
Cognition 239 (2023) 105532

A
0

Contents lists available at ScienceDirect

Cognition

journal homepage: www.elsevier.com/locate/cognit

Original articles

Probabilistic modelling of microtiming perception
Thomas Kaplan a,∗, Lorenzo Jamone b, Marcus Pearce a,c

a School of Electronic Engineering & Computer Science, Queen Mary University of London, London, United Kingdom
b School of Engineering & Materials Science, Queen Mary University of London, London, United Kingdom
c Department of Clinical Medicine, Aarhus University, Aarhus, Denmark

A R T I C L E I N F O

Dataset link: http://dx.doi.org/10.17605/OSF.I
O/XHZ3K

Keywords:
Music cognition
Rhythm perception
Microtiming
Bayesian inference

A B S T R A C T

Music performances are rich in systematic temporal irregularities called ‘‘microtiming’’, too fine-grained to
be notated in a musical score but important for musical expression and communication. Several studies
have examined listeners’ preference for rhythms varying in microtiming, but few have addressed precisely
how microtiming is perceived, especially in terms of cognitive mechanisms, making the empirical evidence
difficult to interpret. Here we provide evidence that microtiming perception can be simulated as a process of
probabilistic prediction. Participants performed an XAB discrimination test, in which an archetypal popular
drum rhythm was presented with different microtiming. The results indicate that listeners could implicitly
discriminate the mean and variance of stimulus microtiming. Furthermore, their responses were effectively
simulated by a Bayesian model of entrainment, using a distance function derived from its dynamic posterior
estimate over phase. Wide individual differences in participant sensitivity to microtiming were predicted by a
model parameter likened to noisy timekeeping processes in the brain. Overall, this suggests that the cognitive
mechanisms underlying perception of microtiming reflect a continuous inferential process, potentially driving
qualitative judgements of rhythmic feel.
1. Introduction

Humans can detect remarkably precise timing perturbations in au-
ditory rhythms, in the order of tens of milliseconds (Repp, 2005; Repp
& Su, 2013). Such perturbations from strictly metronomic (quantised)
stimuli are commonplace in expressive music performance, often called
microtiming, which we define as sub-syntactic timing deviations that are
too small for formal musical notation. In the performance of written
music, expressive microtiming corresponds to a departure from the
nominal note durations encoded in the score, which are quantised
to a time grid of fixed granularity. Expressive microtiming has also
been described as the ‘‘remainder’’ of timing information that is lost
following categorical perception of a rhythm (Clarke, 1987), given
the well-documented tendency to perceive rhythms performed with
expressive microtiming in terms of integer-ratio interval categories,
e.g. 1:1, 1:2 and 1:3 (Desain & Honing, 2003; Jacoby & McDermott,
2017; Ravignani et al., 2018; Schulze, 1989).

Microtiming is often considered essential in establishing a rhythmic
‘‘feel’’ that encourages motor engagement with music. Most notably,
Keil (1987, 1995) proposed the theory of ‘‘participatory discrepancies’’,
whereby variation within a musician’s expressive performance of a
rhythmic pattern, and phase-shifting between musicians in an ensem-
ble, brings about the pleasurable sensation of ‘‘groove’’ (Senn et al.,

∗ Correspondence to: School of Electronic Engineering and Computer Science, Queen Mary University of London, London, E1 4NS, United Kingdom
E-mail address: t.m.kaplan@qmul.ac.uk (T. Kaplan).

2019) for listeners. Such expressive microtiming has been widely stud-
ied, particularly for African-American groove-based music (e.g. Collier
& Wright, 1995; Ellis, 1991; Friberg & Sundström, 2002; Hosken,
2021), with authors often relating systematic microtiming patterns to
qualitative feelings of a rhythm being ‘‘pushed’’ or ‘‘laid-back’’ (alter-
natively ‘‘on top’’ or ‘‘relaxed’’, see Iyer, 2002; Prögler, 1995). In spite
of this literature demonstrating the importance of expressive timing for
skilled musicians, it is unclear whether this is the case for an average
listener. Surprisingly, several studies have reported similar or greater
subjective ‘‘groove’’ ratings for rhythms without microtiming (Datseris
et al., 2019; Frühauf et al., 2013; Madison, 2006; Senn et al., 2016;
Skaansar et al., 2019), with listeners struggling to discern leading
instruments for moderate timing deviations (∼30 ms, Butterfield, 2010;
Matsushita & Nomura, 2016). It is possible this surprising finding
relates to the implicit, unconscious nature of phase corrections made in
response to subtle timing variation of auditory stimuli in sensorimotor
synchronisation studies (Repp, 2005). However, it is challenging to
interpret these results, as there are currently no formal models of the
cognitive processes underlying microtiming perception.

Several authors have invoked high-level concepts from the frame-
work of Dynamic Attending Theory (DAT, Jones & Boltz, 1989) in
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describing microtiming perception. DAT characterises temporal expec-
tations as ‘‘attentional pulses’’ stemming from the entrainment of neural
oscillations. Each pulse reflects an anticipated event at a point in
time (at approximately the mode of the pulse), and the pulse ‘‘width’’
determines how focused an expectation is. While concepts such as
‘‘attentional pulses’’ are difficult to define in terms of neural mecha-
nisms, Large and Jones (1999) defined them computationally in terms
of periodic probability density functions within an adaptive oscillator
model, which adapts to the level of temporal regularity in a stimu-
lus rhythm. Large and Palmer (2002) successfully applied this model
to simulate the perception of large temporal fluctuations (rubato),
and temporal asynchronies within chords (melody leads), but it has
not been applied directly to expressive microtiming and associated
qualitative rhythmic feel. Nevertheless, several authors have made
the theoretical proposal that microtiming causes phase perturbations
which determine the temporal width of attentional pulses, ultimately
influencing the certainty in event timing (Butterfield, 2010; Danielsen,
2018; Skaansar et al., 2019). Similarly, Hosken (2021) characterised
systematic microtiming patterns in drum rhythms from popular music
in terms of probabilistic timing distributions, likening the sufficient
statistics of these distributions to qualitative accounts of rhythmic feel,
e.g. ‘‘pushed’’ or ‘‘laid-back’’ timing, as illustrated in Fig. 1.

Given that existing accounts of microtiming perception remain
somewhat vague as to the underlying cognitive mechanisms, we at-
tempt to formalise them using a probabilistic description of entrain-
ment—defined here as flexible temporal alignment of a biological or
behavioural process with the regularities in an exogenous stimulus.
Specifically, we consider the ‘‘Phase Inference from Point Process
Event Timing’’ (PIPPET) framework, where entrainment is considered
a process of continuous Bayesian inference of stimulus phase (Cannon,
2021), inspired by neural theories of the motor systems’ predictive role
in human beat perception (Cannon, 2021; Proksch et al., 2020; Ross
et al., 2016). PIPPET explicitly tracks phase as a Gaussian distribution,
as per variational approaches to modelling perceptual inference (Buck-
ley et al., 2017; Friston et al., 2010), dynamically estimating both
phase and uncertainty. While PIPPET does not address periodicity
(tempo) estimation, a variant called PATIPPET estimates both phase
and periodicity (Cannon, 2021, p. 7), and could be evaluated in
future work. PIPPET’s posterior estimate on phase adjusts in response
to timing deviations, with respect to an individual listener’s prior
expectations for timing variance and noise sources, plausibly driving
rhythmic feel. For two differently microtimed performances of the
same (notated) rhythm, we expect differences in PIPPET’s posterior
distribution over time–stemming from microtiming–to predict listeners’
qualitative judgements of rhythmic feel. Although we formulate and
test PIPPET as a model of musical timing, it could equally be applied
to perception of event timing in other sensory domains (e.g., speech).
It is worth noting that predictive coding schemes are largely in-keeping
with DAT, as noted by Skaansar et al. (2019), but PIPPET differs from
DAT in its explicit dynamic estimation of phase uncertainty, and how
it moderates the continuous effects of prior expectations (see Cannon,
2021, pp. 1–2).

Here, we perform an experimental test of microtiming perception,
and simulate the behavioural data using PIPPET to validate its suit-
ability as a model for explaining microtiming perception. We assess
participants’ ability to discriminate drum rhythms with systematically
manipulated microtiming, then use PIPPET to predict the trial-by-trial
responses of individual participants, in order to explain inter-individual
differences in task performance.

2. Methods

2.1. Participants

Fifty-six participants (27 F) were recruited and paid via the Prolific
recruitment platform (prolific.co [Oct 2022]). All participants were at
2

least 18 years old (M = 38, SD = 11), based in the UK, and self-reported
normal or corrected-to-normal vision and hearing and no cognitive im-
pairments. Participants were not pre-screened for musical experience.
Experimental procedures were approved by the Queen Mary Ethics of
Research Committee (reference QMERC22.103) and informed consent
was obtained.

2.2. Stimuli

Stimuli were synthesised using the same archetypal drum rhythm,
reported as the predominant drum pattern in Western popular music
(e.g. pop, rock, funk and hip-hop, Mauch & Dixon, 2012). It consists
of regular (eighth-note) beats on the hi-hat (HH), with alternating
(quarter-note) beats on the bass drum (BD) and snare drum (SD). Each
stimulus had four measures (or bars), with each measure containing
four beats (i.e. 4/4 meter), resulting in eight pattern cycles (considering
the BD and SD back-beat pattern has a periodicity of two beats).

Each stimulus was first constructed from this common pattern using
metronomic (i.e. perfectly quantised) timing. Microtiming deviations
were then introduced for BD and SD events using noise sampled ran-
domly (with replacement) from a normal distribution characterising a
specific ‘‘timing profile’’ (Table 1). Each timing profile is associated
with a mean onset time, either early (‘‘pushed’’, PU) or late (‘‘laidback’’,
LA) relative to a metronome; and variance in onset times, either low
(‘‘tight’’, TI) or high (‘‘loose’’, LO); refer to Fig. 1. These timing profiles
have proven descriptive for comparing performances of popular drum-
mers (Hosken, 2021, Ch. 3). We arrived at the task parameters through
a combination of pilot experiments and preliminary simulations. First,
we used the parameters tested by Hosken (2021, Ch. 4) in an earlier
version of this task (M = ±16.36 ms, SD = {10.91, 21.82} ms), but were
unable to replicate their results. Therefore we widened the parameter
ranges (M = ±27.27 ms, SD = {4.09, 30.0} ms) in accordance with
simulated performance improvements using a preliminary configura-
tion of the model introduced in the Simulations section. While the
timing ranges chosen exceed that of average performances (M = 0 ms,
SD = 16.1 ms, at the average tempo of 103.3 bpm, Hosken et al., 2022,
p. 129), they fall within the range of perceptible differences reported
by other empirical studies using this archetypal rhythm (∼ 16–80 ms,
Frühauf et al., 2013; Matsushita & Nomura, 2016; Skaansar et al.,
2019)—we revisit this in the Discussion.

Microtiming deviations were sampled separately for each BD and
SD event from the same timing profiles, and once for each stimulus.
Timing was fixed upon creation, such that all participants heard the
same stimuli—it was not practical to generate stimuli dynamically for
every stimulus presentation. 144 stimuli were created overall (exclud-
ing metronomic baseline stimuli), corresponding to 36 stimuli in each
timing profile (PU_TI, PU_LO, LA_TI, LA_LO).

Stimuli were represented as MIDI and synthesised in Ogg format
(𝑓𝑠 = 48 kHz) using high-quality drum kit samples from the Loop
Loft commercial sample library (Matt Chamberlain’s ‘‘Vintage Gretsch’’
drum kit, thelooploft.com [Oct 2022]). Each drum was synthesised
using a single (identical) sample. The tempo was 110 beats per minute
(BPM, period of ∼ 545 ms), so each stimulus lasted roughly 9 s.

2.3. Procedure

jsPsych (De Leeuw & Motz, 2016, version 7.1.2) was used to con-
struct an online listening experiment, which was hosted on Pavlovia
(pavlovia.org [Oct 2022]). Participants were informed that headphones
were required, and had to complete and pass a headphone screening
test to ensure reasonable listening equipment and low background
noise (Milne et al., 2020). The headphone screening test was performed
before the experiment itself, consisted of six trials, and a participant
was unable to proceed (and excluded) if they provided any incorrect

responses.

http://prolific.co
http://thelooploft.com
http://pavlovia.org
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Fig. 1. Archetypal drum kit rhythm from popular music, with example timing profiles annotated for events on the snare drum (SD) and bass drum (BD). In probabilistic terms,
as described in Hosken (2021), ‘‘pushed’’ and ‘‘laid-back’’ rhythms correspond to slightly early or late timing on average, respectively; whereas ‘‘tight’’ and ‘‘loose’’ timing reflect
low or high variance, respectively.
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Table 1
Timing ‘‘profiles’’ used to construct stimuli, each a normal distribution characterising
SD and BD event timing deviations with respect to a metronomic pulse (in milliseconds,
at 110BPM). Metronomic timing was only used for stimuli in the baseline trials.
Note that the task parameters were initially calculated in terms of beats, M = ±.05,
D = {.055, .0075}, and then converted into milliseconds for stimulus synthesis.
Timing profile Task Baseline trials

Mean (ms) SD (ms) Mean (ms) SD (ms)

Metronomic – – 0.0 10.0
Pushed & Tight (PU_TI) −27.27 4.09 −100.0 10.0
Pushed & Loose (PU_LO) −27.27 30.0 −100.0 100.0
Laidback & Tight (LA_TI) 27.27 4.09 100.0 10.0
Laidback & Loose (LA_LO) 27.27 30.0 100.0 100.0

The experiment consisted of an XAB test, modified from Hosken
2021, Ch. 4), where participants listened to three stimuli per trial (X,

and B) and chose whether A or B sounded most similar to X. Either
or B shared a timing profile with X, but did not match exactly in

erms of microtiming. The rhythms were referred to as the ‘‘Reference
rummer’’ (X), ‘‘Drummer A’’ and ‘‘Drummer B’’. Participants were

imply asked ‘‘Who sounds most like the reference drummer?’’; with
note that the drummers were always different, ‘‘Note that they are

ew drummers each time!’’, to encourage independent responses in
ach trial. Task instructions and a screenshot of the task interface are
rovided in the Supplementary Materials. Participants listened to the
hythms sequentially in the order XAB, and responses were self-paced.
timuli were played only once, i.e. could not be repeated, to ensure
onsistent playback across participants. In addition to their choice
Drummer A or B), participants rated their confidence along a five-
oint Likert scale (Not at all confident, Not very confident, Somewhat
onfident, Fairly confident, Completely confident).

Each participant performed 48 trials, presented in random order.
his included 24 timing profile combinations, where X = A for 12
timuli and X = B the other 12 stimuli. Each timing profile combination
as presented twice, for a total of 48 trials—using all 144 stimuli

hat were generated. For each combination, the assignment of timing
rofiles to Drummer A and B was balanced—taking PU_TI vs PU_LO
s an example, in two trials PU_TI was assigned to A and PU_LO to B;
nd in two trials PU_LO was assigned to A and PU_TI to B. Trials were
resented in 6 blocks (8 trials each), and participants could take a brief
elf-paced break between blocks.

To assess participant attention without a prompt, a single ‘‘baseline’’
rial was added to each block in a random position (for a total of
3

trials per block), comparing a near-metronomic stimulus with a
ighly exaggerated stimulus of a random timing profile (see Table 1).
articipants were informed about these trials before the experiment,
hich was not terminated early based on their performance. Following

he experiment, participants reported their musical engagement and
raining (Gold-MSI, Müllensiefen et al., 2014).

.4. Simulations

odel overview. The experiment was simulated using PIPPET (Cannon,
021), a computational model which provides an explanation for how
isteners anticipate the timing of a sequence of events (e.g. beats in a
ong, ticking of a clock) using Bayesian inference; suggesting that the
rain constructs a statistical model of the temporal structure of events,
hich it then uses (and adjusts) in real-time to generate predictions
f precisely when an event should occur next. PIPPET is one of an
ncreasing number of dynamic models of musical rhythm perception
hich applies ideas from Predictive Processing theory (Large et al.,
023, p. 11, also see Vuust et al., 2022).

More precisely, PIPPET describes how an observer tracks a rhythm
y continuously estimating its phase, using a generative model de-
cribing (prior) expectations for the temporal structure of events. The
enerative model of rhythmic events is composed of two processes: (1)
drift–diffusion process 𝜙 representing the continuously progressing

tate of phase; and (2) an inhomogeneous point process 𝜆(𝜙) rep-
esenting the observer’s prior expectations for event structure. The
atter is referred to as an ‘‘expectation template’’, and is composed
y a summation of Gaussian distributions, each corresponding to an
xpectation for an event at a specific phase value 𝜙𝑖, with an associated
xpectation precision and strength. The expectation template flexibly
escribes a stochastic sequence of events, which might not be periodic
n nature, such that phase 𝜙 should be thought to advance along the
eal number line as opposed to a unit circle—phase can be thought of
s an internal sense of time, which might deviate from actual time.

In order to optimally track the stimulus, the generative model of
vent timing in a rhythm given 𝜆(𝜙) is inverted (used in reverse)
hrough variational Bayesian inference (Friston, 2008; Friston et al.,
008) to dynamically estimate the phase 𝜙 based on the timing of ob-
ervations. The phase estimate at any time 𝑡 is represented as a Gaussian
osterior with a mean 𝜇𝑡 and variance 𝑉𝑡 (inverse of precision).1 The

1 Note that it is a PIPPET convention to denote the variance of its Gaussian
osterior with 𝑉 instead of 𝜎2 (Cannon, 2021; Kaplan et al., 2022), and 𝜎 will

be introduced later to denote a different parameter.
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Fig. 2. mPIPPET expectation template for one measure of the drum kit rhythm. An
expectation template in mPIPPET represents the instantaneous rate of events 𝜆𝑠(𝜙)
occurring at phase 𝜙 for an event-stream 𝑠: HH, SD or BD events. In other words,
the degree of expectation for events to occur at phase 𝜙. Expectations are represented
by Gaussians centred at a specific phases with associated variances and expectation
strengths.

optimal solution to rhythm tracking is approximated by a filter which
draws upon the expectation template, adjusting the estimate based on
the presence or absence of events at any time 𝑡. In the absence of
events, the mean 𝜇𝑡 increases at a steady rate towards the next expected
event, and variance 𝑣𝑡 (i.e. uncertainty) accumulates. Upon observing
an event, the estimate is pushed towards expected event phases and
variance is adjusted, by a precision-weighted sum of the prior and
posterior.

Here we use a multi-stream variant of PIPPET, called mPIPPET (Can-
non, 2021, p. 8), which explicitly maintains separate expectation
templates for different event types, i.e. 𝜆𝑠(𝜙) where 𝑠 is a stream of
events with a specific type. For the present paper, there are three event
streams, corresponding to the different types of drum kit voice: HH,
SD and BD. Upon observations, the respective expectation template is
used to inform a single posterior estimate for phase. The expectation
template used here is shown in Fig. 2. Expected phases are centred
around metronomic timing, expectation strengths are held constant,
and expectation variances are homogeneous but scaled according to
the model configuration—this is covered in the final paragraph of this
section, which addresses model configuration.

Please refer to Cannon (2021) for further background on PIPPET,
namely the variational filtering equations, their derivation, and illustra-
tive examples (also see Kaplan et al., 2022 for simulation of empirical
data on rhythm perception and synchronisation).

Simulating discrimination. To simulate discrimination in an XAB
paradigm, a distance function was implemented that directly compares
the posterior distributions between two stimuli—which here have a
shared rhythmic pattern and differ solely in microtiming. For two
stimuli 𝑠1 and 𝑠2, with a shared duration 𝑡𝑚𝑎𝑥 , the posterior distribution
at any time 𝑡 can be compared using a statistical distance measure
which quantifies the divergence between the two samples (the overlap
between probability density functions). Here we use Bhattacharyya
distance, which can be calculated for many common distributions
within the exponential family. For the purpose of the present paper,
we use a form suitable for comparing univariate Gaussian distributions
(Kailath, 1967, Eq. 60), 𝐷𝑡

𝐵𝐶 in Eq. (1) (see Fig. 3 for an example).
ote that this is just one of several measures for comparing statistical

amples (Cha, 2007), and an optimal measure should be identified in
uture work. The total distance 𝐷𝐵𝐶 is calculated by aggregating this
alue over time:

𝑡
𝐵𝐶 (𝑠1, 𝑠2) =

1
4
log

(

1
4

(

𝑉 𝑠1
𝑡

𝑉 𝑠2
𝑡

+
𝑉 𝑠2
𝑡

𝑉 𝑠1
𝑡

+ 2

))

+ 1
4

(

(𝜇𝑠1
𝑡 − 𝜇𝑠2

𝑡 )2

𝑉 𝑠1
𝑡 + 𝑉 𝑠2

𝑡

)

𝐷𝐵𝐶 (𝑠1, 𝑠2) =
∑

𝑡
𝐷 𝑡

𝐵𝐶 (𝑠1, 𝑠2)
(1)

The distance 𝐷𝐵𝐶 as specified above relies on a perfect recall of the
4

posterior phase estimate (at every time 𝑡) for the two stimuli 𝑠1 and 𝑠2 (
being compared, which might be implausible for human listeners. In the
Discussion we revisit the realism of this implementation and consider
improvements which could simulate perception more accurately.

The stimulus (A or B) deemed most similar by the model to the
reference stimulus (X) is referred to as the match, and the other the
mismatch. But please note again that whilst one of A or B will share
a timing profile with X, the microtiming deviations in each stimulus
are unique. The accuracy (or confidence) of PIPPET’s prediction of a
listener response can be computed by the relative difference, 𝛥, of the
distance between the reference and mismatch, and the reference and
match (similarly to Millet et al., 2021). In other words, how different
the reference is to the poorly-matching stimulus, compared to the
difference between the reference and the closely-matching stimulus. If
this value is very small, then the reference X is similar to both stimuli A
and B. If this value is large, then the reference X is much more similar
to one stimulus than the other. This can be calculated as:

𝛥 = 𝐷𝐵𝐶 (𝑠mismatch, 𝑋) −𝐷𝐵𝐶 (𝑠match, 𝑋) (2)

onfigurations. Model discrimination was tested using a variety of con-
igurations (N = 400), generated by a sweep across three parameters.
iven the number of free parameters in PIPPET, this was necessary

o determine the configuration(s) that are able to accurately simulate
articipant performance. It is also possible that variation in participant
erformance is reflected in different model configurations (this predic-
ion is outlined later). Three parameters were selected which broadly
pan different aspects of phase inference, and they were co-varied. The
arameters are:

1. Expectation variance, 𝑣𝑖: this is the expected variance (inverse of
precision) for each event’s onset. Expectation variance is used to
construct the expectation template, part of the generative model
responsible for representing expected event structure, so serves
as a prior in the model’s inference of posterior phase uncertainty
𝑉 ;

2. Expected phase noise, 𝜎: this regulates the rate by which phase
uncertainty 𝑉𝑡 grows in the absence of expected events, whilst
phase continuously progresses between observations;

3. Phase-tracking noise, 𝜂𝜇 : this noise term continuously perturbs
the phase estimate mean 𝜇𝑡, reflecting noisiness of timekeeping
processes in the brain. It is not considered part of the observer’s
generative model, but a separate consequence of how the model
is implemented physiologically (Kaplan et al., 2022, p. 23).

Discrete ranges for the above parameters were chosen manually for
balance between coverage and tractability, i.e. to achieve ample vari-
tion in model behaviour given a practicable number of simulations.
ther PIPPET parameters were held constant, but might be explored in

uture work. When taking all combinations of values for the above three
arameters, there were a total of 400 different model configurations.
ll parameters are listed in Supplemental Materials.

Given that the phase-tracking noise parameter 𝜂𝜇 perturbs the phase
stimate 𝜇𝑡 using noise drawn from a standard Normal distribution (see
aplan et al., 2022, p. 23), it introduces randomness (in the model’s
hase estimate) at the level of single trials. Therefore each trial was
imulated ten times by a given model configuration, and the output
istance measures were averaged.

.5. Statistical analysis

Task performance was analysed in Python (version 3.8.1), using the
ysdt module of the psychocaoustics package (version 0.4.6,
ithub.com/sam81/pychoacoustics [Oct 2022]) to calculate perfor-
ance in the XAB task, in terms of the detection-theoretic sensitivity
easure, 𝑑′, a standardised estimate of the distance between distribu-

ions characterising the two possible responses—match and mismatch

or more generally hits and false alarms, see Herzog et al., 2019,

http://github.com/sam81/pychoacoustics
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Fig. 3. Example of distance function 𝐷𝑡
𝐵𝐶 (Eq. (1)), for a PIPPET instance tracking three stimuli: 𝑋, 𝐴 and 𝐵. For the sake of illustration, each stimulus consists of a single

metronomic hi-hat event at an expected time, 𝑒𝐻𝐻 , and a bass-drum event which is either pushed, 𝑒𝑋𝐵𝐷 and 𝑒𝐵𝐵𝐷 , or laid-back, 𝑒𝐴𝐵𝐷 . (A) shows the expected event timing, i.e. the
prior, which is shared across all stimuli, and centred around metronomic timing—note that this is a rotated and truncated version of Fig. 2. (B) compares the distance between 𝑋
and 𝐴 at each time step. (C) shows the posterior phase estimates for 𝑋 and 𝐴 over time, which are adjusted based on event timing (dashed lines) with respect to prior expectations,
and used to derive the distance. For example, 𝑒𝑋𝐵𝐷 arrives early, causing the phase estimate 𝜇𝑋

𝑡 to be adjusted forwards, and increasing the distance between 𝑋 and 𝐴. (D) and
(E) do the same for 𝑋 and 𝐵, showing lower distance and aligned posterior phase estimates, given the similar microtiming. Note that PIPPET’s ‘phase’ estimate and expectations
are not wrapped around a unit circle (in radian units), but instead correspond to perceived progress along a line (the expectation template), so ‘phase’ has a similar range to time
but is not equivalent.
c
a
T
o
r
o

for an introduction). 𝑑′ is calculated using the ‘‘difference’’ decision
strategy, which assumes participant responses are driven by relative
stimulus differences (between X and A, then X and B), as opposed to
an ‘‘independent-observations’’ decision strategy in which participants
are able to independently categorise stimuli. This is in accordance
with Hautus and Meng (2002)’s recommendation to choose a difference
strategy when the decision strategy adopted by observers is unknown
(noting that participants were not informed of the timing profiles used
to construct stimuli). Standard deviations of 𝑑′ values were calculated
as per Eq. 13.4 from Macmillan and Creelman (2004, p. 325).

Generalised linear mixed-effects models (GLMMs) were fit in R
(version 4.2.1) using the lme4 package (Bates et al., 2015). Effect
sizes in terms of Cohen’s 𝑑 were additionally calculated using the
effectsize (Ben-Shachar et al., 2020) package, and interpreted
following Gignac and Szodorai (2016)’s recommendations—these 𝑑
statistics should not get confused with the separate 𝑑′ statistics intro-
duced above. The proportion of variance explained by a model was
calculated using the MuMIn (Bartoń, 2022) package, which outputs
two values: (1) marginal 𝑅2, the proportion of variance explained by
the fixed effects alone, 𝑅2

𝑚; and (2) conditional 𝑅2, the proportion of
variance explained by both the fixed and random effects, 𝑅2

𝑐 .
Classification performance was analysed using sklearn.metrics

(version 1.1.1, scikit-learn.org/stable/modules/model_evaluation.html
#classification-metrics [Oct 2022]), to determine consistency between
model and participant responses, in terms of the timing profile associ-
ated with the response (PU_TI, PU_LO, LA_TI, LA_LO) . We report three
common metrics, given the model and participant responses: (1) pre-
cision, the proportion of model responses for a specific timing profile
that agree with participants; (2) recall, the proportion of participant
responses for a specific timing profile that are correctly matched by
the model; and (3) F1-score, a measure which balances precision and
recall using a harmonic mean. An F1 score of one is optimal, and only
achieved when precision and recall both equal one (100%).
5

2.6. Predictions

In absence of a strong empirical basis to motivate hypotheses for
improved discrimination of specific timing profiles, we expect our
behavioural data to corroborate preliminary findings by Hosken (2021,
Ch. 4) in an earlier version of this XAB task. Hosken reported improved
discrimination when both the mean and variance of timing are different
(LA_LO vs PU_TI and LA_TI vs PU_LO). These orthogonal stimuli vary
along both parameters (late/pushed and tight/loose), so presumably
maximise the information participants can implicitly draw upon when
discriminating between stimuli.

We expect to observe varying levels of participant sensitivity in
microtiming discrimination, as per Hosken’s findings, and expect these
individual differences will be captured by PIPPET models configured
with different parameters. Given that Hosken did not observe effects of
musical sophistication, albeit with a less comprehensive measure than
the Gold-MSI used here, we do not expect that model parameters will
correlate with musical sophistication.

3. Results

3.1. Variability in participant sensitivity to microtiming

Most participants could discriminate timing profiles with sensitivity
above chance (𝑑′ > 0), with just one participant achieving at-chance
sensitivity (𝑑′ = 0), see Fig. 4. However, there were wide performance
differences across participants, with 𝑑′ values ranging between 0.0 and
3.9, M = 1.7, SD = 0.8.

A binomial generalised linear mixed model (GLMM) evaluated dis-
rimination performance between all pairs of timing profiles forming
trial (i.e. combinations of timing profiles for stimuli A and B), see

able 2. Seven participants were excluded due to poor performance
n the baseline tests (two or more answers incorrect). The GLMM had
elatively weak explanatory power, accounting for a small proportion
f variance (𝑅2 = .06, 𝑅2 = .12), but exhibited several significant
𝑐 𝑚

http://scikit-learn.org/stable/modules/model_evaluation.html#classification-metrics
http://scikit-learn.org/stable/modules/model_evaluation.html#classification-metrics
http://scikit-learn.org/stable/modules/model_evaluation.html#classification-metrics
http://scikit-learn.org/stable/modules/model_evaluation.html#classification-metrics
http://scikit-learn.org/stable/modules/model_evaluation.html#classification-metrics
http://scikit-learn.org/stable/modules/model_evaluation.html#classification-metrics
http://scikit-learn.org/stable/modules/model_evaluation.html#classification-metrics
http://scikit-learn.org/stable/modules/model_evaluation.html#classification-metrics
http://scikit-learn.org/stable/modules/model_evaluation.html#classification-metrics
http://scikit-learn.org/stable/modules/model_evaluation.html#classification-metrics
http://scikit-learn.org/stable/modules/model_evaluation.html#classification-metrics
http://scikit-learn.org/stable/modules/model_evaluation.html#classification-metrics
http://scikit-learn.org/stable/modules/model_evaluation.html#classification-metrics
http://scikit-learn.org/stable/modules/model_evaluation.html#classification-metrics
http://scikit-learn.org/stable/modules/model_evaluation.html#classification-metrics
http://scikit-learn.org/stable/modules/model_evaluation.html#classification-metrics
http://scikit-learn.org/stable/modules/model_evaluation.html#classification-metrics
http://scikit-learn.org/stable/modules/model_evaluation.html#classification-metrics
http://scikit-learn.org/stable/modules/model_evaluation.html#classification-metrics
http://scikit-learn.org/stable/modules/model_evaluation.html#classification-metrics
http://scikit-learn.org/stable/modules/model_evaluation.html#classification-metrics
http://scikit-learn.org/stable/modules/model_evaluation.html#classification-metrics
http://scikit-learn.org/stable/modules/model_evaluation.html#classification-metrics
http://scikit-learn.org/stable/modules/model_evaluation.html#classification-metrics
http://scikit-learn.org/stable/modules/model_evaluation.html#classification-metrics
http://scikit-learn.org/stable/modules/model_evaluation.html#classification-metrics
http://scikit-learn.org/stable/modules/model_evaluation.html#classification-metrics
http://scikit-learn.org/stable/modules/model_evaluation.html#classification-metrics
http://scikit-learn.org/stable/modules/model_evaluation.html#classification-metrics
http://scikit-learn.org/stable/modules/model_evaluation.html#classification-metrics
http://scikit-learn.org/stable/modules/model_evaluation.html#classification-metrics
http://scikit-learn.org/stable/modules/model_evaluation.html#classification-metrics
http://scikit-learn.org/stable/modules/model_evaluation.html#classification-metrics
http://scikit-learn.org/stable/modules/model_evaluation.html#classification-metrics
http://scikit-learn.org/stable/modules/model_evaluation.html#classification-metrics
http://scikit-learn.org/stable/modules/model_evaluation.html#classification-metrics
http://scikit-learn.org/stable/modules/model_evaluation.html#classification-metrics
http://scikit-learn.org/stable/modules/model_evaluation.html#classification-metrics
http://scikit-learn.org/stable/modules/model_evaluation.html#classification-metrics
http://scikit-learn.org/stable/modules/model_evaluation.html#classification-metrics
http://scikit-learn.org/stable/modules/model_evaluation.html#classification-metrics
http://scikit-learn.org/stable/modules/model_evaluation.html#classification-metrics
http://scikit-learn.org/stable/modules/model_evaluation.html#classification-metrics
http://scikit-learn.org/stable/modules/model_evaluation.html#classification-metrics
http://scikit-learn.org/stable/modules/model_evaluation.html#classification-metrics
http://scikit-learn.org/stable/modules/model_evaluation.html#classification-metrics
http://scikit-learn.org/stable/modules/model_evaluation.html#classification-metrics
http://scikit-learn.org/stable/modules/model_evaluation.html#classification-metrics
http://scikit-learn.org/stable/modules/model_evaluation.html#classification-metrics
http://scikit-learn.org/stable/modules/model_evaluation.html#classification-metrics
http://scikit-learn.org/stable/modules/model_evaluation.html#classification-metrics
http://scikit-learn.org/stable/modules/model_evaluation.html#classification-metrics
http://scikit-learn.org/stable/modules/model_evaluation.html#classification-metrics
http://scikit-learn.org/stable/modules/model_evaluation.html#classification-metrics
http://scikit-learn.org/stable/modules/model_evaluation.html#classification-metrics
http://scikit-learn.org/stable/modules/model_evaluation.html#classification-metrics
http://scikit-learn.org/stable/modules/model_evaluation.html#classification-metrics
http://scikit-learn.org/stable/modules/model_evaluation.html#classification-metrics
http://scikit-learn.org/stable/modules/model_evaluation.html#classification-metrics
http://scikit-learn.org/stable/modules/model_evaluation.html#classification-metrics
http://scikit-learn.org/stable/modules/model_evaluation.html#classification-metrics
http://scikit-learn.org/stable/modules/model_evaluation.html#classification-metrics
http://scikit-learn.org/stable/modules/model_evaluation.html#classification-metrics
http://scikit-learn.org/stable/modules/model_evaluation.html#classification-metrics
http://scikit-learn.org/stable/modules/model_evaluation.html#classification-metrics
http://scikit-learn.org/stable/modules/model_evaluation.html#classification-metrics
http://scikit-learn.org/stable/modules/model_evaluation.html#classification-metrics
http://scikit-learn.org/stable/modules/model_evaluation.html#classification-metrics
http://scikit-learn.org/stable/modules/model_evaluation.html#classification-metrics
http://scikit-learn.org/stable/modules/model_evaluation.html#classification-metrics
http://scikit-learn.org/stable/modules/model_evaluation.html#classification-metrics
http://scikit-learn.org/stable/modules/model_evaluation.html#classification-metrics
http://scikit-learn.org/stable/modules/model_evaluation.html#classification-metrics
http://scikit-learn.org/stable/modules/model_evaluation.html#classification-metrics
http://scikit-learn.org/stable/modules/model_evaluation.html#classification-metrics
http://scikit-learn.org/stable/modules/model_evaluation.html#classification-metrics


Cognition 239 (2023) 105532T. Kaplan et al.

t
2
p
𝑡
M

w
7
3
a

s
i
P
w

Fig. 4. Participant task performance, as: (A) 𝑑′ values, error-bars denoting 95% CI; and (B) hit- and false-alarm rates. Note that the median split considers the lower CI of 𝑑′

scores, which resulted in an even split of participants (28 per group), and is used in subsequent analysis.
Table 2
Binomial generalised linear mixed model fit to predict participant correctness from timing profile comparison
type, with a fixed effect controlling for trial order, and random participant effects (𝑁𝑃𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡 = 49, 𝑑𝑓 = 2344,
𝑅2

𝑐 = .06, 𝑅2
𝑚 = .12). Effect sizes are reported as contrasts with respect to the intercept, i.e. discrimination

LA_TI - PU_TI is not significantly different to that of the intercept LA_LO - LA_TI which has a high estimate
(reasonable discrimination). Note that the Estimate and 𝑑 values are calculated using separate R packages
(see Methods), and have small differences for two of the reported effects.

Predictor Estimate SE 𝑧 𝑝 𝑑 [95% CI]

Trial order −0.00 0.00 −0.30 0.766 −0.01 [−0.11, 0.08]
LA_LO - LA_TI (Intercept) 0.72 0.15 4.83 < .𝟎𝟎𝟏 0.70 [0.45, 0.95]
LA_LO - PU_LO −0.43 0.15 −2.84 𝟎.𝟎𝟎𝟒 −0.43 [−0.72, −0.13]
LA_LO - PU_TI 0.66 0.17 3.98 < .𝟎𝟎𝟏 0.66 [0.33, 0.98]
LA_TI - PU_LO 0.95 0.17 5.44 < .𝟎𝟎𝟏 0.95 [0.61, 1.29]
LA_TI - PU_TI −0.07 0.15 −0.45 0.651 −0.07 [−0.37, 0.23]
PU_LO - PU_TI 0.49 0.16 3.04 𝟎.𝟎𝟎𝟐 0.49 [0.18, 0.81]
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effects. The intercept model used to report contrasts was discrimination
of timing variance when the mean was laidback (LA_LO vs LA_TI), as
assigned automatically–and for our purposes arbitrarily–by the GLMM
software used (refer back to Methods). Participants successfully dis-
criminated rhythms differing in timing variance (LA_LO vs LA_TI and
PU_LO vs PU_TI); and discrimination was moderately better when the
mean timing was pushed (PU_LO vs PU_TI). Discrimination was much
better for stimuli differing in both mean and variance of timing (LA_LO
vs PU_TI and LA_TI vs PU_LO). The only discrimination that did not
significantly differ from the intercept model (LA_LO vs LA_TI) was
discrimination of mean timing with low timing variance (PU_TI vs
LA_TI). Finally, discrimination was moderately worse when the timing
variance was high (LA_LO vs PU_LO).

The Gold-MSI subscales were tested step-wise as fixed effects in the
GLMM, but did not improve the model’s Bayes Information Criterion
(BIC). Participants’ mean self-reported general sophistication was rel-
atively low, M = 69.4, SD = 23.5, 95% CI [63.3, 75.6], corresponding
o the 28th percentile for a very large sample (Müllensiefen et al.,
014, Table S3). The mean score for general sophistication in the
resent study was significantly lower than that of Müllensiefen et al.,
(147687) = −4.408, 𝑝 < .001 (unpaired t-test). The Supplementary
aterials contains score distributions for each survey sub-scale.

Participant confidence ratings were significantly greater in trials
here participants provided the correct response (Mann–Whitney 𝑈 =
.21𝑒5, 𝑝 < .001; Mdn𝐼𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡 = 2, Somewhat confident; Mdn𝐶𝑜𝑟𝑟𝑒𝑐𝑡 =
, Fairly confident), suggesting that participants had some explicit
wareness of their perceived differences in stimulus timing profiles.

Binomial tests were performed to assess biases in participant re-
ponses – note that the order of presentation for stimulus A and B
n every XAB combination was balanced across trials (refer back to
rocedure). Two-sided tests were performed and are reported here
6

ith respect to response A. Overall, the proportion of A responses of s
0.2% did not differ significantly from the expected 50.0% (𝑝 = .772).
he proportion of responses for the stimulus presented first after the
eference was 52.4%, narrowly greater than the expected 50.0% but
tatistically significant (𝑝 = .014). This indicates a mild primacy bias in
articipants’ responses.

.2. Individual differences explained by the probabilistic model

Across the parameter ranges tested, most model configurations per-
ormed above chance (𝑑′ > 0), see Fig. 5A&B. Model 𝑑′ values spanned
larger range than participants, from −0.8 to 3.2, M = 1.3, SD = 0.7.
he performance floor of models was lower than participants, with sev-
ral configurations performing below chance (left side of Fig. 5A), un-
ike participants. Additionally, models appeared to suffer from a perfor-
ance ceiling, with few models achieving hit rates exceeding 85% (top

eft of Fig. 5B)—this is revisited in the Discussion. Five numerically-
nstable model configurations were excluded, as they could not track
he stimulus of at least one trial without excessive accumulated er-
or in the phase estimate. For the remaining model configurations,
hase-tracking noise 𝜂𝜇 and expected phase noise 𝜎 parameters were
ignificant predictors of a specific configuration’s performance 𝑑′, 𝑅2 =
81, 𝐹 (2, 392) = 550.7, 𝑝 < .001 (ordinary least squares regression, OLS);
hereas the expected timing variance 𝑣𝑖 parameter did not improve

he model’s BIC. Better performance of a model configuration was
ssociated with lower phase-tracking noise, 𝑡𝜂𝜇 = −36.4, and higher
xpected phase noise, 𝑡𝜎 = 19.0.

Next we addressed the question of individual variance between
articipants by identifying the model configuration(s) whose responses
est matched those of individual participants. Configurations were
ssigned to individual participants by maximising agreement across
rials, measured by Cohen’s kappa (𝜅). It was possible to assign the

ame configuration to multiple participants, such that only 33 unique
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model configurations were assigned to the 56 participants. Participants
with poor baseline performance were included in this analysis, as
lower-performing models could feasibly predict their performance. As
shown in Fig. 5D, agreement between participants and assigned models
generally fell in the ranges of moderate (0.41–0.60) to substantial
(0.61–0.80). The assigned models’ 𝑑′ values were significant (if mod-
erate) predictors of the respective participant’s 𝑑′ values, Fig. 5C, 𝑅2 =
.35, 𝐹 (1, 54) = 28.85, 𝑝 < .001 (OLS); confirming that participants
and their individually-matched models shared similar levels of overall
performance.

The phase-tracking noise (𝜂𝜇) parameter of assigned models was a
eak but significant predictor of participant 𝑑′, 𝑡 = −3.11, 𝑅2 = .15,

𝐹 (1, 54) = 9.64, 𝑝 = 0.003, see Fig. 5E. The other model parameters were
not significant predictors, not improving the Akaike information crite-
rion (AIC) when included and excluded stepwise in the OLS regression.
This suggests that higher levels of phase-tracking noise in participants’
rhythm tracking contribute negatively to overall performance, which
is unsurprising, given perturbations to the posterior phase estimate
originating from noise might offset perturbations originating from stim-
ulus microtiming. It is also therefore unsurprising that agreement 𝜅
of assigned models also predicted participant’s overall performance 𝑑′,
2 = .37, 𝐹 (1, 54) = 32.07, 𝑝 < .001; given noisy discrimination in both
odels and participants would reduce the likelihood of agreement,
hilst also reducing performance.

Next, in order to validate the assigned models’ ability to predict
heir participant’s responses at the level of specific trials, we separate
articipants with lower performance, which (as described above) re-
lects noisy discrimination across trials. Participants were partitioned
or subsequent analysis using a median split on the lower CI of par-
icipant 𝑑′ (Mdn𝑑′−𝐶𝐼 = 1.02, see Fig. 4A), to separate participants
ith closer-to-chance (noisy) performance from those with stronger
erformance. The use of the lower limit of the 95% CI allowed a
erfectly even split, where each group had 𝑁 = 28 participants. The
horthand < Mdn is used for the below-median group, and ≥ Mdn the
bove-median group.

Model prediction of participant responses was first analysed in terms
f classification performance—the agreement between participant and
odel responses, given the timing profile associated with the response.

n other words, when participants’ response (A or B) was associated
ith a specific timing profile (e.g. PU_TI), whether the model responded

he same way. Table 3 reports the performance using classification
easures, for both the above-median and below-median groups. Pre-

ision and recall clearly improved for participants in the above-median
roup, as reflected by overall classification performance: F1≥𝑀𝑑𝑛 =
82, F1<𝑀𝑑𝑛 = .66. These overall 𝐹1 scores indicate good model
erformance for participants in the above-median split, compared with
erely acceptable performance for participants in the below-median

plit. The F1 scores were relatively homogeneous across timing profiles,
uggesting the model was consistent in predicting participant responses.

Binomial GLMMs were also created to assess whether model re-
ponses (A or B) predicted participant responses, alongside the absolute
onfidence (𝛥) of model predictions, which corresponds to the differ-
nce between distances X-A and X-B. We hypothesised an effect of
oth model response and confidence, as well as an interaction between
he two. For low levels of model confidence, i.e. where the X-A and
-B distances are similar, the model would predict lower participant
ccuracy, hence the model response would be a less effective predictor
f participant responses. GLMM fit for the above-median participant
roup is shown in Table 4, see Supplementary Materials for the below-
edian participant group. For above-median participants, the GLMM

ccounted for a reasonable proportion of variance (𝑅2
𝑐 = .55, 𝑅2

𝑚 = .68).
he model response (match/mismatch) had the largest effect, strongly
redicting participant responses. There was a moderate effect of con-
idence, and as expected a large interaction between predictors, such
hat the predictive power of the response decreased for low confidence
7

alues. Together, this suggests the continuous model-derived distance
Table 3
Overall classification of participant responses by individually assigned models, i.e. tim-
ing profile of response rhythm, for all participants (𝑁𝑆𝑢𝑝𝑝𝑜𝑟𝑡 = 336 per timing profile).
Performance is reported separately for the below- and above-median participant groups
(< Mdn and ≥ Mdn respectively).

Timing profile Precision Recall F1

< Mdn ≥ Mdn < Mdn ≥ Mdn < Mdn ≥ Mdn

Pushed & Tight (PU_TI) .65 .82 .74 .89 .69 .85
Pushed & Loose (PU_LO) .69 .90 .64 .74 .66 .81
Laidback & Tight (LA_TI) .75 .96 .50 .70 .60 .81
Laidback & Loose (LA_LO) .61 .72 .78 .97 .68 .83
Accuracy – – – – .66 .83
Mean .67 .85 .66 .83 .66 .82

Table 4
Binomial generalised linear mixed model fit to predict participant responses from
interacting effects of model response (A or B) and 𝛥 (absolute confidence), for
participants in the above-median split, with random effects of timing profile comparison
type and participant (𝑁𝑃𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡 = 28, 𝑑𝑓 = 1338, 𝑅2

𝑐 = .55, 𝑅2
𝑚 = .68). Results for the

below-median split are reported in the Supplementary Materials.
Predictor Estimate SE 𝑧 𝑝 𝑑 [95% CI]

(Intercept) −2.68 0.50 −5.34 < .𝟎𝟎𝟏 −2.56 [−3.55, −1.58]
Model response 4.88 0.25 19.59 < .𝟎𝟎𝟏 4.69 [4.20, 5.18]
𝛥 0.00 0.00 5.27 < .𝟎𝟎𝟏 0.53 [0.17, 0.88]
𝛥 × Model response −0.00 0.00 −8.15 < .𝟎𝟎𝟏 −0.88 [−1.27, −0.49]

explains some additional variance in participant responses, albeit a
smaller portion than the (discretised) response derived from this value.

There were no significant correlations between the assigned models’
parameters and musical sophistication, only a marginally significant
relationship between phase-tracking noise (𝜂𝜇) and participant’s self-
reported general levels of musical sophistication; with noise decreasing
for higher general Gold-MSI scores, 𝑏1 = −81.55, 𝑅2 = .07, 𝐹 (1, 54) =
.81, 𝑝 = 0.056.

. Discussion

The results suggest that listeners could detect systematic patterns of
uditory microtiming (∼ 30 ms), characterised by specific probabilistic
istributions of onset timing, and this could be simulated in terms of
continuous inferential probabilistic process tracking stimulus phase.
his research makes two key contributions.

First, we found that many participants were sensitive to both the
ean and variance of microtiming, without any instructed listening

trategy or guidance about stimulus properties. Discrimination was
ost sensitive for stimuli with contrasting means and variances; as per

arlier findings by Hosken (2021) using the same method but stimuli
ith lower levels of microtiming. This result is not necessarily intuitive,

ince the most sensitive discrimination might be expected where the
ean timing was different and the timing variance was consistently

ow (PU_TI vs LA_TI)—one stimulus would be clearly pushed, and
he other clearly laid-back. It is possible that such an effect would
epend on smaller (and more naturalistic) pushed and laid-back mean
ffsets, as timing variance would introduce greater noise in interpreting
ean differences—instead of being perceived as a separate parameter.
owever, even with our stimuli, participants were less sensitive to
ean onset timing under high variance (LA_LO vs PU_LO). Interest-

ngly, participants were more sensitive to timing variance when the
ean onset timing was early rather than late (PU_LO vs PU_TI). Similar

esults were reported by Matsushita and Nomura (2016), where a
ass guitar preceding a hi-hat (by a similar asynchrony to that of
he present work, ±31.25 ms) was more perceptible than the opposite,
nd participants also rated these stimuli with higher ‘pleasantness’.
he reason for this asymmetry requires further investigation, but one
romising explanation is auditory masking (Oxenham & Wojtczak,
010) in which earlier sounds mask later ones if the hi-hat, being
igher in frequency, is a stronger simultaneous mask then the other
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Fig. 5. Model task performance, and fit to individual participants: (A) model 𝑑′ values across configurations (N = 400), represented as a continuous line due to the large number
f data-points, with models assigned to participants annotated, and error-bars (shading) denoting 95% CI; (B) model hit- and false-alarm rates; (C) model 𝑑′ versus participant 𝑑′;
nd (D) the distribution of 𝜅 values between participants and assigned models, with histogram area normalised with respect to a kernel density estimate (KDE, which uses the
andwidth method from Scott, 1992); and (E) model phase-tracking noise 𝜂𝜇 versus participant 𝑑′.
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rum samples. However, this might not be a widespread phenomenon,
iven a study measuring pupil dilation in response to microtiming
synchronies (±40 ms and ±80 ms) between a double bass and a drum-
it found that pupil responses did not differ significantly between early
nd late microtiming (Skaansar et al., 2019).

Second, participant responses were effectively predicted by a
ayesian model of entrainment (PIPPET, Cannon, 2021) fit to indi-
idual participants. Our results support a plausible mechanism un-
erlying the perception of microtiming: an observer continuously es-
imates phase and tracks phase uncertainty using an approximation
o optimal (Bayesian) inference about the rhythmic stimulus, and
his estimate serves as a basis to compare the similarity of expres-
ive microtiming in different performances. Additionally, we found
hat wide inter-individual differences in participant sensitivity were
artially accounted for by the model’s configured level of phase-
racking noise—how much the dynamically estimated phase mean
s perturbed by hypothesised noise in neural timekeeping processes.
uture work might consider a larger PIPPET parameter space, and
ssess whether this results in more unique assignments of model
onfigurations to participants, given several participants in the present
ork were matched to the same model configurations; but this might

imply reflect high-agreement between participants. While there was no
rior empirical basis for the continuous (i.e. not event-based) distance
unction developed here for PIPPET (𝐷𝐵𝐶 ), related models involving
ontinuous error accumulation have been proposed for discrimination
f irregular rhythms (Espinoza-Monroy & de Lafuente, 2021) and tempo
rift (Madison, 2004, ritardandi in music). Further, listeners have been
hown to implicitly collect higher-order statistics describing auditory
timuli, which can be used to detect changes and inform perceptual
iscrimination through Bayesian inference (Skerritt-Davis & Elhilali,
018, 2021).

The way in which PIPPET models microtiming perception is similar
o that of the ‘‘timing-function’’ (TIF) model by Honing (2001), which
8

haracterises musical timing as a function mapping between score and p
erformance time, where timing asynchronies (early/late) depend on
empo dynamics. The local time shifts represented in a TIF resemble
pdates to the mean (posterior) phase estimate in PIPPET, but PIPPET
iffers in some important ways: it operates dynamically, hence serves
s a satisfying model of real-time behaviour; prior expectations do not
equire a one-to-one mapping onto the score-based representation of

stimulus, unlike TIFs; it takes direct inspiration from motor neu-
ophysiology (Cannon & Patel, 2021); and phase estimates include
n explicit uncertainty term, 𝑉𝑡. In some contexts, phase uncertainty
n PIPPET might increase so much in response to repeating stimulus
synchronies that the mean phase is not subsequently shifted; which
ore closely resembles wide attentional pulses in DAT (Danielsen,
018, also see Danielsen, 2010 for consideration of TIFs).

We found that PIPPET configurations hit a performance ceiling,
here few configurations achieved a hit-rate exceeding 85% (Fig. 5B),
nlike a handful of participants who achieved hit rates above 90%
Fig. 4B). Possibly, this stems from the distance function used to
imulate participant discrimination—comparing the distance between
osterior estimates at every time-step, for two stimuli, in parallel.
his limited the model to a linear comparison of two stimuli, whereas
articipants did not listen to multiple stimuli simultaneously and are
nlikely to (actively or unconsciously) recall the posterior estimates
or both stimuli perfectly—recalling just one stimulus (∼ 9 s) would
tretch the capacity of temporal working memory (Repp, 2005, p.
72). Participants might have instead compared memorable and similar
synchronies at different times within each stimulus (e.g. BD greatly
receded the HH at the start of stimulus X, and similarly at the end of
timulus B). A similar approach might be implemented for PIPPET using

non-linear comparison of posterior estimates (e.g. using dynamic
ime warping, Müller, 2007), which may better-represent participant
iscrimination. It is also worth bearing in mind that some discrepan-
ies between simulations and participant responses might stem from

rocedural biases; for example, we noticed a mild but nevertheless
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significant bias towards the first stimulus (of A and B) presented after
the reference.

There are other important considerations for developing our mod-
elling in future work. We configured models with mean expectations
for events with metronomic timing (𝜙𝑖), which is appropriate (on
average) for drum rhythms from popular music (Hosken et al., 2022),
but in certain music styles expressive timing might not be considered
a ‘deviation’ from quantised timing but instead define prior expecta-
tions (Kaplan et al., 2022, p. 19) and aesthetic standards (Bengtsson,
1987; Repp, 1997). For example, expressive timing patterns system-
atically interact with syntactic processes in the phrasing of off-beats
by samba percussionists (Gerischer, 2006), backbeats in rock and jazz
rhythms (Butterfield, 2006; Iyer, 2002), or subdivision patterns in
Malian jembe music (Polak, 2010). It is also possible that some of the
observed participant sensitivity to specific microtiming profiles can be
explained by low-level auditory features of the specific samples used
for synthesis, such as the amplitude envelope (including rise time),
sound frequency or duration (Danielsen et al., 2019; London et al.,
2019), which deserves consideration in terms of the model’s prior
expectations. One other avenue for future work might be considering
how the fixed rate of the model’s posterior update (i.e. PIPPET’s time
step parameter 𝑑𝑡) relates to sensory sampling schemes (Morillon et al.,
2019), and implications for low level temporal integration or bounding
of auditory events (Simon et al., 2019).

The results reported here indicate that some listeners struggled to
explicitly distinguish between different performances, despite using
stimuli with exaggerated microtiming compared to realistic human
performances in Western popular music (Hosken et al., 2022). This
raises the important question of what the precise perceptual thresholds
are for specific microtiming profiles. Future iterations of the XAB task
presented might explore this, in tandem with corpus studies that quan-
tify typical performance ranges for specific patterns of microtiming
deviations (e.g. for the patterns of drum stroke asynchronies identified
by Câmara et al., 2022). For realistic performance ranges, participants
might not reliably perceive systematic microtiming patterns–or at least
draw upon the effects for explicit discrimination–without prompts of
what to listen to (such as the ‘‘assertiveness’’ of a given instrument, But-
terfield, 2010); whereas participants in the present study distinguished
between microtiming patterns without an advised listening strategy.

Finally, this study might be repeated with musical experts. The lack
of expertise effects in our results was consistent with Hosken (2021, Ch.
4)’s findings. Participant differences were predicted here by a model
parameter attributed to noisy timekeeping processes in the brain—
as opposed to a parameter inside the generative model of temporal
expectancy, which would presumably depend on musical experience.
But our participants had relatively low levels of musical sophistication
(measured by the Gold-MSI index, Müllensiefen et al., 2014), and
several perceptual studies have reported more precise perception of
timing deviations for musicians (e.g. Jones & Yee, 1997; Matthews
et al., 2016; Repp, 2010) alongside perceptual centres dependent on
genre-specific musical experience (Danielsen et al., 2021). Experience
effects might also depend on more-naturalistic microtiming patterns.
For drum rhythms this might include expressive timing in articulation
of the hi-hat (Câmara et al., 2022), whereas it was metronomic in the
stimuli used for the present paper. Expressive timing profiles might
also require more detailed probabilistic descriptions that include, for
example, distributional asymmetries (Hosken, 2021, Ch. 3).

5. Conclusion

Our results reveal wide individual differences in auditory microtim-
ing sensitivity, with some listeners showing excellent performance and
others struggling to explicitly distinguish microtiming between differ-
ent performances of a popular drum rhythm. The cognitive mechanisms
9

underlying sensitivity to microtiming (characterised by probabilistic
distributions of timing) can be simulated as a Bayesian process of pre-
dictive entrainment. The PIPPET model embodying these mechanisms
provides a robust basis for future hypothesis-driven research using
actual performed rhythms and comparisons across modalities, including
timing in language.
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