on the 10th and final sequence (65:35) differed significantly
from that expected by chance (30:70), v2(1) = 91.42, p , .001, V
= .76, while this was not the case for the first sequence (33:67),
v2(1) = .72, p = .40, V = .06. Furthermore, focusing specifically on
Experiment 2 where the reproduction task was preceded by pas-
sive exposure to structured sequences, a significant error position
effect was still observed for the 10th sequence (51:49), v2(1) =
9.9, p, .01, V = .46, but not for the first sequence (25:75), v2(1) =
.59, p = .44, V = .10. These results suggest very little if any trans-
fer of learning between passive exposure and active reproduction.

Correlation Between Reproduction and Recognition
Performance

Pooling data from all experiments that contained the reproduc-
tion task with structured sequences and the recognition task
(Experiments 1b, 2, 3a, and 4) allows an analysis of whether per-
formance on these tasks is correlated across participants. In other
words, is it the case that participants who show strong statistical
learning ability on the reproduction task also show strong statisti-
cal learning assessed by the recognition task? We would expect
this to be the case if both tasks were probing the same underlying
psychological mechanisms of statistical learning. However, there
was no significant correlation (Spearman rank given that sequence
length was not normally distributed) between recognition perform-
ance (percent correct) and either mean sequence length, r(168) =
.14, p = .08, BF = 1.05, or proportion of between-word errors, r
(168) = #.01, p = .85, BF = .18. This suggests that the recognition
and reproduction tasks reflect at least partially disjoint underlying
psychological representations or processes related to statistical
learning. In other words, participants whose error positions
showed evidence of greater statistical learning (i.e., those making
a greater proportion of errors between rather than within tone
words) were no more likely to achieve above-chance performance
on the recognition task.

Pooling across the same set of experiments, there was a significant
correlation between the proportion of between-word errors a partici-
pant made on the reproduction task and their mean sequence length,
r(168) = .39, p , .001, BF = 38,245. This shows that participants
with strong statistical learning, reflected by the error position effect,
also recalled longer sequences, suggesting an influence of statistical

Figure 11
Relative Frequency of Errors Committed Between Words in
Experiment 5, Where Each Participant Experienced a Different
Assignment of Tone Frequency to Button Position

Note. Chance performance is shown in the rightmost bar, and asterisks
indicate performance differing significantly from chance.
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learning on recall. However, it is also possible that one or more gen-
eral cognitive abilities, such as working memory or auditory atten-
tion, influenced both statistical learning and recall performance.
Furthermore, the absence of a significant correlation in Experiment
5, r(46) = .17, p = .27, BF = .56, raises the possibility that the signifi-
cant correlation in Experiments 1–4 could reflect differences in ex-
perimental design including the spatial configuration (which may
have improved recall performance for some participants in Experi-
ments 1–4 and, correspondingly, impaired recall performance in
Experiment 5) or the slower initial timing used in the earlier experi-
ments, which may have facilitated recall and overall task perform-
ance. However, this could also represent a Type-II error given the
poorer and relatively homogenous recall performance in Experiment
5. This warrants further examination in future research.

General Discussion

Overall, the results of these five experiments demonstrate that the
error position effect during sequence reproduction provides a robust,
online processing-based measure of statistical learning that addresses
many of the limitations of the reflection-based 2AFC recognition
task predominantly used to assess statistical learning (Christiansen,
2019; Frost et al., 2019; Isbilen et al., 2020; Siegelman, Bogaerts,
Christiansen, & Frost, 2017). The error position effect during repro-
duction has clear advantages as an estimate of implicit statistical
learning, allowing fine-grained analysis of statistical learning in terms
of errors committed on individual elements making up auditory
sequences, which can be captured dynamically throughout the period
that statistical learning is actually taking place. Indeed, the results

showed that the error position effect strengthens throughout the
reproduction task as participants gained greater experience of the sta-
tistical regularities underlying the sequences they were reproducing.
The error position effect extended naturally to sequences of environ-
mental sounds without accompanying visual cues and across levels
of musical training. By contrast, recall performance showed signifi-
cant intergroup variability and failed to clearly distinguish conditions
providing an opportunity for statistical learning from those that did
not. Somewhat surprisingly, the error position effect showed little
influence of prior passive exposure to sequences with the same statis-
tical structure, suggesting that knowledge acquired from passive ex-
posure did not transfer directly to active reproduction. Furthermore,
while recognition performance provided robust evidence of statistical
learning, it did not vary with the amount of exposure provided
through passive familiarization, active reproduction, or both. Finally,
as hypothesized based on previous findings with other processing-
based measures of auditory statistical learning (Batterink et al., 2015;
Franco et al., 2015), the error position effect was uncorrelated with
performance on the 2AFC recognition task, suggesting that these
tasks reflect at least partially distinct underlying psychological abil-
ities. In the following, we discuss these results and their underlying
psychological representations and processes in relation to other find-
ings in the literature.

The Error Position Effect: A New Processing-Based
Measure of Statistical Learning

Although it has dominated the literature on statistical learning,
the 2AFC recognition task has been criticized for providing an

Figure 12
Change in the Proportion of Between-Word Errors Across the 10 Sequences
Presented in the Reproduction Task

Note. Filled circles plot the data for experiments with structured sequences (Experiments
1b, 2, 3a, 4, and 5), with a logarithmic regression line fitted, while unfilled circles are for
experiments with unstructured sequences (Experiments 3b and 3c), with a linear regression
line fitted. The shaded areas represent 95% confidence intervals around the fitted regression
lines.
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offline, binary, and highly indirect measure of statistical learning
(Christiansen, 2019; Frost et al., 2019; Isbilen et al., 2020; Siegel-
man et al., 2017). Like other processing-based measures of statisti-
cal learning, such as the SRT task, the error position measure has
three primary advantages over traditional reflection-based meas-
ures, such as the 2AFC recognition task. First, it is recorded during
the time that statistical learning is taking place, rather than after-
ward. Second, it has greater granularity, allowing for analysis of
the trajectory of statistical learning. Third, it does not require addi-
tional psychological processes related to explicit decision-making,
making for a purer measure of statistical learning. The error posi-
tion measure revealed a logarithmic trajectory of learning across
the task, beginning with a steep profile that progressively flattened
with increasing experience. This contrasts with other possible
learning profiles, including linear or step functions, and is consist-
ent with the trajectory of learning reported by Siegelman,
Bogaerts, Kronenfeld, and Frost (2018).
The error position metric of statistical learning clearly distin-

guished the experiments that provided an opportunity for statistical
learning from those that did not and appeared to do so consistently
across different experimental variants. It was observed for sequen-
ces of both pure tones and environmental sounds, suggesting that
it is not specific to one particular kind of auditory stimulus but
rather extends to statistical structure across auditory domains.
Finally, the error position effect is robust, showing similar effects
between the various participant groups used in the different experi-
ments. In particular, in Experiment 4, musicians showed error
position effects that were no different from those of nonmusicians,
consistent with previous evidence that musicians show no better
artificial grammar learning performance than nonmusicians (Loui
et al., 2010; Rohrmeier et al., 2011).

The Relationship Between Passive Exposure and Active
Reproduction

One of the most surprising findings in the present research is the
lack of any additive effect of statistical learning across passive ex-
posure and active reproduction tasks. Although performance on
the recognition task was above chance and comparable with previ-
ous research (e.g., Saffran et al., 1999), it showed no significant
difference between conditions regardless of how much passive
familiarization and/or active reproduction was undertaken. This
might be taken to indicate a performance ceiling—but the distribu-
tion of the data does not show ceiling effects. Rather, we suggest
that above-chance performance on the sequence recognition task
depends only on some exposure to the statistically structured
sequences regardless of whether this involves passive exposure,
active reproduction, or a combination of the two.
As a result, it is difficult to draw general comparisons about

how strongly passive exposure and active reproduction engage sta-
tistical learning mechanisms. However, it is striking that equiva-
lent overall recognition performance resulted from passive
exposure to 2,070 tones in Experiment 1a and experience of a me-
dian of 1,382 tones in Experiment 1b (including both presentation
and reproduction). Although one should not overgeneralize from
relatively short periods of learning, it is also noteworthy that while
some participants in the reproduction task heard over 10 times as
many tone words as other participants (due to their success in
reproducing much longer sequences), this differential experience

did not significantly affect recognition accuracy. The relative
strength with which different tasks engage statistical learning
could be investigated directly in future research by systematically
varying the length of the sequences presented in passive exposure
and active reproduction. One caveat is that exposure to sequences
in the reproduction task differed in (at least) one additional way
from passive listening. Sequences in the reproduction task always
started with a whole tone word. Therefore, across all 10 sequences
reproduced, the onset of most or all of the four tone words would
be associated with the onset of the sequence. This may provide an
“edge cue” for segmenting word onsets. This could be addressed
by presenting multiple shorter sequences in passive exposure,
rather than long continuous sequences.

It was surprising to find that the trajectory of statistical learning
during the reproduction task started from a level very close to
chance performance, suggesting little, if any, carryover of statisti-
cal learning from passive exposure. This raises the possibility that
knowledge acquired through passive exposure may have (par-
tially) disjoint storage in memory from that acquired through
active reproduction. If this were the case, it could also account for
the lack of additive effects of passive exposure and active repro-
duction. One possibility (discussed further below) is that the repro-
duction task leads to encoding of sensorimotor representations of
statistical learning, distinct from the purely auditory representa-
tions encoded during passive exposure.

The Relationship Between Reproduction and
Recognition Performance

The divergence between the reproduction and recognition tasks
in the present experiments might be taken as evidence that the two
tasks tap different underlying knowledge representations, one
unconscious (often termed “implicit”) and the other conscious, de-
clarative, or “explicit” (Batterink et al., 2015)—for a critical
review of this dichotomy, see Shanks and St. John (1994). Follow-
ing Franco et al. (2015), however, a different—though potentially
complementary—explanation points rather to the retrieval proc-
esses recruited by the two tasks (see also Shanks & Perruchet,
2002). Error positions in the reproduction task reflect a process of
recall for entire sequences, extended by one element on each trial,
which does not necessarily require the sequence to be segmented
or chunked but rather may rely on sensitivity to the statistical
structure of the continuous sequences as they are processed. By
contrast, the recognition task presumably requires segmentation
and retrieval of three-element words from stored representations
of the sequence for matching to the words presented as isolated
units in the 2AFC task.

In other words, it is possible that the error position effect reflects
representations in memory of statistical information in the form of
conditional probabilities, perhaps encouraged by the nature of the
task in which a single element is added on each trial. Conversely,
the recognition task may encourage the formation of chunk-based
representations in which the three-element words are segmented.
If the two tasks involve different kinds of representation in mem-
ory, then it is plausible that participants could vary independently
in their capability for encoding and processing each type of repre-
sentation. Consistent with this account is evidence that SRNs have
accurately simulated processing-based measures of statistical
learning tasks such as the SRT (Franco & Destrebecqz, 2012;
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Misyak et al., 2010b) and HRE (Rey et al., 2020), whereas the
chunking model PARSER has successfully modeled 2AFC recog-
nition performance (Perruchet & Vinter, 1998). Furthermore, Sie-
gelman et al. (2019) ran computational simulations of statistical
learning in a self-paced visual task (Siegelman, Bogaerts, Kronen-
feld, & Frost, 2018), finding evidence of substantial variance in
the extent to which individuals prioritize local co-occurrences of
elements (providing the basis for conditional probability estima-
tion) on the one hand or global patterns (providing the basis for
chunking) on the other. The present experiments were not
designed to distinguish between these theoretical accounts, but the
initial results and general paradigm provide a fruitful avenue for
future investigation.

No Effect of Statistical Learning on Recall Performance

The present results also allowed us to assess another process-
ing-based measure of statistical learning—recall performance
reflected by the average length of the sequences reproduced on the
active reproduction task—and compare it to the error position
measure. Recall performance has been successfully used as a mea-
sure of statistical learning in previous research with syllable
sequences (Conway et al., 2010; Isbilen et al., 2020; Karpicke &
Pisoni, 2004). However, in contrast to the error position effects,
we found no evidence of greater recall performance in those
experiments that provided an opportunity for statistical learning,
compared with experiments that used random sequences and there-
fore provided no opportunity for statistical learning. A plausible
explanation is that this reflects large variance in recall performance
between participants that swamps any effects of statistical learning
that might be present. This is especially apparent in Experiment 4,
where musicians showed better recall performance (longer mean
sequence length) than nonmusicians, even though there was no
difference in error position effects or recognition performance
between the groups, thus suggesting that statistical learning ability
per se did not differ, consistent with previous findings (Loui et al.,
2010; Rohrmeier et al., 2011). It is possible that this result reflects
better working and STM in our musician group, which would also
be consistent with previous results (Franklin et al., 2008). On the
other hand, using a paradigm very similar to the active reproduc-
tion task employed in the present experiments, Carey et al. (2015)
did not find any difference in recall performance between nonmu-
sicians and a group of musicians with at least as much musical
training as the musicians who participated in Experiment 4. In
light of these considerations, we suggest that recall performance
may constitute a less robust and precise processing-based measure
of statistical learning in reproduction tasks than the error position
effect.
It is somewhat surprising that between-experiment differences

in average sequence length reproduced did not appear to reflect
how much passive familiarization and/or active reproduction were
undertaken. We had hypothesized that learning of statistical regu-
larities in the structured artificial languages would allow the
sequences presented during the reproduction task to be segmented
and stored as chunks in memory. Given that participants can recall
longer sequences when they can be segmented into chunks (Miller,
1956), we expected this would lead to reproduction of longer
sequences. However, there was little evidence that participants
consistently reproduced longer sequences in experiments where

there was an opportunity for statistical learning, compared to
experiments where there was not.

One interpretation alluded to above is that, while participants
learned transitional probabilities during exposure and reproduc-
tion, they did not actually store the sequences as chunks in mem-
ory—or at least if they did, the chunks formed did not coincide
with the statistical structure of the sequences. This would be
inconsistent with recent theoretical proposals that statistical learn-
ing relies on low-level memory mechanisms such as chunking
(Christiansen, 2019; Perruchet, 2019; Thiessen, 2017) but consist-
ent with an alternative proposal that probability estimation and
chunking operate as parallel, interconnected psychological proc-
esses (Isbilen et al., 2020), which could be emphasized to different
extents by different tasks.

A recent study by Isbilen et al. (2020) provides evidence that
implicit statistical learning can have positive effects on recall per-
formance for syllable sequences (see also Conway et al., 2010).
Participants were passively exposed to artificial syllable sequences
created by pseudorandomly concatenating six trisyllabic nonsense
words (cf. Saffran, Aslin, & Newport, 1996). This was followed
by an oral recall task for valid and invalid word pairs, with invalid
pairs created by reordering the syllables to remove transitional
probability information that would allow for identification of word
boundaries. In contrast to the present findings, the results showed
better recall for valid compared to invalid stimuli. However, since
Isbilen et al. did not include a condition where the recall task was
not preceded by passive familiarization (as in our Experiments 1b
and 3a), it is impossible to say whether their results reflect learning
during passive familiarization or dynamically acquired during the
recall task.

The inconsistency between the present results and those of Isbi-
len et al. (2020) may be due to differences in familiarity between
the stimulus domains. It is possible that orally reproducing sequen-
ces of familiar syllables engaged phonological (or auditory-motor)
chunking mechanisms more readily than the abstract sound (and
color) sequences used in the present research. Some support for
this interpretation can be gleaned from the slightly better recogni-
tion performance in their study compared to ours (68% and 76%
in their first and second sessions vs. 62% in Experiment 2). More
significantly, Isbilen et al. (2020) found that recall was signifi-
cantly predicted by natural language statistics (bigram and trigram
frequency in large corpora of spoken English), suggesting an influ-
ence of prior language learning. Similarly, Siegelman, Bogaerts,
Elazar, et al. (2018) have shown that statistical learning of sequen-
ces of syllables, but not sequences of visual or nonverbal auditory
stimuli, exhibits item-specific effects resulting in low correlations
between items that were related to natural language statistics.
Additional support for a difference between phonological/oromo-
tor and pitch-motor encoding comes from a recent study showing
no correlation, across participants, in statistical learning ability
between verbal and nonverbal stimuli within modality (Siegelman
& Frost, 2015).

Therefore, it is possible that the abstract materials used in the
present research engaged chunking mechanisms less strongly than
the more familiar linguistic materials used by Isbilen et al. (2020)
and Conway et al. (2010). Further research is required to assess
any potential influence of domain familiarity on the present
results. More generally, the results should be replicated across dif-
ferent modalities given evidence of modality-specific differences
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in statistical learning (Conway & Christiansen, 2005, 2006; Frost
et al., 2015; Tierney et al., 2008).

Auditory, Visual, Visuomotor, or Auditory-Motor
Learning?

Given that the reproduction task is multimodal, it is worth
examining in more detail the nature of the learned representations.
Above-chance auditory recognition performance in Experiments
1b, 3a, and 4 provides convincing evidence of auditory statistical
learning during the reproduction task. Furthermore, the results of
Experiment 4 would appear to rule out purely visual statistical
learning as an explanation for the error position effect. However,
even in Experiment 4, there is still a visuomotor component to the
reproduction task because participants must press the button corre-
sponding to each sound in the memorized sequence. We can con-
sider three possible scenarios for the memory representation
underlying the error position effect.
First, participants in Experiment 4 may have encoded and mem-

orized the sequence of environmental sounds as it was presented
and then, during recall of the sequence, translated each sound into
a motor command. Second, it is possible that during presentation
of the sequence, each sound was immediately translated into a
motor command, and the resulting sequence of motor commands
was encoded in parallel with the sequence of sounds, with the error
position effect reflecting statistical learning of the motor sequence
rather than the auditory sequence. Third, it is possible that the
sequences were encoded as a combined multimodal auditory-
motor sequence. Unlike a unimodal auditory representation (the
first scenario), an auditory-motor memory representation (the third
scenario) has the advantage of accounting neatly for the lack of
correlation between performance on the reproduction and recogni-
tion tasks and the lack of transfer from passive exposure to active
reproduction. It is also more parsimonious than the second sce-
nario as it is not absolutely necessary to encode the motor
sequence to perform the task.
Future research should investigate these possibilities further.

One option would be to conduct experiments with different
response modalities in the reproduction task, such as singing.
However, this still involves a sequence of motor commands, and
in fact, it is difficult to conceive of a reproduction task without any
motor component at all. Another complementary possibility would
be to introduce a motor component into passive exposure and the
recognition task such that each element of the sequences presented
elicits a response from participants. If this encourages formation
of auditory-motor representations, we might expect increased
transfer of knowledge from passive exposure to active reproduc-
tion or better correspondence between reproduction and recogni-
tion performance. It would also be interesting to use different
combinations of visual and auditory sequences in the three tasks
making up the experiment (passive exposure, reproduction, and
recognition) to investigate transfer of stored representations
between tasks when the modality changes. In this context, we
would predict that the error position effect would extend naturally
to experiments on visual statistical learning (Conway et al., 2010;
Fiser & Aslin, 2002; Karpicke & Pisoni, 2004; Kirkham et al.,
2002), but transfer between auditory and visual modalities remains
to be investigated.

Conclusion

To conclude, the present results paint a picture of different psy-
chological representations and processes being involved in differ-
ent tasks related to statistical learning. First, passive exposure to
statistically structured auditory sequences may lead to auditory
representations in memory of sequential statistical regularities.
Second, by contrast, reproduction tasks may lead to auditory-
motor representations of sequential statistical regularities in the
input. Third, the 2AFC recognition task requires retrieval of stored
sequence representations as chunks, segmented according to the
statistical regularities and therefore requiring psychological proc-
esses additional to those required for learning statistical regular-
ities in the reproduction task. In doing so, the present research
introduced a new processing-based measure of statistical learning
based on reproduction error positions that shows sensitivity to
acquired sequential structure in the absence of clear effects on
recall. Furthermore, individual differences in error position effects
bear no relationship with individual differences in recognition per-
formance, a prominent reflection-based measure of implicit statis-
tical learning, suggesting that these two measures may reflect
distinct underlying psychological processes. The error position
metric has advantages over recognition performance: First, it does
not require explicit judgements and thus potentially reflects more
closely what is thought to be an implicit process of knowledge ac-
quisition. Second, sequence reproduction errors are reflections of
the moment-to-moment process during which participants are
acquiring knowledge of sequential regularities in a domain. By
contrast, recognition judgments reflect what statistical information
can be remembered “after the fact.”

Though we have focused here on behavioral measures, there is
growing understanding of the neural basis of statistical learning
(Conway, 2020; Williams, 2020), and since neural measures obvi-
ate the need for an overt response, they can potentially provide a
more sensitive measure of implicit processes involved in statistical
learning (Batterink et al., 2019). Indeed, dynamic changes relating
to implicit or incidental learning and knowledge acquisition have
been measured using neuroimaging (e.g., Itthipuripat et al., 2017;
Lim et al., 2019), and the error position measure may provide a
useful behavioral counterpart to such dynamic neural indicators of
statistical learning (e.g., Batterink & Paller, 2017). The present
results suggest that error position effects hold great promise for
helping to understand the dynamic process of acquiring knowledge
during statistical learning under various task conditions. This war-
rants their use across a wider range of reproduction tasks and stim-
uli varying in modality, domain, and type of statistical structure.
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