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Abstract

Long-term and culture-specific experience of music shapes rhythm perception, leading to

enculturated expectations that make certain rhythms easier to track and more conducive to

synchronized movement. However, the influence of enculturated bias on the moment-to-

moment dynamics of rhythm tracking is not well understood. Recent modeling work has for-

mulated entrainment to rhythms as a formal inference problem, where phase is continuously

estimated based on precise event times and their correspondence to timing expectations:

PIPPET (Phase Inference from Point Process Event Timing). Here we propose that the

problem of optimally tracking a rhythm also requires an ongoing process of inferring which

pattern of event timing expectations is most suitable to predict a stimulus rhythm. We formal-

ize this insight as an extension of PIPPET called pPIPPET (PIPPET with pattern inference).

The variational solution to this problem introduces terms representing the likelihood that a

stimulus is based on a particular member of a set of event timing patterns, which we initialize

according to culturally-learned prior expectations of a listener. We evaluate pPIPPET in

three experiments. First, we demonstrate that pPIPPET can qualitatively reproduce encul-

turated bias observed in human tapping data for simple two-interval rhythms. Second, we

simulate categorization of a continuous three-interval rhythm space by Western-trained

musicians through derivation of a comprehensive set of priors for pPIPPET from metrical

patterns in a sample of Western rhythms. Third, we simulate iterated reproduction of three-

interval rhythms, and show that models configured with notated rhythms from different cul-

tures exhibit both universal and enculturated biases as observed experimentally in listeners

from those cultures. These results suggest the influence of enculturated timing expectations

on human perceptual and motor entrainment can be understood as approximating optimal

inference about the rhythmic stimulus, with respect to prototypical patterns in an empirical

sample of rhythms that represent the music-cultural environment of the listener.
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Author summary

Cross-cultural studies have highlighted that listeners from non-Western cultures can pre-

cisely tap along with complex rhythms present in music from their culture that are chal-

lenging for participants from Western cultures. Therefore, while most adults can

synchronize movements with simple periodic patterns (e.g. a ticking clock, a metronome),

the ability to precisely track more complex rhythmic patterns depends on musical experi-

ence. Many computer models have been developed to describe the remarkable precision

of human “entrainment”, but they have done little to explain how this ability depends on

cultural musical experience. Here, we describe this as the problem of estimating the phase

of a cycle underlying an auditory rhythm in real time, by drawing upon learned patterns

(reference structures) that could plausibly describe the structure of observed events. By

creating a model that solves this inference problem, and configuring these patterns to

reflect specific musical features, we are able to simulate cultural variation in synchroniza-

tion to rhythm. These results highlight that while humans universally move to musical

rhythm, the ability to do so depends on musical experience within a cultural tradition, as

reflected by the distinct “categories” of rhythm learned during such experience.

Introduction

Humans are remarkably skilled at detecting temporal patterns in auditory stimuli such as

speech and music. Expressive performances of a musical score can deviate greatly in the pre-

cise timing of musical events, yet listeners are still able to identify prototypical rhythms, which

can be notated [1] and associated with synchronized movement [2]. The precision of this syn-

chronization varies based on a listener’s musical experience: long-term music-cultural expo-

sure shapes rhythm perception, leading to enculturated expectations that make certain

(culturally-familiar) rhythms easier to predict and more conducive to synchronized move-

ment. This has been observed in finger-tapping tasks that highlight the stability with which

participants from India [3], Turkey [4] and Mali [5] synchronize to complex rhythms present

in their cultures, in contrast to participants from Western cultures in which these rhythms are

uncommon [6, 7]. The present paper focuses on the cognitive processes underlying this encul-

turated bias in entrainment. Entrainment typically refers to the physical principles of mode-

locking between coupled oscillating systems [8], but here we define entrainment empirically as

in [9]: the temporal alignment of a biological or behavioral process with the regularities in an

exogenously occurring stimulus. In humans, this includes observed synchronization of move-

ment to predictable rhythmic patterns such as isochronous or non-isochronous beats found in

different musical cultures [10, 11]. In order to model this behavior, we adopt a recent theoreti-

cal perspective which describes entrainment computationally as a dynamic inference of stimu-

lus phase based on an internal model of rhythmic structure [9].

There is a history of using probabilistic models to simulate perception and production of

rhythmic phenomena [2, 9, 12–16], and to describe rhythmic structure (e.g. [17, 18]). In par-

ticular, the effect of musical enculturation on listeners’ expectations has been modeled as cou-

pled cognitive processes of statistical learning and probabilistic prediction [16], whereby

listeners learn discrete grammars characterizing the probabilistic structure of experienced

musical styles (as proposed in [19]). One application includes the perception of metrical struc-
ture [14, 15], a hierarchically-embedded collection of recurring temporal periods inferred

from and aligned to a stimulus rhythm [20]. These probabilistic models are reliant on symbolic

sequence-learning algorithms [21], learning from (symbolic) score-based musical corpora.
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While there is a long tradition of cross-cultural music corpus studies [22, 23], these models are

limited by a coarse representation of rhythm, and cannot explain how people dynamically

map—during entrainment—between auditory rhythms represented in a continuous space and

discretized (symbolic) representations. As these models cannot serve as models of real-time

behavior, there is considerable room for improvement in our computational understanding of

how probabilistic temporal expectations continuously bias entrainment.

Recent psychological experiments have yielded data that are especially challenging for exist-

ing probabilistic models of rhythm perception. Jacoby et al. [24, 25] investigated discrete per-

ceptual representations of auditory rhythm through serial reproduction tasks, providing

substantial evidence that the perception of auditory rhythm is biased towards distinct rhythmic

categories [26–28]; and that these categories vary cross-culturally. In these experiments, partic-

ipants were asked to synchronize tapping with cyclical rhythms composed of three random

time intervals, and the synchronized responses were averaged to produce a three-interval stim-

ulus rhythm for the next iteration. After several iterations these rhythms were biased towards

distinct integer ratios between successive intervals (see Fig 1). For all participant groups tested

across five continents and fifteen countries [25] these categories included small integer-ratio

rhythms, such as an isochronous pattern (intervals of ratios 1:1:1) and long-short interval pat-

terns (cyclic rotations of ratios 2:1:1). This widespread preference for small integer-ratio

rhythms appears to reflect universal biases in human auditory perception [29–32]. There was

also substantial variation in the perceptual categories (rhythmic patterns) measured, which

was clearly related to the prior music-cultural experience of participants. Traditional musicians

demonstrated significantly greater bias towards mildly complex and culturally relevant rhyth-

mic patterns when compared to students, for example in the Malian (ratios 3:3:2) and Turkish

(ratios 2:2:3) groups. Crucially, this suggests that the discrete representations of rhythm that

individuals draw upon during entrainment are contingent on their enculturation, and not

fixed by biological constraints.

While the tendency to perceive and (re)produce continuously timed rhythms categorically

in terms of simple integer ratio intervals is well documented [1, 24–27], the reasons for it are

not well understood. This tendency might reflect intrinsic physiological dynamics. For exam-

ple, these simple ratios offer stability for coupled neural oscillators given intrinsic mode-lock-

ing properties [33, 34]. Cross-frequency coupled oscillator models have been used to simulate

Fig 1. Perceptual bias in entrainment. Entrainment to an auditory rhythm through synchronized movement reveals

a biased response, as in Bayesian inference, towards a listener’s perceptual priors [24, 25]. If a listener does not have

enculturated familiarity with musical rhythms related by the ratios 2:2:3, they are likely to interpret a rhythm

(approximately) related by these ratios as 1:1:2, and this will be reflected in synchronized movements that are in fact

closer to ratios 1:1:2 than 2:2:3.

https://doi.org/10.1371/journal.pcbi.1010579.g001
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this preference in iterated reproduction [35] and rhythm categorization [36], but neither

offered an explanation for enculturated biases towards specific ratios. However, oscillator

models with Hebbian plasticity [37] are capable of learning complex rhythmic patterns

through frequent exposure [38, 39]. This suggests enculturation effects in entrainment might

be explained using such (low-level) neural mechanisms, but it has not been shown that these

results generalize to the cultural differences observed in iterated reproduction studies [24, 25].

The purpose of the present research is instead to investigate whether it is possible to simu-

late listeners’ expectations, including both cross-culturally universal tendencies towards simple

integer ratios and culturally-acquired deviations towards specific (mildly) complex integer

ratio rhythms, solely through learning the statistics of interval patterns in music of these cul-

tures (i.e., without any pre-existing bias for simple-integer ratios). For that reason we focus on

the distinction between simple and complex integer ratio rhythms, rather than integer and

non-integer ratio rhythms. Hence, in the present work, listeners’ expectations are modeled

using real-world notated musical rhythms, which consist solely of integer interval ratios. In the

Discussion we consider the plausibility of this approach, with respect to intrinsic biological

constraints of motor processes and temporal perception.

In order to define this perceptual problem of enculturated biases towards specific integer

interval ratios in entrainment at a satisfactory computational level, we start by adopting a for-

mal definition of temporal expectation and entrainment, namely “Phase Inference from Point

Process Event Timing” (PIPPET) [9]. PIPPET describes expectation-based entrainment as an

inference problem which affords a precise solution: inferring the state of an exogenous process

that generates a series of events in time. This involves dynamically estimating phase and uncer-

tainty (inverse of precision), where phase is a hidden variable denoting progress through an

expected sequence of events. PIPPET is consistent with the “predictive-processing” frame-

work, which proposes that the brain continuously attempts to infer the hidden causes of sen-

sory events using a learned understanding (generative model) of how those causes produce

sensations [40]. Estimates of hidden causes are optimized by minimizing the prediction error
between new sensory information and predictions based on current estimates, which is

achieved by Bayesian inference on the generative model parameters. Prediction errors are

weighted by the precision (certainty) of predictions, to moderate new observations against

prior expectations about the hidden causes, such that greater prediction errors would be

assigned to prior expectations with high certainty (precision). The influence of prior expecta-

tions in this Bayesian formulation of entrainment exerts an inferential bias on timing predic-

tions resembling the perceptual bias observed in iterated reproduction paradigms. For the

purposes of this work, PIPPET also grants flexibility in the definition of temporal expectations

acquired by enculturated listeners.

However, one critical limitation of PIPPET is that entrainment is performed in the context

of just one expected rhythmic pattern, so it cannot describe how a listener matches a pattern of

expectations with an ambiguous rhythmic stimulus. Depending on the temporal organization

of a stimulus, it is clear from iterated reproduction studies that listeners experience perceptual

biases towards multiple rhythmic patterns (categories). Listeners must therefore infer a suit-

able interpretation of an ambiguous stimulus rhythm, which involves drawing upon prior lis-

tening experience (as in Fig 1). One example of this is in entrainment to polyrhythms,

overlapping combinations of rhythmic patterns, where listeners identify just one of the

rhythmic streams as a perceptual “ground” [20, p. 48] when they are unable to integrate the

parallel rhythmic streams. Even expert musicians struggle to track multiple cyclically struc-

tured sound streams [41, 42], suggesting that listeners both dynamically assess the possible

interpretations of an auditory stimulus, and then draw upon the most plausible to form a sin-

gle estimate of phase. However, this assessment must be updated dynamically during
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perceptual entrainment—otherwise, we would not have the flexibility to switch to a different

interpretation as a rhythm changes [3]. How do listeners dynamically assess the plausibility of

different rhythmic patterns underlying some auditory stimulus, while at the same time draw-

ing on their expectations to inform and bias their entrainment?

In the present paper, we address this question by incorporating rhythmic pattern selection

for expectancy-based entrainment in an extension of PIPPET, which we call pPIPPET (PIP-

PET with pattern inference). Accordingly, we present variational filtering equations that

approximate a perfect Bayesian solution to this problem. Compared with existing entrainment

models, two new elements are introduced: (1) dynamic estimation of which discrete rhythmic

pattern provides the best interpretation of a sequence of continuous-time auditory events; and

(2) dynamic weighing of these interpretations to inform a single estimate of phase.

In the Results section we use pPIPPET to simulate the results of existing empirical datasets.

In three experiments we examine whether the observed performance of participants can be

related to specific differences in prior expectations, and their influence on expectancy-based

entrainment, as characterized by pPIPPET. In Experiment 1 we use the model to simulate lis-

teners from distinct musical cultures synchronizing to two-interval rhythms [5], i.e. repeating

cycles of two sounds, defined by two inter-onset time intervals. In Experiment 2 we extend the

scope of the simulations to periodic three-interval rhythms in a large rhythm space, which

were explicitly notated (using discrete interval categories) by Western musicians [1]. In Exper-

iment 3 we simulate enculturated bias in iterated reproduction of rhythms by listeners from

several musical cultures, using three-interval rhythms from the same rhythm space as Experi-

ment 2 [24, 25]. By deriving prior expectations in these simulations from musical corpora, we

demonstrate that pPIPPET can successfully simulate enculturation effects on rhythm percep-

tion and production, integrating cultural priors, production constraints and universal percep-

tual biases. In the Discussion section we highlight the contributions of pPIPPET to cross-

cultural research in musical rhythm perception and expand on the proposed implementation

of PIPPET in the brain.

Overview of pPIPPET

We briefly describe pPIPPET in this section. Please refer to the Methods section for detailed

descriptions of both PIPPET and pPIPPET, and see S2 Text for the respective derivations.

pPIPPET directly extends PIPPET [9], the formal problem of dynamically estimating the

phase underlying a sequence of timed events generated as a point process. As in [9] we solve

this problem through continuous variational inference: a generative model is created to

describe the probabilistic generation of events, and variational Bayes is used to continuously

estimate phase and phase uncertainty of this generative model. Whereas PIPPET’s generative

model describes expectations for a single series of events, i.e. one rhythmic pattern, pPIPPET

generates expectations for multiple rhythmic patterns.

Note that PIPPET is formulated as a perceptual process, and by extension pPIPPET is as

well. While we do not specify precisely how entrained movement is produced by this process,

we posit that perceptual and motor entrainment depend on the same internal process of esti-

mating underlying phase (see [9, p. 21]). In other words, we model how the listener would

interpret the rhythm in light of their expectations, which we assume would inform their repro-

duction of the rhythm.

PIPPET. A listener’s event-based expectations in PIPPET are modeled by positing that

they expect events to occur as an inhomogenous point process, with probability λ(φ), referred

to as an expectation template. This consists of a summation of Gaussian distributions, each

centered around a mean phase at which an event is expected, and scaled according to
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expectation strengths and precisions. This allows expectations for a precisely timed rhythmic

pattern to be represented continuously, as in Fig 2.

The optimal Bayesian solution to rhythm tracking is approximated by a filter that dynami-

cally estimates phase. The filter uses the expectation template to inform its estimate of phase

based on the presence or absence of events in each dt time step, pushing it toward expected

event phases at each event. It maintains a Gaussian posterior for phase characterized by a

mean μt and variance Vt at any time t. Between events, the mean increases at a steady rate

(though can deviate slightly from this trajectory when expectations are especially strong, see

[9, Fig 7]), and the variance accumulates. At events, the posterior is updated using a precision-

weighted sum of the phase as estimated from the stimulus history, and the phase at which an

event is expected to occur. This allows PIPPET to make appropriate phase shifts on specific

events according to prior expectations, and these shifts can be related to specific production

biases in finger-tapping experiments (e.g. [5, 24, 25])—this would not be possible if assuming

that phase advances steadily.

Note that while PIPPET can entrain to a periodic pattern, it does not detect periodicity as

defined by the time interval between beats (tempo). Joint phase and tempo inference is

addressed in PATIPPET, a variant of PIPPET which additionally infers the rate of phase

advance over time [9]. In this work we assume a constant tempo, and consider how tempo

might be incorporated in the Discussion.

Further to the original formulation of PIPPET, we have introduced two types of noise: (1)

timing of stimulus events are perturbed to represent noisy delays in auditory processing; and

(2) the estimated phase mean is perturbed to reflect the noisiness of timekeeping processes in

the brain. Please refer to the Methods for details.

pPIPPET. In pPIPPET, a listener’s event-based expectations are modeled by positing that

they expect one of a set of rhythmic patterns (i.e. expectation templates), indexed by m, to be

chosen at random with probabilities pm, and for events to then occur as an inhomogenous

point process based on the respective expectation template, λm(ϕ). The listener draws upon all

templates to dynamically estimate the phase underlying observed events. A single estimate is

maintained as a Gaussian posterior (as in PIPPET), instead of separate estimates per expecta-

tion template, given that listeners appear to track just one cyclically structured pattern in an

ambiguous sound stream (described in the Introduction with respect to polyrhythms, also see

[20, p. 48]).

Fig 2. PIPPET expectation template. An expectation template in PIPPET, as defined in Eq (1), represents the

instantaneous rate of events λ(ϕ) at phase ϕ of the underlying process. Expectations for specific events are each

represented by a Gaussian centered at the respective phase ϕi, with variance vi representing the precision of the

expectation, and scaling factor λi representing the strength of expectations. The constant λ0 accounts for the rate of

events unrelated to phase, i.e. background noise.

https://doi.org/10.1371/journal.pcbi.1010579.g002
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Each template starts with a prior probability pm
0

of generating an observed rhythm. At any

time t, the posterior probability of each template pm is revised based on the most recent obser-

vation (presence or absence of an event in the current dt time step), according to how much an

event is anticipated by that template. The current posterior distribution for phase is then used

to calculate posterior distributions in the context of each template m (as in PIPPET), and these

estimates are marginalized to approximate a single Gaussian posterior for phase. This is

described in more detail in the Methods section with detailed derivations given in S2 Text.

In the following section we configure the pPIPPET filter using different sets of expectation

templates, to investigate the resulting precision of entrainment. We relate this to differences in

human entrainment as a function of musical culture, and how this reflects differing discrete

expectations for rhythmic patterns between listeners. We do this by qualitatively comparing

the results of our simulations to those of empirical studies [1, 5, 25] as the data is not publicly

available.

Note that the results presented do not essentially depend on the configuration schemes

used. The choices made should be viewed as starting points in applying pPIPPET to guide the

interpretation of experimental data.

Parameters for these simulations can be found in S1 Text. Supplementary materials includ-

ing the simulation code are available at doi.org/10.17605/osf.io/tpwfn.

Results

Experiment 1: Synchronization using culturally relevant rhythmic

prototypes

We start by illustrating the basic behavior of the pPIPPET filter, simulating entrainment to

simple periodic two-interval rhythms (i.e., a rhythm consisting of three events separated by

two temporal intervals). Repeated two-interval rhythms can be considered basic elements of

more complex rhythmic patterns. When presented with two-interval rhythms with unbalanced

duration ratios (e.g. 3:1 or 3:2), synchronized tapping in participants reveals a perceptual bias,

in that the tapped rhythm is typically pulled towards an approximate 2:1 ratio (see [43] for a

review). This classic literature, exclusively studying Western participants, suggested that

rhythm perception is dominated by two discrete rhythmic patterns (categories): balanced (1:1)

and unbalanced (2:1) rhythms [26]. Recently, Polak et al. [5] demonstrated that these rhythmic
prototypes vary depending on musical-cultural background. When presented with two-interval

rhythms of a 4:3 ratio and fast pattern period, a group of Malian percussionists were able to

precisely synchronize tapping to this stimulus, whereas the synchronized responses of conser-

vatory students from Germany and Bulgaria were systematically biased towards a 2:1 ratio.

The authors proposed that this reflected the presence of a unique rhythmic prototype of ratio

4:3 for the Malian group, which characterizes the complex-ratio subdivisions of dance music

from Mali [44].

Here we simulate this enculturated bias by configuring pPIPPET filters with and without a

pattern of expectations for a 4:3 ratio rhythm. For consistency with Polak et al. [5], in place of

a precise 4:3 ratio we use a complex 58:42 ratio (= 4.14:3), which was measured from non-iso-

chronous subdivision timings in a relevant repertoire of Malian music [45]–though for sim-

plicity we refer to this ratio as 4:3. Similarly to the method of Polak et al., pPIPPET filters were

presented with two-interval rhythms of ratios 1:1, 4:3 and 2:1 (Fig 3A), each repeated twenty-

five times. We configured two filters using different sets of expectation templates: the first with

templates for 1:1 and 2:1 rhythms; and the second with an additional template for a 4:3

rhythm. In both models, all patterns of expectation were configured with an equiprobable

prior pm
0

for the simplicity of illustration, but we expect these priors would differ empirically
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due to learned factors and accordingly we derive them more systematically in the subsequent

experiments. We refer to these filters as the (1) European and (2) Malian models, respectively.

This reflects the participants simulated, who were recruited in either: (1) Germany and

Buglaria, i.e. Europe; or (2) Mali. Note that this a convenient shorthand, and we are not stating

that these models generalize to all individuals from Europe or Mali.

Fig 4 illustrates the tracking performance of these models for the first two repetitions of the

4:3 stimulus (see S2 and S3 Figs for the 1:1 and 2:1 stimuli). In absence of specific expectations

for a 4:3 pattern (Fig 4A), the European model must draw upon other patterns of expectations

(1:1 and 2:1) in order to track the stimulus. While the timing of stimulus events is closer to a

1:1 rhythm numerically, the stimulus events are attributed to the uneven 2:1 template, as the

2:1 template is configured with lower precision than the 1:1 template. The specificity (high pre-

cision) of the 1:1 expectations causes unevenly timed rhythms (e.g. 4:3) to be associated with

the comparatively imprecise 2:1 expectations. We liken this effect to the widely observed ten-

dency of listeners to associate uneven rhythms with a long-short pattern (i.e. 2:1, e.g. see [24,

Fig S1] and [5, pp. 5-6]). This attractor effect causes the 2:1 template plausibility to increase

rapidly over successive events, such that the 2:1 candidate posterior on phase is strongly

weighted in the marginalized phase estimate. This causes the phase estimate to be corrected

forwards and backwards when each event arrives early (first interval) or late (second interval)

versus expectations, creating fluctuations in phase uncertainty. In contrast, the Malian model

tracks phase successfully, as the expectations for a 4:3 pattern produce an accurate candidate

posterior on phase (Fig 4B). However, it takes several repetitions for the probability of the 4:3

template to converge on maximum likelihood, causing the phase uncertainty to gradually

decrease along with plausibility of the (inaccurate) 2:1 template. For all stimuli, the models’

probability distribution over templates converge after five repetitions, and the ranking of tem-

plate likelihoods converges within only two cycles (see S1–S3 Figs).

Phase corrections performed for the 4:3 rhythm are summarized in Fig 5A with respect to

the first event in each cycle. It is clear that phase estimates in the European model are consis-

tently skewed, with a distribution resembling the biased responses (synchronized tapping) of

German and Bulgarian participants. The distributions of corrections for the Malian model

demonstrate an almost unbiased response (i.e. precise synchronization), as shown by the

Malian participants, suggesting the underlying stimulus pattern is correctly inferred.

Fig 3. Two- and three-interval rhythms. A) Simple two-interval rhythms of ratios 1:1, 2:1 and 4:3, with a 1000ms

period. B) Three-interval rhythm space, where each axis of the ternary plot refers to one of the three intervals in a

rhythm. Each point corresponds to a three-interval rhythm of period 2000ms, with each interval constrained to a

minimum duration of 300ms. The crosses denote some examples of rhythms related by small-integer ratios (e.g. 1:1:1

and 2:1:1, shown to the left).

https://doi.org/10.1371/journal.pcbi.1010579.g003
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Furthermore, the relative levels of phase uncertainty on time steps preceding auditory

events (Fig 5B) are similar to average variation in tapping asynchronies for participants. Phase

uncertainty for both models is lower for even (1:1) than uneven (4:3 and 2:1) rhythms, as per

all participant groups. This was significant for both the Malian model (Welch’s t-tests, 1:1 vs

4:3, t(50) = −2.21, p = .030; and 1:1 vs 2:1, t(50) = −3.35, p = .001) and European model (1:1 vs

4:3, t(50) = −10.68, p<.001; and 1:1 vs 2:1, t(50) = −4.81, p<.001). Additional comparisons of

the uncertainty between uneven rhythms indicate greater consistency across stimuli for the

Malian model (t(50) = −1.58, p = 0.12) than the European model (t(50) = 5.48, p<.001);

resembling the consistently accurate tapping of the Malian participants. The difference

between the two models for the 4:3 stimulus is substantial (t(50) = −7.24, p<.001), whereas

the differences for the 2:1 stimulus were non-significant (t(50) = .23, p = .82), and weakly sig-

nificant for the 1:1 stimulus (t(50) = 2.28, p = .027). If expectation variances and/or prior likeli-

hoods were parameterized differently for the European and Malian models, such as higher

relative precision of expectations for 2:1 and 1:1 templates in the European model, then (stron-

ger) significant differences could emerge for the 2:1 and 1:1 stimuli; and these changes might

be necessary to accurately model either Polak et al.’s German or Bulgarian participant groups,

compared to our collective European model.

Fig 4. Tracking the phase of a 4:3 rhythm with different timing expectations. Two pPIPPET models are given patterns of expectations for 1:1

and 2:1 rhythms, but only one with expectations for 4:3 rhythms. The resulting quality of phase tracking—for the first two stimulus repetitions—

is shown through adjustments to estimated phase μt on auditory events, alongside changes in uncertainty Vt. Implicit inference of the rhythmic

pattern over time is shown through changes in template probability pm. A) European model. Without 4:3 expectations, phase must be adjusted

after the first event of each cycle to compensate for the timing shift, causing phase uncertainty to increase until the cycle is complete, when phase

is shifted back. B) Malian model. Phase is successfully tracked, with phase uncertainty only growing slightly between events. Note that phase

uncertainty always accumulates between events due to expected phase noise (see Methods, σ in Eq 2).

https://doi.org/10.1371/journal.pcbi.1010579.g004
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Together these results show that the systematic biases in entrainment observed by Polak

et al. [5] can be explained in pPIPPET through configuration with different discrete sets of

expectation templates. These expectation templates serve as explicit perceptual priors for

rhythmic patterns and bias phase inference accordingly, such that pPIPPET provides a precise

probabilistic interpretation of key high-level concepts like perceptual “prototypes” and “cate-

gories” for rhythm [26, 27] in the context of continuous entrainment.

Experiment 2: Categorization of non-uniform rhythms

The previous experiment involved implicit inference of a temporal pattern underlying a rhyth-

mic stimulus, but the breadth of the stimulus domain was limited. Now we expand the domain

to a larger “rhythm space” consisting of three intervals (Fig 3B), and examine the mapping of

this large continuous space of temporal patterns to the discrete space of expectation templates.

In doing so, we simulate the perceptual categorization of non-uniform rhythms, i.e. rhythms

not related by exact integer ratios. Following Desain & Honing [1], categorization here refers

to the cognitive process of extracting discrete rhythmic categories from a continuous signal.

Perceptual categories in this rhythm space were first uncovered by Desain & Honing [1] in an

innovative task whereby musicians translated a grid of sampled three-interval rhythms into

common music notation—a discrete, symbolic space. Across participants, the largest number

of notated responses were for rhythms related by ratios of integers 1 and 2, i.e. 1:1:1 and 1:1:2

(and cyclic rotations), suggesting a perceptual attractor effect. Between participants, the

responses were most consistent (lowest entropy) around these rhythms, with the attractor

effects forming delineated quasi-convex shapes.

Here we apply a pPIPPET filter to this large rhythm space, measuring the relative levels of

entropy in the discrete probability distribution over expectation templates. The rhythm space

consists of three-interval patterns which each sum to a two second duration, with composing

Fig 5. Production bias when tracking 1:1, 4:3 and 2:1 rhythms. Performance of pPIPPET in tracking repeating two-

interval rhythms, depending on template configuration. A) Distribution of phase corrections following the first

interval of the 4:3 stimulus rhythm. Curves are Gaussian kernel density estimates, vertical black dashed line shows an

unbiased response, and other vertical dashed lines refer to sample means. B) Phase uncertainty on the time step

preceding an auditory event. Error bars show the 95% confidence intervals within each sample. Note that this figure

shows qualitative agreement with empirical tapping data shown in [5, Fig 3].

https://doi.org/10.1371/journal.pcbi.1010579.g005
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intervals of at least 300ms (for consistency with Experiment 3), sampled at a resolution of

10ms (n = 6216). We demonstrate that the perceptual attractor effect observed as a static phe-

nomenon in categorization tasks can be qualitatively reproduced by the dynamic inference

process implemented in pPIPPET.

Expectation templates were manually configured in Experiment 1, but that is infeasible for

this larger rhythm space. Therefore we designed a simple procedure to configure a large set of

expectation templates, approximating the enculturated expectations of a listener, through anal-

ysis of representative musical corpora (see Methods). Briefly, we derive the likelihood of three-

interval rhythms from the relative frequency of event sequences within the metrical cycle of

rhythms from a given music corpus. The likelihood associated with each three-interval rhythm

is used to configure the prior probability of each expectation template, pm
0

. In this work we use

notated corpora, i.e. quantized rhythms consisting solely of integer interval ratios, hence tem-

plates consist of three-interval rhythms with ratios spanning simple (e.g. 1:1:1) and complex

(e.g. 7:2:3) patterns (see S4 Fig). This approach implements the hypothesis that musical fea-

tures vary in frequency of occurrence across cultures [29, 30], resulting in different internal-

ized rhythmic patterns and hence statistical affordances for meter [15].

We configured a single pPIPPET filter with expectations derived from a corpus of mono-

phonic score-based German folksongs [46]. In order to illustrate the effect of prior template

probability pm
0

on pattern inference, we held the strengths and precisions of each template con-

stant, and leave an investigation of the interaction between these terms in joint phase and pat-

tern inference for future work. Fig 6A visualizes entropy of the pPIPPET filter’s posterior

distribution over expectation templates after being presented with each sampled three-interval

rhythm (point in the rhythm space), using the python-ternary package [47]. For consis-

tency with Experiment 3 we present each stimulus just once, but note that Desain & Honing

[1] repeated each stimulus three times separated by one second gaps. Similarly to the entropy

(consistency) of participant categorization in the study by Desain & Honing, areas of low

entropy generally focus around rhythms related by the most simple integer ratios (1:1:1, and

cyclic permutations of 1:1:2). Around these rhythms pPIPPET is able to infer an underlying

rhythmic pattern (expectation template) with the lowest predictive uncertainty, suggesting

these rhythms serve as strong perceptual attractors due to a high prior likelihood. In contrast,

rhythms approximately related by mildly complex integer ratios (e.g. cyclic permutations of

2:2:3 and 2:3:3) have high entropy. However, even in these high entropy regions, Fig 6B reveals

clear clusters where neighboring rhythms are categorized according to similar patterns related

through simple integer ratios (integers less than 3). This suggests that the derived expectation

templates are comprehensive in categorizing the rhythm space, albeit with varying levels of

certainty.

Consistent with participant categorization in [1], the regions of low entropy form quasi-

convex shapes that are delineated by regions of relatively high entropy, implying that some

parts of the rhythm space are ambiguous. There are three possible explanations for these

regions of high uncertainty in pPIPPET: (1) overlapping patterns of expectations, resulting in

causal ambiguity; (2) lack of expectations for the pattern of observed events, i.e. observations

are not explained by the generative model; and (3) weak prior expectations for the observed

pattern, relative to other plausible patterns. Therefore, pPIPPET could be directly applied to

resolve competing hypothetical explanations about the perception of rhythmic categories. One

example includes the relationship between 2:1 and 4:3 prototypes for Malian participants, as

simulated in Experiment 1. Polak et al. [5] proposed that these categories could be indepen-

dent and (possibly) overlapping, or alternatively they might be (long-short) subcategories. In

pPIPPET these hypotheses might be modeled using either separate or merged patterns of
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expectation, respectively, and application to intermediate stimuli (between 2:1 and 4:3) might

prompt specific predictions for further experimental work. In Experiment 3, we examine cate-

gorization in further detail, focusing on its dependence on the enculturated expectations of a

listener.

Fig 6. Categorization maps for three-interval rhythms. Categorization of three-interval rhythms (pattern duration of

2000ms and minimum interval duration of 300ms) after being presented once, using a pPIPPET filter configured with

expectation templates derived from a corpus of German folksongs [46]. Rhythms related by small-integer-ratios

(integers less than 3) are marked with crosses and labeled. A) Entropy of the posterior distribution over expectation

templates. B) Colors correspond to cyclic permutations of the pattern which has been inferred (i.e. the expectation

template which maximizes pm), and transparency the entropy. For comparison, see [1, Fig 10b] and [1, Fig 13a]. This

figure, and other ternary plots presented in this work, were made using the python-ternary package [47].

https://doi.org/10.1371/journal.pcbi.1010579.g006
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Experiment 3: Iterated reproduction of non-uniform rhythms

The experimental paradigm used by [1] whose data was simulated in Experiment 2 relies on

participants having sufficient musical training to be able to notate rhythmic stimuli. The iter-

ated reproduction paradigm [24, 25] obviates this need, facilitating collection of empirical data

from different musical cultures. Here, we simulate the iterated reproduction of non-uniform

three-interval rhythms. In addition to implicit categorization of rhythms in a large continuous

space, this complex task involves synchronization to highly unbalanced rhythms. As described

in the Introduction, Jacoby et al. [24, 25] have used this paradigm to measure the perceptual

priors (categories) on rhythm for listeners from different cultures. We simulate this data by

comparing the implicit rhythm categorization of two pPIPPET filters, and relate the results to

empirical observations. Alongside the filter created in Experiment 2 using monophonic Ger-

man folksongs [46], we created a pPIPPET filter with expectations derived from monophonic

Turkish makam music [48]. We refer to these filters as the German and Turkish models, but

again stress that the music corpora used to train these models only approximate the listening

experience of individuals from these musical cultures.

We directly simulate the method of Jacoby et al. [24, 25]. Trials involved five iterations of

simulated tapping, each with 10 repetitions of the stimulus rhythm. For each pPIPPET filter

we perform 2000 trials, using the same 2000 stimuli sampled uniformly from the rhythm space

(Fig 3B). On the first repetition of each stimulus, we use the pPIPPET filter to determine the

most plausible expectation template m, i.e. which maximizes pm. Then, we use a PIPPET filter

to track the remaining repetitions using the inferred template m. We separate these stages for

computational efficiency (the tractability of pPIPPET is addressed in Methods), but note that

participants in [25] were reported to spend roughly one repetition listening to the stimulus

prior to synchronizing their tapping. After the first iteration, the stimulus rhythm is deter-

mined based on the phase tracking of the previous iteration. Specifically, events in the new

stimulus are placed at the phase corresponding to the mean, across cycles in the previous stim-

ulus, of the updated posterior distribution on phase at the time step of each event.

We hold the strengths and variances constant for the inference of a pattern, as in Experi-

ment 2, but parameterize the variances and strengths when tracking the remaining repetitions.

This introduces variability in the contribution of prior expectations to phase inference,

depending on the rhythmic pattern (i.e. template m) inferred in a given trial. As per the

scheme described in Methods , higher prior likelihoods of a template increase the strength l
m
i

and precision 1=vmi of expectations. This assumes that exposure to specific rhythms in a musi-

cal culture leads to more precise expectations, affording accurate synchronization [49].

The distribution of rhythms in the final iteration are compared in Fig 7. We use kernel den-

sity estimates as in [24, 25] to compare the relative distribution of reproductions, which were

biased away from the actual (uniformly sampled) stimulus rhythms. As in empirical data [25],

the posterior on phase is systematically biased towards discrete modes at small-integer ratios

(integers less than 3). This follows from Fig 6B, which revealed prominent rhythm categories

at these ratios in this rhythm space, for the German model. The category weights for each

model follow a similar distribution (Fig 7C), which is in-keeping with the similar distributions

of simple onset patterns in the Turkish and German corpora used to configure the models (see

Methods, and Fig 8). For example, the most prominent modes are at the simplest patterns for

both models, isochrony (1:1:1) and 1:1:2 (and cyclic permutations), both of which appeared to

be strong perceptual attractors in the entropy maps of the previous section (Fig 6).

However, there is notable variation between the models, with a significantly greater weight

for the 2:2:3 category in the Turkish model (p< 0.001, Bonferroni-corrected). This is consis-

tent with Jacoby et al.’s post-hoc analysis of empirical data, whereby the mode at the 2:2:3
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rhythm was more pronounced for traditional musicians from regions where this rhythm is

prominent in the local musical system, such as Turkey [25, p. 12]. Unlike the empirical data,

here we can directly link the measured difference in 2:2:3 category weights to musical systems:

metrical analysis of the Turkish corpus reveals a more uniformly distributed meter (i.e. flatter

and less distinct metrical hierarchy) than the German corpus, consistent with the findings of a

larger investigation of Turkish makam music [18]. This results in a greater prior probability

and precision of expectation for this mildly complex interval pattern in the Turkish model. For

the German model, rhythms approximately related by this ratio appear instead to be attributed

to the neighboring 1:1:2 mode, which has a significantly greater weight for the German model

(p< 0.001, Bonferroni-corrected).

There are several categories with relatively weak or strong modes for both models, in com-

parison to many groups in the empirical data: the 2:3:3 modes were weak, and the 1:1:1 mode

was strong relative to the 1:1:2 modes. We address these differences in the Discussion, with

respect to: the possible over (or under) representation of interval patterns in music corpora

used to approximate enculturated expectations; and differences between perceptual and motor

entrainment.

Discussion

We have presented pPIPPET, a model of entrainment to a time series of events, which draws

upon prototypical patterns of temporal expectations in order to accurately track the event

Fig 7. Simulated iterated reproduction. Results from the final iteration of all simulated trials, using pPIPPET filters configured with either

German folk songs [46] or Turkish makam music [48]. A) Kernel density estimate (KDE) of the underlying data distribution for the German

model, using the non-parametric method described in [24], normalized relative to a uniform distribution. B) KDE for the Turkish model. C)

Category weights for the two models, obtained by fitting a constrained Gaussian mixture model (GMM), using the modified expectation-

maximization procedure described in [25]. Weights for cyclic permutations of each ratio are grouped. Error bars reflect confidence intervals (SD of

weights, derived from bootstrapping, N = 250). We draw specific attention to the differences in weights measured for cyclical permutations of the

ratios labeled in bold (1:1:1, 1:1:2 and 2:2:3), which relate to differences in the KDE plots at the respective ratios.

https://doi.org/10.1371/journal.pcbi.1010579.g007
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stream. pPIPPET represents competing patterns of temporal expectations through point pro-

cesses. The pPIPPET filter uses variational Bayes to continuously estimate the posterior proba-

bility that observed events are generated by each expectation template, whilst using these

likelihoods to produce a marginalized estimate of phase and phase uncertainty. Put simply,

pPIPPET is able to infer the pattern(s) best explaining an event stream, and uses these patterns

to produce expectations for future events; whilst remaining open to the possibility of adjusting

expectations when the stimulus rhythm changes.

pPIPPET provides a formal, quantitative characterization of how the enculturated expecta-

tions of listeners inform entrainment, reproducing cross-cultural variation in human entrain-

ment when filters are configured with different discrete sets of expectations. We demonstrated

the systematic bias incurred when tracking a patterned rhythm without a corresponding pat-

tern of expectations [5]; and conversely the perceptual bias towards specific rhythmic patterns

during iterated reproduction. In doing so, we related the implicit pattern inference in pPIP-

PET to empirical data on perceptual categorization of rhythms [1]. By configuring models’

expectations according to the occurrences of rhythmic patterns in corpora of notated musical

rhythms from different cultures, without constraints on the patterns that could be learned,

models exhibited biases towards simple integer ratio rhythms alongside culture-specific devia-

tions toward (mildly) complex integer ratios that distinguish musical cultures. These behaviors

emerge naturally when entrainment is described as a process of Bayesian inference, PIPPET

[9], where precise phase-based temporal expectations are optimized using prior expectations

for different rhythmic patterns.

Simulating enculturated expectations

When perceptual or motor entrainment is cast as an inference problem, pPIPPET exposes sev-

eral interpretable parameters that can be used to simulate the enculturated bias observed in

rhythm perception and production experiments. Here, we varied: (1) the discrete set of rhyth-

mic patterns represented by expectation templates; (2) the prior probability pm
0

that events

were generated by a given template λm; and (3) the expectation strength l
m
i and (inverse)

expectation precision vmi associated with events in each template. Both (1) and (2) influence

the ability to correctly infer a pattern underlying an event stream, where tracking a rhythm

using an inaccurate (non-matching) pattern of expectations causes systematically biased phase

estimates. Then (3) influences the strength of error correction upon event observations, pro-

portionally to the posterior probability pm of the respective template. We leave a thorough

exploration of the interaction between expectation precision and template probability to future

work; noting that the results presented do not essentially depend on the configuration choices

made.

For a hypothetical listener from a given musical culture, we configured pPIPPET parame-

ters by analyzing metrical patterns in symbolic musical rhythms which characterize their musi-

cal experience [15], assuming the relative frequency of patterns determines the precision of

and prior probability associated with corresponding internal models (expectation templates).

This approach is consistent with statistical learning descriptions of stylistic enculturation,

whereby precise expectations are acquired for commonly observed rhythmic patterns in a

musical culture [14, 16], enabling precise synchronization for these culturally-familiar rhythms

[49]. We have not explicitly distinguished between effects of implicit statistical learning and

explicit musical training, though the enculturated biases qualitatively reproduced in Experi-

ment 1 and Experiment 3 were reported empirically for trained musicians. Carefully designed

experiments in future work will help to tease apart exactly how expectation strength λi and
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precision vi in pPIPPET respectively relate to prior expectations in entrainment, alongside

effects relating to explicit musical training [7].

When two pPIPPET filters are configured with expectations derived from different musical

cultures, the difference in entrainment quality when applied to each musical style can be related

to the cultural distance hypothesis—the degree to which music from two cultures differ in statis-

tical patterns of rhythm will predict how well someone synchronizes to music from the other

[50]. Cultural distance has been modeled as differences in information-content between two

models of auditory expectation [51], each using statistical learning to learn a probabilistic gram-

mar characterizing a musical style (both in terms of pitch and rhythm) [16, 21]. These models

have been shown to predict Western listeners’ expectations in several experimental paradigms

(see [16, p. 384] for a review), but have not been applied to empirical research demonstrating

cultural variation in expectation and uncertainty. Given that pPIPPET explicitly describes

entrainment, it can readily be applied to empirical research involving rhythm production, a task

well-suited to cross-cultural research due to the lack of language and musical notation [52].

In this work we derived precise phase-based expectations from discretized (symbolic) inter-

val patterns, as notated in sheet music, allowing us to derive highly stereotyped representations

of rhythmic patterns. This approach is limited in that relatively few non-Western music cor-

pora are available in a computational notated form [22, 23], and typically a Western-trained

musical expert is required to notate and/or validate such corpora, which might introduce

biases. However, there is no reason why pPIPPET templates need to be configured with

expected events related by perfectly discretized intervals. A non-trivial extension of this work

would involve configuring pPIPPET according to analysis of performed musical rhythms, i.e.

non-quantized rhythms featuring non-integer interval ratios. This might be tackled by identi-

fying concentrations in the probability density of specific interval patterns as in [53], or infer-

ring latent hierarchical structure from event timing (e.g. [54]). Given a sufficiently large

training corpus of performed music, it would be interesting to evaluate whether a model con-

figured this way would reproduce similar integer ratio biases as in the present work.

Extracting templates from performed music would also provide a natural opportunity to

consider the influence of tempo (rate of phase advance). This would be a non-trivial extension

of this work, insofar as tempo appears to influence the categories of rhythm observed in musi-

cal rhythms [53, 55, 56], possibly reflecting an interaction with meter perception [20]. Polak

et al. [5] emphasize that the reliable reproduction of a 4:3 rhythm by Malian drummers

occurred at a fast tempo, an important contextual factor for their performance practice, but

this was not included in our description of the behavior in Experiment 1. This might be

explored using PATIPPET [9], a variant of PIPPET which infers tempo as a (dynamic) hidden

variable governing the rate of phase advancement.

Future work should scrutinize which interval patterns are overly (or under) represented in

music corpora used to approximate enculturated expectations. For example, long-short inter-

val patterns occur more frequently in Western musical scores than short-long permutations,

yet there is limited evidence that variability in synchronized tapping is lower for long-short

patterns [55, 56]. Further, Jacoby et al. [25] reported a slight tendency for reproduction of a

rhythm’s cylic permutation where the final interval is the longest. One approach to address

this in pPIPPET would be re-weighting priors derived from music corpora to reflect the asym-

metries demonstrated empirically (see ‘optimal priors’ in [2]). It is also possible that some cul-

tural differences in the perceptual grouping of rhythms (e.g. into either long-short or short-

long patterns) might not reflect musical patterns at all, but features of a listener’s native lan-

guage, such as prosodic stress patterns [57].

Finally, given that PIPPET is formulated as a perceptual process, we cannot ignore the pos-

sibility that differences between empirical iterated reproduction results and those of
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Experiment 3 (using pPIPPET) stem from a distinction between perceptual and motor

entrainment. However, we expect that the same phase inference processes underpin both per-

ceptual and motor entrainment. Experimental work such as [58] has shown that perceptual

expectations for rhythmic patterns directly influence entrained movement. Additionally, in

[59], two-interval rhythms (1:3 to 1:7) were biased towards more even ratios in both percep-

tion and production tasks, instead of performed rhythms compensating for a perceptual bias.

Physical entrainment might therefore be approached as a series of constraints (e.g. for specific

motor effectors) on top of perceptual entrainment. An additional consideration is the contri-

bution of sensory (e.g. proprioceptive, tactile) feedback from movement on phase estimates

(e.g. [60, 61]). This might be modeled by extending pPIPPET’s generative model to infer a sin-

gle underlying phase from multiple types of events (as in mPIPPET [9, p. 8]), using a template

to represent the alignment between expected sensory feedback and phase.

Intrinsic rhythmic preferences

The phase estimation mechanism in PIPPET, and by extension pPIPPET, has no intrinsic bias

for the inference of certain rhythmic patterns—notably, those related by small integer ratios.

By contrast, the universal tendency to perceive and (re)produce rhythms related by small inte-

ger ratios [31] raises the possibility of physiological and/or cognitive constraints on rhythmic

priors (as considered in [24, 25]). We have shown that present empirical results can be

accounted for as a process of probabilistic learning from real-world notated musical rhythms

(featuring both simple and complex integer interval ratios). Presumably, musical systems serve

as a proxy for priors if they reflect perceptual biases and production constraints [62]. However,

we don’t discount the possibility of intrinsic (innate) priors which could be incorporated into

the model.

The phase inference framework describes computational principles underlying expectancy-

based entrainment, and does not commit to a precise mechanistic interpretation of entrain-

ment [8]. If constraints in a specific mechanistic model limit the learning of rhythms we expe-

rience, e.g. to small integer ratio rhythms, then pPIPPET might be refined by starting with

certain priors as a substitute for these constraints; or, some appropriate basis functions might

be defined for the generative model. This would not fundamentally change pPIPPET, but con-

strain the rhythms that could be represented in expectation templates. But it is clear that with

appropriate music-cultural experience, people can form expectations flexibly for specific and

complex rhythms, including rhythms that are not easily quantizable into integer-ratio intervals

(e.g. [45, 63]); and this extrinsic aspect of learning might still be amenable to a probabilistic

description. The challenge for future experimental work will be to empirically distinguish

between model configurations with extrinsic or (partially) intrinsic priors.

Relationship to other models

Further to existing models in the phase inference framework [9], pPIPPET is able to infer

which of multiple expectation templates optimize ongoing phase inference, such that phase

corrections depend on the specific (enculturated) set of expectations configured. In contrast,

existing probabilistic models of enculturated expectations are limited to discretized (symbolic)

representations of intervals [15]—as is common in probabilistic models (e.g. [13, 17, 18])—so

are not structured to infer phase in continuous time. Instead, these models address how tem-

poral expectations are learned: estimating parameters of a generative sequential model through

statistical learning [16], given an empirical sample of symbolic rhythms. Therefore they might

form the basis of a more sophisticated approach to derive expectation templates in pPIPPET,
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given that they benefit from context-dependent predictions, and can incorporate explicit

hypotheses for meter [14] (metrical inference with pPIPPET is considered in the next section).

Bayesian inference has already been used to predict categorization of non-uniform rhythms

[2] for the empirical data explored in Experiment 2, though not as a model of real-time behav-

ior. This model also used priors derived from music corpora, but interestingly combined these

with continuous production data—an approach that might be considered in deriving expecta-

tion templates. Recurrent attractor networks for rhythm quantization have also been applied

to rhythm categorization [64, 65], configured with polynomial attractor functions resembling

the repertoire of expectation templates in pPIPPET, but it is unclear how these models might

be applied to real-time behavior.

Neural oscillator models which use Hebbian plasticity [37] have simulated effects of musical

experience on entrainment dynamics [38, 39], and might be capable of simulating the empiri-

cal results addressed here with pPIPPET. The computational description of enculturated biases

in pPIPPET–which depends on inferring the state of an underlying cyclical process–might be

compatible with a range of mechanistic implementations, including oscillatory processes.

Hence, we do not believe these approaches are mutually exclusive. Instead, they might be con-

sidered to approach the problem from different directions: bottom-up, respecting the dynam-

ics of cortical oscillation at the physiological level; or top-down, based on (possibly Bayesian)

computations explaining the breadth of empirically observed entrainment behaviors. In other

words, as recently proposed in [66], oscillator-based models could be viewed as physiological

mechanisms underlying rhythmic inferences that can be described computationally using

Bayesian principles. Another interesting point of convergence is in the experience-dependent

learning mechanisms proposed—implicit statistical learning might follow the very associative

principles of Hebbian learning [67], and Hebbian plasticity has been directly related to param-

eter optimization in hierarchical generative models used to describe cortical organization (e.g.

[40, p. 824]).

Relating pattern inference to metrical inference

Behavioral studies examining phenomena such as categorical rhythm perception through

entrainment are limited by practical constraints to studying two- or three-interval rhythmic

patterns. This is a microcosm of rhythm perception, making it unclear how the perceptual

biases observed in these tasks relate to features of naturalistic musical rhythms, in particular

metrical structure (a hierarchically embedded set of time periods inferred from and aligned to

a rhythm). In the present work, we derived expectation templates from empirical samples of

musical rhythms, according to the relative likelihood of different onset patterns within a metri-

cal cycle (i.e. metrical phase). Therefore the “patterns” represented in expectation templates

correspond to prominent metrical patterns in the respective music corpus. The perceptual

biases of simulated iterated reproduction in Experiment 3 therefore stem from metrical priors,

in keeping with Jacoby et al.’s speculation that measured priors in empirical iterated reproduc-

tion reflect expected (metrical) groupings of rhythmic events [25, p. 17].

Considering naturalistic rhythms, pPIPPET could be applied—in exactly the same way as

in the present work—to infer the pattern of metrical beats induced by a stimulus given some

prior expectations, hence providing a real-time simulation of metrical inference. This is possi-

ble because there is no requirement for a one-to-one relationship between rhythmic events

and expectations in PIPPET, such that it can describe how metrical beats (which might span

more than one rhythmic event) are tracked within an event stream [9]. Further, pPIPPET

could be used to model enculturation effects on inferred metrical structure. Lenc et al. [68]

recently proposed this as the most sophisticated form of metrical perception, stemming from
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learned associations shaped by multi-modal exposure and body movement, which very few

computational models of metrical perception have addressed [39, 69].

Schematic and continuous temporal expectations

pPIPPET’s discrete set of expectation templates are represented as continuous functions of

phase (Eq 4), which might even overlap if phase-based onset times �
m
i are sufficiently close and

vmi sufficiently large. Many models of rhythmic grammar are limited to symbolic representa-

tions [14, 17, 70, 71] which can be related to schematic expectations [72], abstract temporal

representations learned through extensive exposure to music and activated by appropriate

musical contexts. Given that symbolic rhythms can be used to construct expectation templates,

pPIPPET can be used to investigate how events with continuous timing variation are resolved

against schematic expectations. This behavior is similar to models of categorical rhythm per-

ception that perform quantization, analyzing performed rhythms with continuous timing vari-

ations, and identifying discretized representations of intervals (related by integers) suitable for

music transcription [64, 65, 73, 74].

Classic quantization models have been criticized for separating and disregarding the ‘non-

categorical’ component of an identified pattern or meter [75] (also see [76]), which some argue

corresponds to the microtiming deviations which characterize expression in a musical perfor-

mance [77]. In the context of PIPPET, timing deviations between observed events and expecta-

tions are not just discarded as noise, but are integrated into the posterior estimate on phase,

contributing toward optimal tracking of a rhythm (similarly to event-based error correction

models in sensorimotor synchronization [78, p. 407]). Specific patterns of prediction error or

phase uncertainty in pPIPPET might therefore be related to qualitative timing “feels” (e.g.

“pushed” or “laid-back” timing), stemming from unique probability density functions of tim-

ing in different performances of a rhythm [79], with respect to metronomic expectations.

However, it is also possible that schematic expectations are shaped by stable timing patterns,

hence forming qualitatively distinct meters; as London notes, “characteristic timings will

become part of our habitual entrainments to them” [20, p. 154]. Consistently, given that PIP-

PET is not tied to quantized representations of rhythms as found in Western scores, this allows

us to posit that any rhythm which can be highly practiced through dance or music perfor-

mance (or even listening) can become a unique template for event expectation, even if it is not

easily quantizable into discrete integer-ratio intervals. This is particularly relevant to musical

styles where there isn’t a clear divide between rhythmic structure and expressive timing pat-

terns [44, 63, 80]. One popular example of this is the ‘swing’ feel in jazz, where the central

rhythmic quality stems from an uneven performance of rhythmic events notated with even

duration (eighth notes); such as the distinctive ‘ding-ding-a-ding’ rhythm often performed on

the ride cymbal [81]. Therefore, if different timing patterns (e.g. senses of swing in different

jazz styles) were represented as distinct patterns of expectation in pPIPPET, then pattern infer-

ence might be related to the recognition of qualitatively distinct metrical timing patterns, as

described in London’s “many meters hypothesis” [20, p. 154].

pPIPPET in the brain

PIPPET, which serves as a basis for pPIPPET, is an abstract cognitive model that does not

commit to a specific brain-based implementation. However, Cannon proposed an approxima-

tion of PIPPET in the brain [9], and we can develop this description by considering where the

pattern inference mechanism of pPIPPET would extend a neural implementation of PIPPET’s

phase estimation.
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The proposed implementation of PIPPET draws upon the hypothesis that simulated actions

in motor planning regions provide temporal predictions about auditory events. There is a vast

literature highlighting a central role of the motor system in rhythm perception [82–84], but

this most directly draws upon Patel & Iversen’s “Action Simulation for Auditory Prediction”

(ASAP) hypothesis [85]. A recently updated account of ASAP [86] proposed that the dorsal

striatum orchestrates supplementary motor area (SMA) dynamics, allowing precisely pat-

terned time-keeping for the anticipation of repeating rhythmic patterns. In the context of PIP-

PET, estimated phase and phase uncertainty are hypothesized to be represented in medial

premotor cortex (MPC), while basal ganglia (BG) selects an expectation template based on the

recent rhythmic context. This template is combined with the posterior estimate on phase in

MPC to calculate a subjective hazard rate (level of anticipation), which is projected to the pari-

etal cortex as a descending prediction for auditory events, as in hierarchical predictive process-

ing [87].

We hypothesize that the pattern inference mechanism introduced in pPIPPET can be

related to the recruitment of higher-order cognitive mechanisms in prefrontal cortex (PFC).

This would provide persistence of state and integration of information over longer time scales,

enabling the inference of expectation template plausibility across successive auditory events,

and informing selection of expectation templates in BG. It has been proposed that prefrontal

regions support selection of rhythm representations [88], and indeed PFC activation appears

to increase when listening to metrical and non-metrical rhythms (i.e. musical beat selection)

in contrast to simple isochrony [89]. Similarly, data has shown that PFC is engaged in musi-

cians during rhythm encoding and retrieval, while less so during rhythm maintenance [90].

PFC activity is also greater in musicians than non-musicians during a tapping task [91], the

authors arguing that this relates to superior ability to extract temporal features relating to

rhythmic structure, with the PFC mediating working memory. Within the working memory

system, one region of interest might be ventrolateral PFC (VLPFC). VLPFC appears to be

engaged for active memory retrieval tasks requiring top-down control and selection between

options [92–94], and activity has been shown to correlate with BG activity during synchro-

nized tapping to auditory rhythms [95], increasing for rhythms with greater metrical complex-

ity. More generally, many studies have implicated the inferior frontal gyrus (IFG) in temporal

hierarchy processing, as highlighted by a recent meta-analysis of neuroimaging studies investi-

gating musical rhythm and linguistic syntax [96] (also see [97]).

One main difference between our formulation of pPIPPET and its neural implementation

might be an unrealistic degree of parallelism, given that likelihood estimates for all expectation

templates are concurrently updated on every time step (tractability is discussed further in

Methods). pPIPPET’s pattern inference might therefore reflect a specific mode of rhythm per-

ception that is only activated to identify a pattern of temporal invariances (as in Experiment

3), or once a previously-identified pattern incurs significant errors in phase estimation. In

other words, it might reflect rhythm recognition as opposed to rhythm continuation [20,

p. 50]. This aspect of pPIPPET could be tested using an experiment requiring participants to

“re-hear” a rhythm due to structural transitions, such as increased syncopation [98, 99] or met-

rical modulations [3]. In these cases, we hypothesize that pPIPPET would offer a distinctive

explanation for bistable rhythm percepts on transitions: simultaneous phase tracking and pat-

tern inference would (at least initially) adjust predicted phase in the favor of a template with

high likelihood (pm), while evidence for a new and better-matching template accrues. Addi-

tionally, in the context of reproduction tasks (such as in Experiment 3), we hypothesize that

longer periods of pattern inference would allow accurate expectations with low prior likeli-

hoods to converge on higher posterior likelihoods (i.e. delayed recognition of the stimulus pat-

tern), which would be reflected in changing patterns of tapping asynchrony within a trial.
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Conclusions and future considerations

In this paper we presented and evaluated pPIPPET, which provides a plausible account of the

cognitive mechanisms underlying effects of enculturation on rhythm perception and produc-

tion demonstrated here through simulations of existing empirical data covering listeners from

several musical cultures.

Our results support a plausible mechanism for the process by which enculturated encultur-

ated expectations bias entrainment, involving an approximation to optimal (Bayesian) infer-

ence about the rhythmic stimulus using prior expectations for rhythmic patterns learned

within a given musical culture. The present simulations were limited to configuring pPIPPET

using (real-world) notated musical rhythms containing both simple and complex integer-ratio

rhythms. A challenge in future work will be to replicate our simulations with pPIPPET learn-

ing from performed rhythms, requiring careful consideration of how enculturated temporal

expectations are extracted from rhythms with non-integer ratio rhythms and variable tempo.

More detailed simulations of specific empirical studies will also enable exhaustive analysis of

the interaction between expectation precision and template probability in pPIPPET.

The present work is most obviously relevant to understanding music perception. However,

the model can be applied in several domains that involve tracking rhythm. As pPIPPET is able

to account for non-isochronous entrainment, it might be particularly well-suited to tracking

aperiodic patterns in speech, which some argue poses challenges for oscillatory models [100]

in the absence of top-down content-based predictions [101]. Future work might also explore

“veridical” expectations [72], activated by memory traces acquired through short-term learn-

ing—neural and behavioral evidence suggests that “memory-based” expectations rely on partly

different underlying mechanisms to traditional “beat-based” entrainment [102]. Similarly to

“multiple-viewpoint” systems that maintain both short- and long-term probabilistic models of

rhythmic structure and combine their respective predictions [16, 103], pPIPPET could be

extended to incorporate expectations relating to learning over different timescales.

Methods

In this work we are concerned with how temporal expectations, as shaped by long-term

music-cultural exposure, dynamically inform entrainment—expectancy-based entrainment.
The role of temporal expectations in rhythm perception and entrainment can be understood

through the predictive processing framework [84, 104–106], whereby the brain continuously

infers the hidden causes of sensory events by using learned anticipatory models of temporal

regularities.

Several models of expectancy-based entrainment have been described as formal inference

problems, with precise solutions, within Cannon’s “phase inference framework” [9]. Centrally,

“Phase Inference from Point Process Event Timing” (PIPPET) describes how an observer con-

tinuously infers phase—a hidden variable that advances over time with some amount of ran-

dom noise—from a sequence of events, such as the phase of a beat cycle in a musical rhythm.

Event generation is modeled as a point process, and described through a generative model that

is variationally inverted for use in a continuous inference process. The filtering equations that

approximate an optimal Bayesian solution to this problem are presented in the next section,

and the derivation is presented in S2 Text.

Following the same general approach, we formulate an additional version of this problem,

pPIPPET, which generalizes PIPPET to incorporate competing event-based expectation pat-

terns, each with event expectations at a distinct set of phases with distinct degrees of expecta-

tion precision—in other words, unique expectations for different plausible rhythmic patterns,

each of which is assigned a likelihood that updates continuously alongside phase inference.
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Again, the solution is presented, but please refer to S2 Text for the derivation. Finally, we

describe how these competing expectations can be derived from music corpora, as in this

work.

PIPPET: Phase inference from point process event timing

Problem. Given the timing of an event sequence, generated as a point process whose rate

is characterized by a function of phase, PIPPET reflects the problem of continuously estimat-

ing an underlying (hidden) noisy phase variable, � 2 R.

A generative model of rhythmic events can be described using a drift-diffusion process ϕ to

represent rhythm phase, and an inhomogenous point process λ(ϕ) for event times, that is

modulated by phase. The inhomogeneous point process describes event generation through a

probability function λ(ϕ). Referred to as an “expectation template”, λ(ϕ) reflects the observer’s

expectations for events at specific phase values. It is composed of a summation of Gaussian dis-

tributions (φ), indexed by i = 1, 2, � � � N, each centered at a mean phase ϕi, with variance vi and

scale λi:

lð�Þ ¼ l0 þ
XN

i

li φð�j�i; viÞ ð1Þ

where:

• ϕi is the mean phase of an expected event.

• v� 1
i is the temporal precision of an expected event.

• λi is the strength of expectation for an event.

• λ0 is the rate of events being generated by uniform background noise.

The expectation template λ flexibly describes a stochastic sequence of events, which need

not be periodic in nature, such that ϕ should be thought to advance along the real number line

as opposed to a circle (see Fig 2).

The goal of the observer is to infer a posterior distribution describing the estimate of phase

ϕ at time t, pt(ϕ) = p(ϕ|Nτ<t), for a sequence of event times {tn}. At time t = 0 this is initialized

with a prior distribution p0(ϕ), and is updated using the expectation template λ(ϕ) and an

event-counting function Nt : R7!Z0þ.

Through variational inference, the true but intractable posterior distribution can be approx-

imated in Gaussian form (the Laplace approximation), by selecting the mean and variance

which minimize the Kullback–Leibler divergence from the true (optimal) posterior at each dt
time step. Cannon’s solution is a generalized Kalman-Bucy filter with Poisson observation

noise [9].

Solution. In the solution proposed by Cannon [9], the Gaussian posterior updates contin-

uously between events at every time step, and additionally updates after event observations. At

any time t, the sufficient statistics are denoted by the mean μt and variance Vt. If an event

occurs at time t, these values (left-hand limits) are revised to μt+ and Vt+ (right-hand limits).

On each time step, μt and Vt evolve according to the stochastic differential equation below:

dm ¼ dt þ ðm̂ � mtÞðdNt � LdtÞ

dV ¼ s2dt þ ðV̂ � VtÞðdNt � LdtÞ

(

ð2Þ
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Then, if an event occurs at time t, μt is updated to μt+, and this is used to update Vt to Vt+ as

specified below:

mtþ ¼ m̂≔
l0

L
mt þ

X

i¼1;:::

Li

L
m̂i

Vtþ ¼ V̂ ≔
l0

L
Vt þ mt � mtþÞ

2
�� �

þ
X

i¼1;...

Li

L
V̂ i þ m̂i � mtþÞ

2
� ��

where

m̂i≔
V � 1

t mt þ v� 1
i �i

V � 1
t þ v� 1

t

and V̂ i≔
1

V � 1
t þ v� 1

i

Li≔ li φðmtj�i; vi þ VtÞ and L≔
X

i

Li

ð3Þ

In these expressions,

• Λ is the extent to which an event is anticipated at time t given the level of phase uncertainty,

referred to as the “subjective hazard rate”. Λi is the anticipation related to the event expecta-

tion with index i, the “conditional subjective hazard rate”.

• m̂i is a precision-weighted sum of the mean estimated phase μt and mean expected phase ϕi
for the expectation i.

At events, Eq (3), the posterior on phase is reset to the Gaussian with mean m̂ and variance

V̂ . Notably, the variance V̂ will increase if there are several candidate expectations that the

observed event might correspond to. The variance will similarly increase if the background rate

λ0 and expectations are comparably likely. Between events, Eq (2), μt increases at a fixed rate on

each time step dt, alongside accumulation of phase uncertainty as Vt grows with rate σ2.

In addition to the original formulation of PIPPET, two types of noise are introduced: (1)

the timing of stimulus events are perturbed by event noise, ηe, which represent noisy delays in

auditory processing; and (2) the estimated stimulus mean is perturbed by phase tracking noise,

ημ, reflecting the noisiness of timekeeping processes in the brain. Crucially, these (constant)

noise terms are not parameters of the observer’s generative model, but instead properties of

the physiological implementation of PIPPET. Event times {tn} are perturbed by noise drawn a

standard Normal distribution and scaled by a constant Ze N ð0; 1Þ, and the dμ term is per-

turbed by noise drawn a standard Normal distribution and scaled by a separate constant

Zm
ffiffiffiffiffi
dt
p

N ð0; 1Þ.

pPIPPET: PIPPET with pattern inference

Problem. pPIPPET generalizes PIPPET to incorporate multiple expectation templates,

indexed by m, each of which corresponds to expectations for a specific rhythmic pattern. The

observer is again tasked with estimating a (single) underlying phase ϕ. In this case, they assume

that the stimuli are generated by one of multiple expectation templates—template m is chosen

with probability pm, and a stimulus generated by template m is generated as a point processes

with rate λm(ϕ):

l
m
ð�Þ ¼ l

m
0
þ
X

i

l
m
i φð�j�m

i ; v
m
i Þ ð4Þ
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At time t, the observer infers a distribution pm
t over possible generating templates m. This

distribution starts with the prior distribution pm
0

and is updated based on event observations at

each dt time step. This can be considered an implicit inference of the rhythmic pattern(s)

underlying the observed events, and allows the observer to optimize phase inference given the

relevance of each template m.

Solution. At any time t, the probability associated with each template m is updated

according to the ratio between its respective subjective hazard rate Λm and the total subjective

hazard rate Λ:

dpm ¼ pm L
m

L
� 1

� �

dNt � Ldtð Þ ð5Þ

The posterior on phase, with mean m̂ and variance V̂ , is a Gaussian approximation of the

sum of (Gaussian) estimates made by each template m, weighted by their probabilities pm:

L ¼
X

m

pm L
m

m̂ ¼
X

m

pm m̂m

V̂ ¼
X

m

pmV̂m þ
X

m

pmð1 � pmÞðm̂mÞ
2
�
X

m6¼n

2pmpnm̂mm̂n

ð6Þ

Λm, m̂m and V̂m are calculated as per Eqs (2) and (3), using the single (weighted) posterior

from the previous time step as a prior, in the context of the respective likelihood function

λm(ϕ). In other words, these are candidate posteriors, in the case that the events are being gen-

erated by template m.

The extent to which the likelihood of a template pm evolves at any time t depends on the

template’s subjective hazard rate Λm compared to other templates. If an event is observed at an

unexpected time according to template m, i.e. Λm is low, then the likelihood pm
t of template m

will decrease. This decrease will be larger if other templates strongly expect an event, as the

(Λm/Λ − 1) term will decrease. In the case that an event is equally predicted by all templates,

the likelihood of each template will not change.

Deriving expectation templates from music corpora

In order to simulate rhythmic entrainment—as formulated through pPIPPET—for an encul-

turated listener, a discrete set of expectation templates {λm(ϕ)} must be derived which reflect

the expectations that emerge in listeners through (presumably) life-long learning. Assuming

that musical systems incorporate production constraints [62] and innate perceptual biases,

music corpora should offer reasonable approximations of a listener’s discrete rhythmic priors

(set of expected rhythmic patterns).

Here we derive templates from metrical analysis of music corpora: the probabilities by

which event onsets fall on specific metrical positions, for each metrical category (time signa-

ture) within the corpus. These structures have been likened to schematic patterns of metrical

salience which are acquired over long-term exposure to musical rhythms [17, 107], i.e. the

hierarchical groupings of intervals characterising specific musical styles. Strong priors for

rhythmic patterns associated with specific musical features have been observed in iterated

reproduction tasks for participants with relevant musical experience [24, 25], suggesting expo-

sure to specific rhythms—as represented in a given music corpus—facilitates accurate repro-

duction [49].
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Metrical models. We leverage the metrical analysis by Van der Weij [15], which compares

the statistical properties of monophonic score-based rhythms in German folk melodies [46]

and Turkish makam music [48]. The rhythm samples analyzed were carefully curated to

ensure an equal number of total rhythms, which had been truncated to segments of uniform

length, and filtered to only include rhythms defined at a sixteenth-note resolution. Each sam-

ple consisted of 79 rhythms in the following meters (time signatures): 2/4 and 4/4, binary sim-

ple meters; 6/8, binary compound meter; and 3/4, ternary simple meter. The metrical contexts

analysed included metrical phase, the positions of onsets within the metrical cycle. Fig 8 shows

the relative likelihood that onsets occur at different metrical phases, for each rhythm sample.

While the pattern of onset probabilities is similar across the German and Turkish rhythms,

there is greater uncertainty for the Turkish rhythms. This is consistent with a detailed analysis

of Turkish makam rhythms that revealed a less stratified meter than in Eurogenetic rhythms

[18].

Expected patterns. For both the German and Turkish rhythm samples described above,

the relative frequencies by which events occur at specific metrical phases are used to construct

two sets of expectation templates. As the rhythm spaces explored in simulation consist of

three-interval patterns, each template also reflects an expected three-interval pattern, but is

derived from interval patterns within a metrical cycle.

Let M denote the set of meters, where each meter M 2M has a period NM. First, we iden-

tify all possible three-interval patterns in each meter M by the metrical positions hni, nj, nki
whereby events can occur. These patterns are not constrained in duration to a metrical period

(an entire metrical cycle), and therefore can reflect beat groupings within the meter at different

levels of periodicity. Next, we convert each of these patterns into a pair of ratios relating the

consecutive intervals: hr1, r2i. Per rhythmic sample, the likelihood of each pattern is defined by

the product of independent probabilities for each respective onset in a given meter M, summed

Fig 8. Metrical analysis for German and Turkish corpora. Relative frequency of onset positions (phase, at the

resolution of 16th notes) within a metrical cycle of rhythms belonging to a specific meter (time signature). This

analysis from [15, p. 185] is used with permission.

https://doi.org/10.1371/journal.pcbi.1010579.g008
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across M and normalized:

Pðhr1; r2iÞ ¼
1

jMj

XM2M
Pðhr1; r2i j MÞ

¼
1

jMj

XM2M
Pðni j MÞPðnj j MÞPðnk j MÞ

ð7Þ

Finally, given a total absolute duration td for three-interval stimulus rhythms, each expected

ratio pattern hr1, r2i can be converted into expectations for three intervals in time hd1, d2, d3i,

as per below. Each of these interval patterns characterize the expected phase of events within a

template m, �
m
i . The prior likelihood of events being generated by this template pm is set to the

probability of the respective ratio P(hr1, r2i). Note that these templates are filtered to ensure

the minimum and maximum expected durations conform to the rhythm spaces defined in the

methods being simulated.

d3 ¼
td

1

r1r2

þ
1

r2

þ 1

� � ; d2 ¼
d3

r2

; d1 ¼
d2

r1 ð8Þ

Template parameters. The expectation strength l
m
i and (inverse) expectation precision

vmi for the event expectations on each template m are derived from the prior likelihood of

events being generated by this template pm
0

. For now, we assume these parameters are held con-

stant for all events within a template m. Given a maximum expectation strength λmax and max-

imum expectation variance vmax, we assign the template parameters by l
m
¼ pm

0
l
max

and Vm =

(1 − pm)Vmax. This simple scheme assumes that patterns more common in the cultural corpus

are associated with stronger and more precise event-based expectations. This approach resem-

bles statistical learning schemes where predictions for rhythmic patterns heard frequently by a

listener would be statistically robust [16], enabling accurate entrainment to (culturally) famil-

iar rhythms [49] and exerting a stronger production bias during phase inference.

Tractability. While pPIPPET can be configured with an arbitrary number of expectation

templates, it is computationally intensive to perform phase inference in the context of many

templates at a fine temporal resolution (small time step dt). It seems unlikely that listeners

would continuously update a probability distribution over all imaginable rhythmic patterns

(templates), and instead might dynamically constrain this search space. Additionally, long-

term learning might feasibly result in a more detailed (e.g. hierarchical) representation of

event-based expectations than described here. Expanding the problem of pPIPPET to incorpo-

rate such cognitive tasks would be an obvious subject of future research.

For the practicality of simulations presented in this work, we constrain the number of

expectation templates used by pPIPPET where appropriate. The procedure described above

results in a set of 154 rhythmic patterns, each assigned a unique expectation template, and we

run simulations at the resolution of milliseconds. For any three-interval stimulus rhythm, we

constrain these patterns to the N templates most similar to the stimulus (by Euclidean distance

inR3
). We set N = 22 for a balance between tractability and flexibility.
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