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VOICE LEADING IS A COMMON TASK IN WESTERN

music composition whose conventions are consistent
with fundamental principles of auditory perception.
Here we introduce a computational cognitive model of
voice leading, intended both for analyzing voice-leading
practices within encoded musical corpora and for gen-
erating new voice leadings for unseen chord sequences.
This model is feature-based, quantifying the desirability
of a given voice leading on the basis of different features
derived from Huron’s (2001) perceptual account of voice
leading. We use the model to analyze a corpus of 370
chorale harmonizations by J. S. Bach, and demonstrate
the model’s application to the voicing of harmonic pro-
gressions in different musical genres. The model is
implemented in a new R package, ‘‘voicer,’’ which we
release alongside this paper.
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W ESTERN MUSIC PEDAGOGY TRADITIONALLY

emphasizes two aspects of compositional
practice: harmony and voice leading. Har-

mony specifies a vocabulary of harmonic units, termed
‘‘chords,’’ alongside conventions for combining these
chords into chord sequences; voice leading describes
the art of realizing these chords as collections of indi-
vidual voices, with a particular emphasis on the pro-
gression of individual voices from chord to chord.

Huron (2001, 2016) has argued that Western voice-
leading practice is largely driven by the goal of manip-
ulating the listener’s psychological processes of auditory
scene analysis. Auditory scene analysis describes how the
listener organizes information from the acoustic envi-
ronment into perceptually meaningful elements, typi-
cally corresponding to distinct auditory sources that
can be related to real-world objects (Bregman, 1990).

In Baroque music, voice-leading practice is often consis-
tent with the principle of promoting the perceptual inde-
pendence of the different musical voices. For example,
Baroque composers tended to avoid parallel octaves
between independent voice parts, presumably because
parallel octaves cause the two voice parts to temporarily
‘‘fuse’’ into one perceptual voice, an incongruous effect
when the voices are elsewhere perceived as separate
voices (Huron, 2001, 2016). However, perceptual inde-
pendence is not a universal musical goal: for example,
octave doubling has long been accepted in Western
music as a technique for creating the percept of a single
voice with a reinforced timbre. This technique was taken
further by composers such as Debussy, who often con-
structed entire musical textures from parallel motion
while freely disregarding traditional prohibitions
against parallel fifths and octaves (e.g., La Cathédrale
Engloutie, 1910, L. 117/10). In such cases, we might
hypothesize that Debussy purposefully adopted paral-
lelism to minimize the perceptual independence of the
underlying voices, hence creating a unitary textural
stream (Huron, 2016).

Here we seek to develop a computational cognitive
model of voice leading. This model is intended to sim-
ulate how a composer might choose between various
candidate voice leadings on the basis of their conse-
quences for music perception. One goal of constructing
such a model is to create a formal basis for testing voice-
leading theories on large datasets of music compositions.
A second goal is to create a tool for generating voiced
versions of unseen chord sequences, with potential
applications in music composition and music cognition
research.

A computational cognitive model of voice leading
could adopt various levels of explanatory depth. For
example, a researcher might introduce a model that
takes the musical surface as input, simulates the pro-
cess of auditory scene analysis, and quantifies the
extent to which individual voices are recognized as
independent auditory streams. If this model success-
fully predicted composers’ decisions, this would sup-
port the hypothesis that voice leading is ultimately
driven by the goal of maximizing the perceptual inde-
pendence of musical voices. A second researcher might
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agree that voice-leading practices were originally shaped
by perceptual principles, but hypothesize that experi-
enced composers pay little attention to auditory scene
analysis in practice, and instead construct their voice
leadings from knowledge of voice-leading practice
accrued through musical experience. Correspondingly,
this second researcher might build a data-driven model
that learns to construct voice leadings by emulating
voice-leading practice in representative musical corpora,
without any reference to auditory scene analysis.

Neither of these approaches is necessarily more ‘‘cor-
rect’’ than the other, but both do serve different goals.
From a cognitive modeling perspective, the auditory
scene analysis model better addresses the ultimate causes
of voice-leading practices, explaining how compositional
practice may have been shaped by general perceptual
principles. In contrast, the data-driven model might bet-
ter simulate the psychological processes of an individual
composer. From a music generation perspective, the
auditory scene analysis model is unlikely ever to approx-
imate a particular musical style perfectly, since it neglects
cultural contributions to voice-leading practice. In con-
trast, the data-driven model might effectively approxi-
mate a given musical style, but fail to distinguish
perceptually grounded principles from culturally
grounded principles, and hence fail to generalize usefully
to other musical styles.

Here we adopt an approach intermediate to these
two extremes. We do not try to build a comprehensive
model of auditory scene analysis, and we do not con-
struct a solely data-driven model. Instead, we construct
a model that characterizes voice-leading acceptability as
an interpretable function of various features that might
reasonably be considered by an experienced composer,
such as voice-leading distance, parallel octaves, and
interference between partials. This level of abstraction
is useful for interpretation: it means that we can inspect
the model and understand what it has learned about
voice-leading practice. This interpretability is also useful
for music generation, as it allows the user to manipulate
particular aspects of the model to achieve particular
musical effects.

Following Huron (2001, 2016), we ground our mod-
el’s features in both music theory and auditory percep-
tion. Music theory tells us about voice-leading rules that
composers may have been explicitly taught during their
music training, as well as voice-leading rules that ana-
lysts have inferred from their study of musical practice.
Auditory perception tells us what implications these
features may have for the listener, and helps to explain
why particular musical styles adopt particular voice-
leading practices.

The resulting model is well-suited to both corpus anal-
ysis and music generation. Applied to a music corpus,
the model provides quantitative estimates of the impor-
tance of different voice-leading principles, as well as
p values for estimating the statistical reliability of these
principles. Applied to novel chord progressions, the
model can generate voice leadings based on these differ-
ent voice-leading principles, with the user having the
freedom to use parameters derived from a reference cor-
pus or alternatively to use hand-specified parameters in
order to achieve a desired musical effect.

Importantly, the model does not assume a universal
ideal for voice-leading practice. According to the model,
voice-leading practice in a particular musical style is
characterized by a set of regression weights that deter-
mine the extent to which composers promote or avoid
certain musical features, such as parallel octaves and
interference between partials. Depending on the musical
style, the contribution of a given feature might reverse
entirely; for example, parallel octaves are avoided in
Bach chorales, but are commonplace in certain compo-
sitions by Debussy. The model’s main assumption is
that a common set of perceptual features underpin voice
leading in diverse musical styles, an assumption that
seems plausible in the context of the proposed relation-
ship between voice-leading practice and auditory scene
analysis (Huron, 2001, 2016).

In its broader definitions, the art of voice leading
includes processes of embellishment and elaboration,
whereby an underlying harmonic skeleton is extended
through the addition of musical elements such as pass-
ing notes, neighbor notes, suspensions, and appoggia-
turas (Huron, 2016). These additions can contribute
much to the interest of a musical passage. However, they
add a whole layer of complexity to the voice-leading
task, potentially contributing a new ‘‘surface’’ harmonic
progression that should itself obey certain syntactic con-
ventions. It is difficult to model such processes while
maintaining a strict division between harmony and
voice leading. In this paper, therefore, we omit processes
of embellishment and instead formalize voice leading as
the task of assigning pitch heights to pitch classes pre-
scribed by a fixed harmonic progression. This process
might also be termed ‘‘voicing’’; we retain the term
‘‘voice leading’’ to emphasize how we are interested not
only in the construction of individual chord voicings but
also in the way that these voicings lead consecutively
from one voicing to the next.

Voice leading is typically taught in the context of
musical styles where each note is explicitly assigned to
a particular voice part, such as Baroque chorale harmo-
nizations. However, voice leading can also be important
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in other styles: for example, effective voice leading is
considered essential to jazz music, despite the fact that
jazz harmony is often played on the piano or guitar,
where explicit voice assignment is lacking (Tymoczko,
2011). We wish for our model to generalize to such styles,
and therefore we do not include explicit voice assignment
in the algorithm. Instead, the algorithm infers voice
assignments solely from the pitch content of the musical
passage, and uses these inferred assignments to evaluate
voice-leading rules.

There are several published precedents for voice-
leading modeling. Models specifically of voice leading are
quite rare (see Hörnel, 2004, for one such model), but
many models do exist for melody harmonization, a com-
positional task that often involves a voice-leading com-
ponent (see Fernández & Vico, 2013, for a review).
Generally speaking, these models are grounded more in
artificial intelligence research than cognitive science
research; as a result, there is little emphasis on auditory
perception, model interpretability, or corpus analysis.
Many of the models are neural networks, which can
potentially capture very complex musical principles but
typically possess low interpretability (Hild, Feulner, &
Menzel, 1984; Hörnel, 2004). Others are rule-based, pro-
viding a formal instantiation of the researcher’s music-
theoretic knowledge without necessarily testing this
knowledge against musical practice (Ebcioğlu, 1988;
Emura, Miura, & Yanagida, 2008). Both the neural-
network approaches and the rule-based approaches
seemed ill-suited to our cognitive modeling goals. More-
over, the models generally lack publicly available imple-
mentations, which restricts their utility to potential users.
We address these concerns in the present work, develop-
ing a cognitively motivated voice-leading model and
releasing a publicly available implementation in the
form of voicer, an open-source software package for
the R programming language (R Core Team, 2018).

Model

We suppose that a chord sequence can be represented as
a series of N tokens, x1; x2; . . . ; xNð Þ, where each token
constitutes a pitch-class chord, defined as a pitch-class
set with known bass pitch class. For example, a IV-V-I
cadence in C major would be written as 5; 0; 9ð Þ;ð
7; 2; 11ð Þ; 0; 4; 7ð ÞÞ, where boldface denotes the bass

pitch class. Further, we suppose that we have a candi-
date generation function, C, which generates a set of
candidate voicings for a given pitch-class chord. For
example, we might have C 0; 4; 7ð Þð Þ ¼ 48; 52; 55f g;f

48; 52; 67f g; 48; 64; 67f g; . . .g, where each voicing is
expressed as a set of MIDI note numbers. Our aim is

to model the process by which the musician assigns
each pitch-class chord xi a voicing Xi 2 C xið Þ.

We suppose that the probability of choosing a voicing
Xi varies as a function of certain features of Xi as eval-
uated with respect to the previous voicing, Xi�1. We
write fj for the jth of these features, and define a linear
predictor L Xi;Xi�1ð Þ as a weighted sum of these features,
where the regression weight of feature fj is denoted wj.

L Xi;Xi�1ð Þ ¼
X

j

wjfj Xi;Xi�1ð Þ ð1Þ

The linear predictor summarizes the desirability of
a particular voicing, aggregating information from the
different features. As with traditional regression mod-
els, the regression weights determine the contribution
of the respective features; for example, a large positive
value of wj means that voicings are preferred when
they produce large positive values of fj, whereas a large
negative value of wj means that large negative values of
fj are preferred.

We suppose that the probability of sampling a given
chord voicing is proportional to the exponentiated lin-
ear predictor, with the normalization constant being
computed by summing over the set of candidate voi-
cings, C xið Þ:

P XijXi�1; xið Þ ¼
eL Xi ;Xi�1ð ÞP

X2C xið Þ eL X;Xi�1ð Þ if Xi 2 C xið Þ;

0 otherwise:

8<
:

ð2Þ

This is a sequential version of the conditional logit
model of McFadden (1974), originally introduced for
modeling discrete-choice decisions in econometrics.

The probability of the full sequence of voicings can
then be expressed as a product of these expressions:

P X1;X2; . . . ;XN jx1; x2; . . . ; xNð Þ¼
YN

i¼1
P XijXi�1; xið Þ:

ð3Þ

where X0 is a fixed start symbol for all sequences.
Once the candidate voicing generation function C

and the features fi are defined, the regression weights
wi can be optimized on a corpus of chord sequences
using maximum-likelihood estimation. Here we per-
form this optimization using iteratively reweighted least
squares as implemented in the mclogit package (Elff,
2018). The resulting regression weights quantify the
contribution of each feature to voice-leading practice.
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Features

Our feature set comprises 12 features that we hypothe-
sized should be useful for the voice-leading model. We
designed these features to cover the 13 traditional rules
reviewed in Huron’s (2001) perceptual account of voice
leading (see also, Huron, 2016).

Voice-leading distance. The voice-leading distance
between two chords may be defined as the sum dis-
tance moved by the implied voice parts connecting the
two chords. A chord progression that minimizes voice-
leading distance is said to have ‘‘efficient’’ voice lead-
ing. Efficient voice leading promotes auditory stream
segregation through the pitch proximity principle,
which states that the coherence of an auditory stream
is improved when its tones are separated by small pitch
distances (Huron, 2001, 2016). Correspondingly, we
expect our voice-leading model to penalize voice-
leading distance when applied to common-practice
Western music. We compute voice-leading distance
using the minimal voice-leading algorithm of Tymoczko
(2006) with a taxicab norm, modified to return pitch
distances instead of pitch-class distances. This algo-
rithm generalizes effectively to chords with different
numbers of pitches by supposing that several voices can
start or end on the same pitch. For example, the optimal
voice-leading between C4-E4-G4 and B3-D4-F4-G4 is
found to be C4 ! B3, C4 ! D4, E4! F4, G4! G4,
which corresponds to a voice-leading distance of
1þ 2þ 1 ¼ 4 semitones.

Melodic voice-leading distance. Efficient voice leading
is likely to be particularly salient for the uppermost
voice, on account of the high voice superiority effect
(Trainor, Marie, Bruce, & Bidelman, 2014). We capture
this hypothesis with a feature termed melodic voice-
leading distance, defined as the distance between the
uppermost voices of successive chords, measured in
semitones. We expect our model to penalize melodic
voice-leading distance when applied to common-
practice Western music.

Pitch height. Harmonic writing in common-practice
Western music commonly uses pitches drawn from
a three-octave span centered on middle C (C4, 261.63
Hz) (Huron, 2001). This three-octave span corresponds
approximately to the combined vocal range of male and
female voices, and to the frequency range for which
complex tones elicit the clearest pitch percepts (Huron,
2001). We address this phenomenon with three features.
Mean pitch height computes the absolute difference
between the chord’s mean pitch height, defined as the
mean of its MIDI note numbers, and middle C, corre-
sponding to a MIDI note number of 60. Treble pitch

height is defined as the distance that the chord’s highest
note spans above C5 (523.25 Hz), expressed in semi-
tones, and returning zero if the chord’s highest note is
C5 or lower. Similarly, bass pitch height is defined as the
distance that the chord’s lowest note spans below C3
(130.81 Hz), expressed in semitones, and returning zero
if the chord’s highest note is C3 or higher. We expect our
model to penalize each of these features.

Interference between partials. Any given chord may
be realized as an acoustic spectrum, where the spectrum
defines the amount of energy present at different oscil-
lation frequencies. The peaks of this spectrum are
termed partials, and typically correspond to integer
multiples of the fundamental frequencies of the chord’s
constituent tones. Partials separated by small frequency
differences are thought to elicit interference effects, in
particular masking and roughness (Harrison & Pearce,
in press). Masking, the auditory counterpart to visual
occlusion, describes the way in which the auditory sys-
tem struggles to resolve adjacent pitches that are too
similar in frequency. Roughness describes the amplitude
modulation that occurs from the superposition of two
tones of similar frequencies. Both masking and rough-
ness are thought to have negative aesthetic valence for
Western listeners, potentially contributing to the per-
ceptual phenomenon of ‘‘dissonance.’’ Correspondingly,
musicians may be incentivized to find voice leadings
that minimize these interference effects.

Corpus analyses have shown that interference between
partials provides a good account of chord spacing prac-
tices in Western music, in particular the principle that
lower voices should be separated by larger pitch intervals
than upper voices (Huron & Sellmer, 1992). Corre-
spondingly, we introduce interference between partials
as a voice-leading feature, operationalized using the
computational model of Hutchinson and Knopoff
(1978) as implemented in the incon package (Harrison
& Pearce, in press). This model expands each chord tone
into its implied harmonics, and sums over all pairs of
harmonics in the resulting spectrum, modeling the inter-
ference of a given pair of partials as a function of their
critical bandwidth distance and the product of their
amplitudes. We expect our voice-leading model to
penalize high values of this interference feature.

Number of pitches. The number of distinct pitches in
a chord voicing must be greater than or equal to the size
of the chord’s pitch-class set. Larger chords can be pro-
duced by mapping individual pitch classes to multiple
pitches. Instrumental forces place absolute constraints
on this process; for example, a four-part choir cannot
produce voicings containing more than four pitches, but
can produce voicings with fewer than four pitches by
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assigning multiple voices to the same pitches. Other
stylistic principles place weaker constraints on this pro-
cess, which we aim to capture with our voice-leading
model. First, we suppose that the musical style defines
an ideal number of pitches, and that this ideal can be
deviated from with some penalty; for example, a four-
part chorale preferentially contains four pitches in each
chord voicing, but it is permissible occasionally to use
voicings with only three pitches. We operationalize this
principle with a feature called Number of pitches (differ-
ence from ideal). Second, we suppose that there may be
some additional preference for keeping the number of
pitches consistent in successive voicings, and operatio-
nalize this principle with a feature called Number of
pitches (difference from previous chord). We expect the
voice-leading model to penalize both of these features.

Parallel octaves/fifths. Octaves and fifths are pitch
intervals spanning 12 semitones and 7 semitones
respectively. Parallel octaves and parallel fifths occur
when two voice parts separated by octaves or fifths both
move by the same pitch interval in the same direction.
Parallel motion tends to promote perceptual fusion, and
this effect is particularly strong for harmonically related
tones, such as octaves and fifths (Huron, 2016). The
avoidance of parallel octaves and fifths in common-
practice voice leading may therefore be rationalized as
a mechanism for promoting the perceptual indepen-
dence of the voices. Conversely, extended sequences of
parallel octaves and fifths in the music of Debussy (e.g.,
La Cathédrale Engloutie, 1910, L. 117/10) may encour-
age listeners to perceive these sequences as single tex-
tural streams (Huron, 2016).

We capture this phenomenon using a Boolean feature
termed Parallel octaves/fifths (any parts) that returns 1 if
parallel octaves or fifths (or compound versions of these
intervals; a compound interval is produced by adding
one or more octaves to a standard interval) are detected
between any two parts and 0 otherwise. Voice assign-
ments are computed using Tymoczko’s (2006) algo-
rithm, meaning that the feature remains well-defined
in the absence of notated voice assignments.

As noted by Huron (2001), parallel octaves and fifths
are particularly salient and hence particularly prohibited
when they occur between the outer parts. We capture
this principle with a Boolean feature termed Parallel
octaves/fifths (outer parts), which returns 1 if parallel
octaves or fifths are detected between the two outer parts
and 0 otherwise.

Exposed octaves (outer parts). Exposed octaves, also
known as ‘‘hidden octaves’’ or ‘‘direct octaves,’’ occur
when two voices reach an interval of an octave (or com-
pound octave) by moving in the same direction.

Injunctions against exposed octaves appear in many
voice-leading textbooks, but the nature of these injunc-
tions differs from source to source. For example, some
say that the rule against exposed octaves applies to any
pair of voice parts, whereas others say that the rule only
applies to the outer parts; likewise, some say that exposed
octaves are acceptable when either of the voices move by
step, whereas others say that exposed octaves are only
excused when the top line moves by step (see Arthur &
Huron, 2016, for a review).

Auditory scene analysis provides a useful perspective
on this debate. Like parallel octaves, exposed octaves
combine similar motion with harmonic pitch intervals,
and are hence likely to promote fusion between the
constituent voices. Approaching the interval with step-
wise motion may counteract this fusion effect by intro-
ducing a competing cue (pitch proximity) that helps the
listener differentiate the two voice parts (Huron, 2001,
2016). This provides a potential psychological explana-
tion for why exposed octaves might be excused if they
are approached by stepwise motion.

Arthur and Huron (2016) investigated the perceptual
basis of the exposed octaves rule, and found that step-
wise motion had little effect on perceptual fusion. How-
ever, they did find tentative evidence that stepwise
motion reduces fusion in the specific case of the upper-
most voice moving by step. They explained this effect by
noting that fusion comes from the listener interpreting
the upper tone as part of the lower tone, resulting in
a single-tone percept at the lower pitch. Approaching
the lower pitch with stepwise motion presumably rein-
forces this lower pitch, and therefore has limited con-
sequences for the fusion effect. In contrast, approaching
the higher pitch with stepwise motion may encourage
the listener to ‘‘hear out’’ this upper pitch, therefore
reducing the fusion effect (Arthur & Huron, 2016).

Further work is required before the perceptual basis of
exposed octaves is understood fully. For now, we imple-
ment a Boolean feature that captures the most consis-
tently condemned form of exposed octaves: those that
occur between the outer parts with no stepwise motion
in either part. We term this feature Exposed octaves
(outer parts). Future work could implement different
variants of this feature to capture the different nuances
discussed above.

Part overlap. Ascending part overlap occurs when
a voice moves to a pitch above that of a higher voice
from the preceding chord. Similarly, descending part
overlap occurs when a voice moves to a pitch below that
of a lower voice from the preceding chord. According to
Huron (2001), composers avoid part overlap because it
interferes with pitch-based auditory stream segregation,
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making it harder for listeners to identify the constituent
voices in a chord progression. Correspondingly, we
define a Boolean feature termed Part overlap that
returns 1 when part overlap is detected and 0 otherwise.
This feature uses Tymoczko’s (2006) algorithm to deter-
mine voice assignments for each pitch.

Analysis

We now use our model to analyze a dataset of 370
chorale harmonizations by J. S. Bach, sourced from the
virtual music library KernScores (Sapp, 2005).1 These
chorales provide a useful baseline application for the
model: they are relatively stylistically homogeneous,
they have a consistent texture of block chords, and they
are considered to be a touchstone of traditional har-
monic practice.

These chorales were originally notated as four inde-
pendent voices. For our analyses, it is necessary to trans-
late these independent voices into sequences of vertical
sonorities. We achieve this using full expansion (Con-
klin, 2002): we create a new sonority at each timepoint
when a new note onset occurs, with this sonority com-
prising all pitches already sounding or starting to sound
at that timepoint. Because of embellishments such as
passing notes and appoggiaturas, these sonorities do not
correspond to chords in the conventional sense; deriv-
ing a conventional chord sequence would require the
services of either a music theorist or a harmonic reduc-
tion algorithm (e.g., Pardo & Birmingham, 2002; Rohr-
meier & Cross, 2008). We therefore use the term
‘‘sonority’’ to identify the collections of pitch classes
identified by the full-expansion algorithm.

Our sequential features (e.g., voice-leading distance)
are undefined for the starting sonority in each chorale.
We therefore omit all starting sonorities from the model-
fitting process. An alternative approach would be to set
all sequential features to zero for these starting sonorities.

One of our features—‘‘Number of pitches (difference
from ideal)’’—is intended to capture the default number
of pitches in each voicing for a particular musical style.
Since all the chorales in our dataset have four voices, all
of which tend to sing throughout the chorale, we set the
ideal number of pitches to four.

The model supposes that each sonority has a finite set
of candidate voicings. For a given sonority, we enumer-
ate all candidate voicings that satisfy the following
conditions:

a) All pitches must range between C2 (65.41 Hz) and
B5 (987.77 Hz) inclusive;

b) The voicing must represent the same pitch-class
set as the original sonority;

c) The voicing and the original sonority must share
the same bass pitch class;

d) The voicing must contain between one and four
distinct pitches, reflecting the fact that the chor-
ales were originally written for four voice parts.

Before beginning the analysis, it is worth acknowl-
edging two simplifications we have made when mod-
eling Bach’s composition process. First, Bach took his
soprano lines from pre-existing chorale melodies, and
only composed the lower parts; in contrast, our model
recomposes the melody line as well as the lower parts.
Correspondingly, our model is not really a simulation of
chorale harmonization, but rather a simulation of the
Bach chorale style itself. Second, our model assumes
that the sonorities are fixed in advance of constructing
the voice leadings, which is arguably unrealistic given
that the sonorities derived from full expansion include
embellishments that are themselves motivated by voice
leading, such as passing notes. This simplification is
useful for making the analysis tractable, but future work
could investigate ways of modeling interactions between
harmony and voice leading.

PERFORMANCE

Having fitted the voice-leading model to the corpus, we
assess its performance by iterating over each sonority in
the corpus and assessing the model’s ability to repro-
duce Bach’s original voicings. Different performance
metrics can be defined that correspond to different
methods for sampling voicings. One approach is to
select the voicing with the maximum probability
according to the model: in this case, the model retrieves
the correct voicing 63.05% of the time. A second
approach is to sample randomly from the model’s prob-
ability distribution: in this case, the model has an aver-
age success rate of 44.63%. A third approach is to
sample voicings from the model in descending order
of probability, until the correct voicing is recovered:
on average, this takes 2.55 samples, corresponding to
2.14% of the available voicings. Given that there are on
average 102.96 available voicings for each sonority,
these figures suggest fairly good generative choices.

1 The collection was originally compiled by C. P. E. Bach and
Kirnberger, and later encoded by Craig Sapp. The encoded dataset
omits chorale no. 50, the only chorale not in four parts. This dataset is
available as the ‘bach_chorales_1’ dataset in the hcorp package (https://
github.com/pmcharrison/hcorp). Source code for our analyses is available
at https://doi.org/10.5281/zenodo.2613563.

A Computational Cognitive Model of Voice Leading 213

https://github.com/pmcharrison/hcorp
https://github.com/pmcharrison/hcorp
https://doi.org/10.5281/zenodo.2613563


MOMENTS

The ‘‘Moments’’ portion of Table 1 describes feature
distributions in the original corpus. For example, the
first entry indicates that the mean voice-leading dis-
tance between successive voicings is 5.96, with a stan-
dard deviation of 4.29. Given that these chorales are
each voiced in four parts, this implies that each voice
part moves on average by 1.49 semitones between each
voicing.

It is interesting to examine features corresponding to
strict rules that we might expect never to be violated in
Bach’s work. For example, parallel octaves and fifths are
often taught to music students as unacceptable viola-
tions of common-practice style, yet our analysis identi-
fies such voice leadings in 1.09% of Bach’s progressions.
These cases often correspond to passages where Bach
introduced voice crossings to avoid parallel progres-
sions (e.g., Figure 1); such voice crossings have no
impact on our algorithm, which recomputes all voice
leadings using Tymoczko’s (2006) algorithm. We
decided not to remove such cases, because voice reas-
signment arguably only partially eliminates the aesthetic

effect of these parallel progressions, and because we
wish the algorithm to generalize to textures without
explicit voice assignment.

WEIGHTS

The ‘‘Weights’’ portion of Table 1 lists optimized weights
for each feature, alongside the corresponding standard
errors and p values. Consider the voice-leading distance
weight, which takes a value of �0:37: this means that
increasing voice-leading distance by one unit modifies
a voicing’s predicted probability by a factor of
exp �0:37ð Þ ¼ 0:69.

Similar reasoning applies to Boolean features, which
can only take two values: ‘‘true’’ (coded as 1) or ‘‘false’’
(coded as 0). For example, part overlap has a weight of
�0:67, meaning that a voicing with overlapping parts
is exp �0:67ð Þ ¼ 0:51 times less likely to occur than an
equivalent voicing without overlapping parts. Part
overlap is therefore a moderate contributor to voice-
leading decisions: something to be avoided but not
prohibited. Parallel octaves and fifths, meanwhile, are

TABLE 1. Descriptive and Inferential Statistics for the 12 Voice-leading Features as Applied to the Bach Chorale Dataset

Moments Weights Feature importance

Feature M SD Value SE p Max. probability Random sample

Voice-leading distance 5.961 4.295 �0.375 0.003 < .001 .553 .379
Melodic voice-leading distance 1.133 1.486 �0.240 0.006 < .001 .164 .100
Treble pitch height (distance above C5) 0.742 1.430 �0.237 0.008 < .001 .103 .052
Bass pitch height (distance below C3) 0.801 1.814 �0.173 0.006 < .001 .072 .038
Interference (Hutchinson & Knopoff, 1978) 0.189 0.076 �8.653 0.231 < .001 .068 .037
Parallel octaves/fifths (Boolean) 0.011 0.104 �2.489 0.062 < .001 .056 .033
Number of pitches (difference from ideal) 0.080 0.278 �1.321 0.035 < .001 .056 .032
Mean pitch height (distance from C4) 2.506 1.793 �0.128 0.005 < .001 .031 .018
Part overlap (Boolean) 0.028 0.164 �0.669 0.041 < .001 .013 .013
Parallel octaves/fifths (outer parts; Boolean) 0.001 0.023 �2.323 0.270 < .001 .008 .004
Exposed octaves (outer parts; Boolean) 0.001 0.037 (0.204) (0.164) .214 .000 .000
Number of pitches (difference from previous) 0.125 0.336 (0.008) (0.034) .822 .000 .000

Note. Moments provides the mean and standard deviation of feature values in the Bach chorale dataset. Weights provides the regression weights for each feature, alongside
corresponding standard errors and p values. Feature importance provides permutation-based importance metrics for each feature.

FIGURE 1. J. S. Bach, Mach’s mit mir, Gott, nach deiner Güt’, BWV 377, bb. 1—4. The two chords immediately after the first fermata imply parallel fifths

and octaves that have been only partly mitigated by swapping the bass and tenor parts.
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almost prohibited. Parallel progressions between
outer parts are penalized particularly heavily; such
progressions reduce a voicing’s probability by a factor
of exp �2:49� 2:32ð Þ ¼ 0:01.

FEATURE IMPORTANCE

It is difficult to make meaningful comparisons between
the weights of continuous features, because each must
be expressed in the units of the original feature. This
problem is addressed by the permutation-based feature
importance metrics in Table 1. These metrics operatio-
nalize feature importance as the drop in model perfor-
mance observed when the trained model is evaluated on
a dataset (in this case the Bach chorale corpus) where
the feature is randomly permuted (see e.g., Fisher,
Rudin, & Dominici, 2018).2 Table 1 presents two feature
importance metrics corresponding to two previously
presented performance metrics: the accuracy of
maximum-probability samples and the accuracy of ran-
dom samples. Both metrics indicate that voice-leading
efficiency, particularly in the melody line, is the primary
contributor to model performance.

It is worth noting that a large feature weight can
accompany a small feature importance. For example,
parallel fifths/octaves between the outer parts yields
a relatively large weight of -2.32, but a relatively small
feature importance of 0.01 (maximum-probability sam-
pling). This can be rationalized by the observation that
parallel fifths/octaves between the outer parts is essen-
tially prohibited in common-practice voice leading
(hence the large weight), but this rule only excludes
a tiny proportion of possible voice leadings (hence the
small feature importance).

It is also worth noting how each feature’s importance
will necessarily depend on which other features are
present. For example, the weight attributed to ‘‘mean
pitch height (distance from C4)’’ is likely to be attenu-
ated by voice-leading distance, because if the previous
voicing already had an good mean pitch height, and the
next voicing only differs by a small voice-leading dis-
tance, then the next voicing is guaranteed to have a fairly
good mean pitch height. As a result, the ‘‘mean pitch
height’’ feature only needs to give a slight nudge in the
appropriate direction to prevent mean pitch height from
wandering over time.

STATISTICAL SIGNIFICANCE

Two features received regression weights that did not
differ statistically significantly from zero: Exposed

octaves (outer parts) and Number of pitches (difference
from previous). The lack of statistical significance for the
exposed-octaves feature is particularly interesting, given
how commonly Western music pedagogy prohibits
these progressions. Examining the Moments column
of Table 1, it is clear that such progressions are
extremely rare in the chorale dataset, which is surprising
given the minimal contribution of the corresponding
feature. This suggests that these progressions are being
penalized by other features. Three such features seem
particularly relevant: Voice-leading distance, Melodic
voice-leading distance, and Mean pitch height. Accord-
ing to our definitions, exposed octaves only occur when
both outer parts move by three or more semitones; such
large movements are likely to be heavily penalized by
the voice-leading distance features. Furthermore, the
two voices must progress in similar motion, thereby
inducing a significant change in mean pitch height.
Assuming that the previous voicing was already at a suit-
able mean pitch height, this is likely to take the voicing
to an unsuitable mean pitch height, resulting in penal-
ization by the Mean pitch height feature. In sum, there-
fore, it seems plausible that the exposed-octaves feature
is made redundant by the other features.

The non-significant contribution of the feature Num-
ber of pitches (difference from previous) is arguably
unsurprising given the corpus being modeled. Each of
these chorales is written for four voices, and so the
primary pressure on the number of pitches in the sonor-
ity is likely to be the goal of providing these four voices
with distinct lines; deviations from this four-pitch norm
are generally rare and quickly resolved. This phenome-
non can be captured by the feature Number of pitches
(difference from ideal), making the feature Number of
pitches (difference from previous) unnecessary. However,
this latter feature may become more important in cor-
pora where the number of voices is less constrained,
such as in keyboard music.

Generation

The probabilistic model developed in the previous sec-
tion can be directly applied to the automatic generation
of voice leadings for chord sequences. Given a prespeci-
fied chord sequence, the model defines a probability dis-
tribution over all possible voice leadings for that chord
sequence, which factorizes into probability distributions
for each chord voicing conditioned on the previous
chord voicing. It is straightforward to sample from this
factorized probability distribution: simply iterate from
the first to the last chord in the sequence, and sample
each voicing according to the probability distribution

2 Note that the feature is only permuted in the test dataset, not the
training dataset.
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defined by the conditional logit model, using the sam-
pled voicing at position i to define the feature set for
chord voicings at position iþ 1.

If our goal is to approximate a target corpus as well as
possible, then this random sampling is a sensible
approach. However, if our goal is to generate the best
possible voice leading for a chord sequence, then we
must identify some objective function that characterizes
the quality of a chord sequence’s voice leading and opti-
mize this objective function.

Here we propose optimizing the sum of the model’s
linear predictors. As defined previously, the linear pre-
dictor characterizes a given chord voicing as a weighted
sum of feature values, with this linear predictor being
exponentiated and normalized to estimate the probabil-
ity of selecting that voicing. The linear predictor might
be interpreted as the attractiveness of a given voicing, as
inversely related to features such as voice-leading dis-
tance and interference between partials.

Optimizing the sum of the linear predictors is subtly
different to optimizing for probability. Optimizing for
probability means maximizing the ratio of the expo-
nentiated linear predictors for the chosen voicing to
the exponentiated linear predictors for the alternative
voicings. This maximization does not necessarily entail
high values of the linear predictor; in perverse cases,
high probabilities may be achieved when the chosen
voicing is simply the best of a very bad set of candi-
dates. We wish to avoid such cases, and to identify
chord voicings that possess good voice-leading attri-
butes in an absolute sense, not simply relative to their
local competition.

The space of all possible voice leadings is large: given
100 candidate voicings per chord, a sequence of 80
chords has 10160 potential voice-leading solutions. It
is clearly impractical to enumerate these voice leadings
exhaustively. A simple ‘‘greedy’’ strategy would be to
choose the chord voicing with the highest linear pre-
dictor at each chord position; however, this is not guar-
anteed to maximize the sum of linear predictors across
all chord positions. Instead, we take a dynamic-
programming approach that deterministically retrieves
the optimal voice-leading solution while restricting the
number of linear predictor evaluations to approxi-
mately a2n, where a is the number of candidate voi-
cings for each chord and n is the number of chords in
the sequence. This approach simplifies the computa-
tion by taking advantage of the fact that none of our
features look back beyond the previous chord’s voic-
ing. See Appendix for details.

Several of the features, such as voice-leading distance
and part overlap, are undefined for the first chord in the

sequence. Correspondingly, the first chord of each
sequence was excluded from the model-fitting process
described in Analysis. When generating from the
model, however, it is inappropriate to exclude these
chords from the optimization. Instead, we set all
context-dependent features to zero for the first chord
of each sequence (in fact, any numeric constant would
have the same effect). The initial chord voicings are
then optimized according to the context-independent
features, such as interference between partials and mean
pitch height.

Figure 2 demonstrates the algorithm on the first ten
sonorities of the chorale dataset: Aus meines Herzens
Grunde, BWV 269.3 For comparison purposes,
Figure 2A displays J. S. Bach’s original voice leading,
and Figure 2B displays a heuristic voice leading where
the bass pitch class is played in the octave below middle
C and the non-bass pitch classes are played in the
octave above middle C, after Harrison and Pearce
(2018a). Figure 2C displays the voice leading produced
by the new algorithm, using regression weights as opti-
mized on the original corpus, and generating candidate
chords according to the same procedure as described in
Analysis. Unlike the heuristic algorithm, the new algo-
rithm consistently employs four notes in each chord,
creating a richer voice leading that is more representa-
tive of the original chorale harmonization. The new
algorithm successfully avoids the two parallel fifths
produced in the last two bars by the heuristic algo-
rithm, and achieves considerably smoother voice lead-
ing throughout.

In chorale harmonizations the soprano line is typi-
cally constrained to follow the pre-existing chorale mel-
ody. We can reproduce this behavior by modifying the
candidate voicing generation function so that it only
generates voicings with the appropriate soprano pitches.
Figure 2D displays the voice leading produced when
applying this constraint. Our implementation also sup-
ports further constraints such as forcing particular
chord voicings to contain particular pitches, or alterna-
tively fixing entire chord voicings at particular locations
in the input sequence.

We were interested in understanding how the trained
model would generalize to different musical styles. In
harmony perception studies, it is often desirable to pres-
ent participants with chord sequences derived from pre-
existing music corpora, such as the McGill Billboard
corpus (Burgoyne, 2011) and the iRb corpus (Broze &

3 Source code is available at https://doi.org/10.5281/zenodo.2613563.
Generated voice leadings for all 370 chorales are available at https://doi.
org/10.5281/zenodo.2613646.
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Shanahan, 2013). Unfortunately, these corpora just pro-
vide chord symbols, not fully voiced chords, and so the
researcher is tasked with creating voice leadings for
these chord sequences. We had yet to identify suitable
datasets of voiced chord sequences for popular or jazz
music, and therefore wished to understand whether
Bach chorales would be sufficient for training the algo-
rithm to generate plausible voice leadings for these
musical styles.

From an auditory scene analysis perspective, there are
clear differences between Bach chorales and popular/
jazz harmony. The chorales consistently use four melod-
ically independent voices, and Bach’s voice-leading
practices are consistent with the compositional goal of
maximizing the perceptual independence of these
voices while synchronizing text delivery across the vocal
parts (Huron, 2001, 2016). In contrast, harmony in pop-
ular and jazz music is often delivered by keyboards or
guitars, both of which produce chords without explicit
voice assignment, with the number of distinct pitches in
each chord often varying from chord to chord. Corre-
spondingly, voice independence seems likely to be less

important in popular/jazz harmony than in Bach chor-
ales. Nonetheless, we might still expect popular/jazz
musicians to pay attention to the perceptual indepen-
dence of the outer parts, since these voices are particu-
larly salient to the listener even when the voice parts are
not differentiated by timbre. We might also expect pop-
ular/jazz listeners to prefer efficient voice leadings, even
if they are not differentiating the chord progression into
separate voices, because efficient voice leading helps
create the percept of a stable textural stream (Huron,
2016). In summary, therefore, there are reasons to
expect some crossover between voice-leading practices
in Bach chorales and voice-leading practices in popular/
jazz music.

Figures 3 and 4 demonstrate the application of the
chorale-trained model to the first ten chords of two
such corpora: the Billboard popular music corpus
(Burgoyne, 2011), and the iRb jazz corpus (Broze &
Shanahan, 2013). We use both datasets as translated
to pitch-class notation by Harrison and Pearce
(2018b), and use the same model configuration as for
the Bach chorale voicing.

FIGURE 2. Example voice leadings for J. S. Bach’s chorale Aus meines Herzens Grunde (BWV 269), chords 1—10. A) Bach’s original voice leading. B)

Heuristic voice leading. C) New algorithm. D) New algorithm with prespecified melody.
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Figures 3A and 3B correspond to the first ten bars of
the popular corpus, from the song I don’t mind by James
Brown. Figure 3A displays the heuristic algorithm
described earlier, and Figure 3B displays the new algo-
rithm’s voicing. Unlike the heuristic algorithm, the new
algorithm maintains four-note voicings at all times,
producing a richer and more consistent sound. The
voice-leading efficiency is also considerably improved,
particularly in the melody line.

Figures 4A and 4B correspond to the first ten bars of
the jazz corpus, from the composition 26-2 by John Col-
trane. As before, Figures 4A and 4B correspond to the
heuristic and new algorithms respectively. At first sight,
the new algorithm produces some unusual voice lead-
ings: for example, the tenor part jumps by a tritone
between the fourth chord and the fifth chord. One might
expect this inefficient voice leading to be heavily penal-
ized by the model. However, the model considers this
voice leading to be relatively efficient, as Tymoczko’s

(2006) algorithm connects the two voicings by approach-
ing the lower two notes of the fifth chord (C, G) from the
bass note of the previous chord (G), and approaching
the second-from-top note in the fifth chord (E) from the
second-from-bottom note in the fourth chord (D�). This
suggested voice assignment is indeed plausible when the
extract is performed on a keyboard instrument, but it
could not be realized by a four-part ensemble of mono-
phonic instruments. For such applications, it would be
worth modifying Tymoczko’s (2006) algorithm to set an
upper bound on the number of inferred voices.

We have implemented these algorithms in an open-
source software package called voicer, written for the
R programming language, and coded in a mixture of R
and Cþþ. The source code is available from the open-
source repository https://github.com/pmcharrison/
voicer and permanently archived at https://doi.org/10.
5281/zenodo.2613565. Appendix B provides an intro-
duction to the package.

FIGURE 3. Example voice leadings for the first 10 chords of James Brown’s I don’t mind. A) Heuristic voice leading. B) New algorithm.

FIGURE 4. Example voice leadings for the first 10 chords of John Coltrane’s 26-2. A) Heuristic voice leading. B) New algorithm.
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Discussion

We have introduced a new model for the analysis
and generation of voice leadings. This model uses per-
ceptually motivated features to predict whether a given
voice leading will be considered appropriate in a partic-
ular musical context. Applied to a dataset of 370 chorale
harmonizations by J. S. Bach, this model delivered quan-
titative evidence for the relative importance of different
musical features in determining voice leadings. Applied
to generation, the model demonstrated an ability to cre-
ate plausible voice leadings for pre-existing chord
sequences, and to generalize to musical styles dissimilar
to the Bach chorales upon which it was trained.

Combining analysis with generation provides a pow-
erful way to examine which principles are sufficient to
explain voice-leading practice. While the analysis stage
provides quantitative support for the importance of dif-
ferent musical features in voice leading, the generation
stage can provide a litmus test for the sufficiency of the
resulting model. Examining the outputs of the model,
we can search for ways in which the model deviates
from idiomatic voice leading, and test whether these
deviations can be rectified by incorporating additional
perceptual features into the model. If so, we have iden-
tified an additional way in which voice leading may be
explained through auditory perception, after Huron
(2001, 2016); if not, we may have identified an impor-
tant cultural component to voice-leading practice. To
this end, we have released automatically generated voi-
cings for the full set of 370 Bach chorale harmoniza-
tions;4 we hope that they will provide useful material for
identifying limitations and potential extensions of the
current approach.

The existing literature already suggests several addi-
tional features that might profitably be incorporated into
the voice-leading model. One example is the ‘‘leap away
rule,’’ which states that large melodic intervals (leaps) are
better situated in the outer voices than the inner voices,
and that these intervals should leap away from the other
voices rather than towards the other voices (Huron,
2016). This should be straightforward to implement
computationally. A second example is the ‘‘follow ten-
dencies rule,’’ which states that the progressions of indi-
vidual voices should follow the listener’s expectations,
which may themselves derive from the statistics of the
musical style (schematic expectations), the statistics of the
current musical piece (dynamic expectations), or prior
exposure to the same musical material (veridical expec-
tations) (Huron, 2016). Schematic expectations could be

operationalized by using a dynamic key-finding algo-
rithm to represent the sonority as scale degrees (e.g.,
Huron & Parncutt, 1993), and then evaluating the prob-
ability of each scale-degree transition with respect to
a reference musical corpus; dynamic expectations could
be operationalized in a similar manner, but replacing the
reference corpus with the portion of the composition
heard so far. Veridical expectations would require more
bespoke modeling to capture the particular musical
experience of the listener. An interesting possibility
would be to unite these three types of expectation using
Pearce’s (2005) probabilistic model of melodic expecta-
tion (see also Sauvé, 2017). Further rules that could be
implemented include the ‘‘semblant motion rule’’ (avoid
similar motion) and the ‘‘nonsemblant preparation rule’’
(avoid similar motion where the voices employ unisons,
octaves, or perfect fifths/twelfths) (Huron, 2016).

Our model also has practical applications in auto-
matic music generation. For example, a recurring prob-
lem in music psychology is to construct experimental
stimuli representing arbitrary chord sequences, which
often involves the time-consuming task of manually
constructing voice leadings. Our model could supplant
this manual process, bringing several benefits including:
a) scalability, allowing the experimental design to
expand to large stimulus sets; b) objectivity, in that the
voice leadings are created according to formally speci-
fied criteria, rather than the researcher’s aesthetic intui-
tions; c) reproducibility, in that the methods can be
reliably reproduced by other researchers.

Interpreted as a model of the compositional process,
the model assumes that chords are determined first and
that voice leading only comes later. This may be accu-
rate in certain musical scenarios, such as when perfor-
mers improvise from figured bass or from lead sheets,
but it is clearly not a universal model of music compo-
sition. A more universal model might include some
kind of alternation between composing the harmonic
progression and composing the voice leading, so that
the composer can revise the harmonic progression if it
proves impossible to find a satisfactory voice leading.

The model also assumes a one-to-one mapping
between the chords of the underlying harmonic progres-
sion and the chord voicings chosen to represent it. While
this assumption may hold true for certain musical exer-
cises, it is not universally valid for music composition.
For example, an improviser playing from figured bass
may choose to extend a single notated chord into
multiple vertical sonorities, for example through arpeg-
giation or through the introduction of passing notes. It
would be interesting to model this process explicitly. One
approach would be to use the original model to generate4 https://doi.org/10.5281/zenodo.2613646
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block chords at the level of the harmonic rhythm, and
then to post-process these block chords with an addi-
tional algorithm to add features such as passing notes
and ornamentation.

While the model deserves further extension and val-
idation, it seems ready to support ongoing research in
music psychology, music theory, and computational
creativity. Our R package, voicer, should be useful
in this regard: It provides a convenient interface for
analyzing voice leadings in musical corpora and for
generating voice leadings for chord sequences. The
ongoing development of this package may be tracked
at its open-source repository (https://github.com/
pmcharrison/voicer).
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Appendix A

A dynamic programming algorithm for maximizing the sum of the linear predictors over all chord transitions. Note
that all vectors are 1-indexed.

input: candidates, a list of length N; candidates[i] lists the candidate voicings for chord i
output: chosen, a list of length N; chosen[i] identifies the chosen voicing for chord i

best_scores ← list(N) // total scores of best paths to each chord voicing 

best_prev_states ← list(N) // best previous voicing for each chord voicing 

best_scores[1] ← vector(length(candidates[1])) 

ffor j ← 1 tto length(candidates[1]) ddo  

best_scores[1][j] ← f(NULL, candidates[1][j])  

end  

for i ← 2 tto N ddo 

best_scores[i] ← vector(length(candidates[i]))  

for j ← 1 tto length(candidates[i]) ddo  

best_prev_states[i][j] ← 1 

best_scores[i][j] ← f(candidates[i − 1][1], candidates[i][j])  

for k ← 2 tto length(candidates[i − 1])} ddo  

new_score ← f(candidates[i−1][k], candidates[i][j]) 

if new_score > best_scores[i][j] tthen 

best_prev_states[i][j] ← k  

best_scores[i][j] ← new_score  

end  

end 

end  

end  

chosen ← vector(N) 

chosen[N] ← which_max_j(best_scores[N][j])  

for n ← N − 1 tto 1 ddo  

chosen[n] ← best_prev_states[n + 1][chosen[n + 1]]  

end  

return chosen 
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Appendix B

Having installed the voicer package from its open-source repository (github.com/pmcharrison/voicer), the fol-
lowing code uses the package to voice a perfect (or authentic) cadence:

Code:

library(voicer)

library(hrep)

library(magrittr)

# Each chord is represented as a sequence of MIDI note numbers.

# The first number is the bass pitch class.

# The remaining numbers are the non-bass pitch classes.

list(pc_chord("0 4 7"), pc_chord("5 0 2 9"),

pc_chord("7 2 5 11"), pc_chord("0 4 7")) %>% vec("pc_chord") %>%

voice(opt = voice_opt(verbose = FALSE)) %>% print(detail = TRUE)

Output:

[[1]] Pitch chord: 48 64 67 72

[[2]] Pitch chord: 53 62 69 72

[[3]] Pitch chord: 55 62 65 71

[[4]] Pitch chord: 48 55 64 72

By default, voicer uses the same regression weights and voicing protocol as presented in the current paper.
However, it is easy to modify this configuration, as demonstrated in the following example:

Code:

library(voicer)

library(hrep)

library(magrittr)

chords <- list(pc_chord("0 4 7"), pc_chord("5 0 9"), 

pc_chord("7 2 11"), pc_chord("0 4 7")) %>% vec("pc_chord") 

# Modify the default weights to promote parallel fifths/octaves

weights <- voice_default_weights

weights["any_parallels"] <- 100

voice(chords, opt = voice_opt(verbose = FALSE,

weights = weights,

min_notes = 3,

max_notes = 3)) %>% print(detail = TRUE)
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Output:
[[1]] Pitch chord: 48 55 64

[[2]] Pitch chord: 53 60 69

[[3]] Pitch chord: 55 62 71

[[4]] Pitch chord: 60 67 76

The voicer package also exports functions for deriving regression weights from musical corpora, and using these
new weights to parametrize the voicing algorithm. The following example derives regression weights from the first
two pieces in the Bach chorale dataset, and uses these weights to voice a chord sequence.

Code:
if (!requireNamespace("hcorp")) 

devtools::install_github("pmcharrison/hcorp")

library(voicer)

library(hrep)

# Choose the features to model

features <- voice_features()[c("vl_dist", "dist_from_middle")]

# Compute the features

corpus <- hcorp::bach_chorales_1[1:2]

corpus_features <- voicer::get_corpus_features(

corpus, min_octave = -2, max_octave = 1, features = features,

revoice_from = "pc_chord", min_notes = 1, max_notes = 4,

verbose = FALSE)

# Model the features

mod <- model_features(corpus_features, perm_int = FALSE, verbose = FALSE)

as.data.frame(mod$weights)

Output:
feature  estimate  std_err     z      p

1     vl_dist -0.5320266 0.03441282 -15.460129 6.446884e-54

2 dist_from_middle -0.1910925 0.06838340 -2.794428 5.199166e-03

Code:

# Voice a chord sequence

chords <- list(pc_chord("0 4 7"), pc_chord("5 0 9"), 

pc_chord("7 2 11"), pc_chord("0 4 7")) %>% vec("pc_chord")

voice(chords, opt = voice_opt(weights = mod,

features = features,

verbose = FALSE)) %>% print(detail = TRUE)
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Output:

[[1]] Pitch chord: 36 52 72 79

[[2]] Pitch chord: 41 53 72 81

[[3]] Pitch chord: 43 50 71 79

[[4]] Pitch chord: 48 52 72 79
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