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Abstract 

Two approaches exist for explaining harmonic expectation. The 

sensory approach claims that harmonic expectation is a low-level 

process driven by sensory responses to acoustic properties of musical 

sounds. Conversely, the cognitive approach describes harmonic 

expectation as a high-level cognitive process driven by the 

recognition of syntactic structure learned through experience. Many 

previous studies have sought to distinguish these two hypotheses, 

largely yielding support for the cognitive hypothesis. However, 

subsequent re-analysis has shown that most of these results can 

parsimoniously be explained by a computational model from the 

sensory tradition, namely Leman’s (2000) model of auditory short-

term memory (Bigand, Delbé, Poulin-Charronnat, Leman, & 

Tillmann, 2014). In this research we re-examine the explanatory 

power of auditory short-term memory models, and compare them to 

a new model in the Information Dynamics Of Music (IDyOM) 

tradition, which simulates a cognitive theory of harmony perception 

based on statistical learning and probabilistic prediction. We test the 

ability of these models to predict the surprisingness of chords within 

chord sequences (N = 300), as reported by a sample group of 

university undergraduates (N = 50). In contrast to previous studies, 

which typically use artificial stimuli composed in a classical idiom, 

we use naturalistic chord sequences sampled from a large dataset of 

popular music. Our results show that the auditory short-term memory 

models have remarkably low explanatory power in this context. In 

contrast, the new statistical learning model predicts surprisingness 

ratings relatively effectively. We conclude that auditory short-term 

memory is insufficient to explain harmonic expectation, and that 

cognitive processes of statistical learning and probabilistic prediction 

provide a viable alternative. 

Introduction 
Western tonal harmony obeys a complex set of 

conventions concerning how notes combine to form chords, 

and how chords combine to form chord sequences. These 

conventions are termed harmonic syntax. Listeners are 

sensitive to aspects of harmonic syntax, and implicitly judge 

the syntactic implications of successive chords as they hear a 

piece of music. This online sensitivity to harmonic syntax is 
termed harmonic expectation. 

Theories of the psychological origins of harmonic 

expectation can be organized along a sensory-cognitive 

spectrum (Collins, Tillmann, Barrett, Delbé, & Janata, 2014). 

Sensory theories hold that harmonic expectation is driven by 

low-level sensory responses to acoustic properties of musical 

sounds. Conversely, cognitive theories posit that harmonic 

expectation is driven by high-level cognitive processes similar 

to those involved in processing linguistic syntax. 

Many empirical studies have accumulated in favor of 

cognitive theories of harmonic expectation. These studies 

typically report that listeners display sensitivity to syntactic 

violations that could not be detected by sensory cues alone. 

However, much of this work was recently undermined by 

Bigand et al. (2014): the authors reanalyzed data from 18 

tonal expectation studies, including 17 harmonic expectation 

studies, and found that most results could be explained with a 

sensory model of auditory short-term memory (Leman, 2000). 

The conflict between sensory and cognitive theories therefore 
remains largely unresolved. 

The present research takes a new approach to the problem 

of disentangling sensory and cognitive theories of harmonic 

expectation. We avoid the problematic task of hand-

constructing sequences where sensory cues contradict 

syntactic rules, and avoid the problematically small stimulus 

sets associated with this approach. Instead, we separate 

sensory and cognitive theories through computational 

modeling, giving us the flexibility to use a large dataset of 

naturalistic stimuli derived from real music.  

Many sensory and cognitive theories of harmonic 
expectation exist in the literature, but here we restrict 

comparison to two types that have received particular 

empirical support in recent decades. Auditory short-term 

memory theories explain expectation through the retention and 

comparison of auditory images in short-term memory. These 

theories are typically sensory in nature. Statistical learning 

theories, meanwhile, claim that harmonic expectation 

corresponds to probabilistic predictions made by listeners who 

have internalized the statistical structure of musical styles 

through exposure. Statistical learning provides a cognitive 

alternative to auditory short-term memory theories. 

Several auditory short-term memory models exist in the 
literature. We evaluate three here: Leman’s (2000) 

periodicity-pitch model, Milne, Sethares, Laney & Sharp’s  

(2011) spectral distance model, and Collins et al.’s (2014) 

tonal expectation model. 

Fewer statistical learning models exist in the literature. 

The Information Dynamics Of Music (IDyOM) model (Pearce, 

2005, 2018) is a prominent candidate, but so far it has largely 

been limited to the melodic domain. We therefore introduce 

an extension of the model to harmonic expectation and 

compare it with the auditory short-term memory models. 

Our model evaluation involves an explicit behavioral 
measure of harmonic expectation where listeners rate the 

surprisingness of particular chords within chord sequences. 

We evaluate each model in terms of its ability to predict these 

surprisingness ratings: good models should deliver accurate 

predictions. 
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Models 

Leman’s (2000) Periodicity-Pitch Model 

Leman’s (2000) model is a sensory auditory short-term 

memory model. It was recently shown to explain a wide 

variety of experimental findings previously thought to support 
a cognitive account of harmony perception (Bigand et al., 

2014).  

The model takes an audio signal as input and simulates the 

acoustic filtering of the outer and middle ear, the resonance of 

the basilar membrane in the inner ear, and the conversion of 

the resulting signal into neural rate-code patterns. A 

periodicity analysis produces a series of pitch images 

representing the instantaneous pitch patterns perceived at 

every point in the audio signal. The model then simulates the 

persistence of these pitch images in auditory short-term 

memory to produce echoic pitch images. Echoic pitch images 
are created by leaky integration, where the echoic pitch image 

at each timestep is created by adding the current non-echoic 

pitch image to the echoic image from the previous time-step. 

The length of the ‘echo’ is determined by a time constant 

defining the echo’s half-life. 

Two echoic pitch images are created: a local image and a 

global image. The local pitch image summarizes the pitch 

content of the immediate temporal context (e.g. the last 0.5 

seconds), whereas the global pitch image summarizes pitch 

over a longer temporal context (e.g. 5 seconds). The moment-

to-moment similarity between these local and global pitch 

images is summarized in a tonal contextuality profile. Applied 
to chord sequences, points of high tonal contextuality 

correspond to chords that are tonally consistent with their 

recent musical context, whereas low tonal contextuality 

reflects low tonal consistency. 

For this study we defined the model’s estimate of a 

chord’s surprisingness as the negative mean tonal 

contextuality during the time that chord was playing. We used 

the MATLAB model implementation as created by the 

original author and available in the IPEM toolbox.1 Decay 

constants for the local and global pitch images were set to 0.1 

s and 1.5 s, as optimized in Leman (2000). All other 
parameters were left at their default values. 

Milne et al.’s (2011) Spectral Distance Model 

This is a second sensory model that also embodies an 

auditory short-term memory theory of tonal perception. It 

avoids much of the complexity of Leman’s (2000) model: it 

has no explicit modeling of the peripheral auditory system and 

does not model the time-course of echoic memory. 

Nonetheless, the model has demonstrated best-in-class results 

in modeling certain important results from the psychological 
literature (Milne & Holland, 2016; Milne, Laney, & Sharp, 

2015). 

Milne et al.’s (2011) model estimates the perceptual 

dissimilarity of pairs of pitch or pitch-class sets. It combines 

each harmonic series implied by every pitch(-class), smooths 

the resulting spectra to account for perceptual imprecision, 

and then computes the cosine distance between these spectra. 

This cosine distance has been shown to predict perceptual 

                                                             

1 http://www.ipem.ugent.be/Toolbox 

judgements of triadic similarity rather effectively (Milne & 

Holland, 2016).  

We applied this model to harmonic expectation by using it 
to model the perceptual dissimilarity of a chord and its context. 

The model’s dissimilarity estimate was taken as an estimate of 

chord surprisingness. Context could be defined in several 

ways; here we defined the context as the immediately 

preceding chord, but future work should explore alternative 

definitions. 

The model has three important free parameters: the 

number of harmonics implied by each pitch(-class), the degree 

of amplitude roll-off as a function of harmonic number, and 

the degree of spectral smoothing. Additionally, there is 

freedom to choose either a pitch representation or a pitch-class 
representation. This study followed the model configuration 

as psychologically optimized in Milne and Holland (2016): 12 

harmonics, roll-off parameter of 0.75, spectral smoothing 

parameter of 6.83, and a pitch-class representation. The model 

was given a new Common Lisp implementation, with a 

selection of results verified against the original author’s 

MATLAB implementation.2 

Collins et al.’s (2014) Tonal Expectation Model 

While the two previous models (Leman, 2000; Milne et al., 
2011) describe sensory accounts of tonal perception, this 

model describes an intermediate sensory-cognitive account of 

tonal perception. It is still an auditory short-term memory 

model, but some of its auditory representations involve 

cognitive abstractions.  

The model centers on three representations of the musical 

input. The first is a periodicity-pitch representation 

corresponding to the pitch images of Leman’s (2000) model. 

A chroma-vector representation is derived from the 

periodicity-pitch representation by collapsing pitches to pitch 

classes. Lastly, a tonal space representation is produced by 
projecting the periodicity-pitch representation onto a toroidal 

self-organizing map, after Janata et al. (2002). This last 

representation allows the model to learn a map of tonal space 

stored in long-term memory. 

Incoming audio activates these representations in a 

cascade. These activations are blurred by echoic memory, 

analogous to Leman’s (2000) model. For each of the three 

representations (periodicity pitch, chroma vector, tonal space), 

local and global images are created which evolve over the 

course of the stimulus. Local images are created by leaky 

integration with a short time constant (0.1 s); global images 

are produced by leaky integration with a longer time constant 
(4.0 s). These images summarize the recent activation of the 

respective representational space over the given time period. 

Various features are then derived from these blurred 

activations. These features include both the correlation 

between local and global images (after Leman, 2000) and the 

peak activation within the global image. Extending Leman 

(2000), the model considers both absolute values of the 

correlations/peak activations and relative changes in these 

values. Different features are constructed that apply these 

computations to different time windows within the stimulus.  

These features are then combined by linear regression, 
using coefficients optimized on a set of seven empirical 
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studies (Collins et al., 2014). The model’s output corresponds 

to predicted deviations in reaction times in priming studies, 

with slower reaction times being thought to reflect lower 
expectedness. We therefore used these predicted reaction 

times as the model’s estimate of chord surprisingness. 

We used the original authors’ implementation as available 

in the Janata lab music toolbox (JLMT).3 All parameters were 

left at their default values. 

Information Dynamics Of Music 

The Information Dynamics Of Music (IDyOM) model 

(Pearce, 2005, 2018) is a statistical learning model of musical 
expectation. It asserts that listeners acquire statistical 

knowledge of musical syntax through experience, and use this 

knowledge to generate probabilistic predictions as a piece 

unfolds. 

The model takes a musical score as its input. It generates 

predictions in an incremental manner, predicting each event 

based on the preceding events. Its predictions are based on a 

variety of representations derived from the musical score, 

termed viewpoints. These viewpoints are intended to mirror 

the psychological representations of music available to 

listeners (e.g. Shepard, 1982). Predictions are generated by 

combining the output of a long-term model, which captures 
syntactic structure common to an entire musical style, and a 

short-term model, which captures statistical patterns heard so 

far in the current musical piece. 

The original IDyOM model was restricted to melodies 

(Pearce, 2005). Here we extended the model to process chord 

sequences, substantially expanding the range of music to 

which the model can be applied.  

The primary challenge in extending the IDyOM model to 

harmony is to develop new viewpoints for capturing harmonic 

structure. Our viewpoint set captures a variety of well-

established psychological and music-theoretic principles of 
harmony, including inversion invariance, transposition 

invariance, chord roots, scale degrees, and intervallic 

relationships between successive chords. Chord roots are 

inferred using the General Chord Type algorithm of 

Cambouropoulos, Kaliakatsos-Papakostas, & Tsougras (2014), 

and scale degrees are inferred using the key-finding algorithm 

of Albrecht & Shanahan (2013). This explicit modeling of 

root-finding and key-finding improves cognitive realism 

compared to previous multiple-viewpoint models of harmony, 

which read key information and chord roots directly from the 

score (Hedges & Wiggins, 2016; Sears, Pearce, Caplin, & 

McAdams, 2018; Whorley & Conklin, 2016). 
A further change introduced in this research was to replace 

the IDyOM model’s heuristic entropy-weighting scheme with 

a supervised weighting scheme, where the contribution of 

each viewpoint is determined by a weight vector derived using 

maximum-likelihood estimation. The cognitive implications 

of this change are outside the scope of the present paper, but 

will be explored in future work. 

Consistent with previous IDyOM research, we computed 

an estimate of surprisingness as the negative logarithm of the 

chord’s conditional probability according to the statistical 

model. This quantity is termed information content. 

                                                             

3 http://atonal.ucdavis.edu/resources/software/jlmt/ 

The resulting model was implemented in the programming 

languages Common Lisp and R. The implementation extends 

the publicly available IDyOM codebase. 4  
 

 

 

Methods 

Participants 

Fifty psychology undergraduates (44 female, six male) 

participated in exchange for course credit or small financial 

reward. The mean age was 18.7 years (SD = 1.7). Most self-
reported as frequent listeners to popular music. The mean 

musical training score as assessed by the Goldsmiths Musical 

Sophistication Index (Gold-MSI; Müllensiefen, Gingras, 

Musil, & Stewart, 2014) was 15.1 (SD = 8.0), corresponding 

to the 22nd percentile of the original Gold-MSI sample. 

Stimuli 

Chord sequences were sourced from the Billboard corpus 

(Burgoyne, 2012). This dataset comprises a set of 
transcriptions of popular songs sampled from the Billboard 

magazine’s United States “Hot 100” chart between 1958 and 

1991. Three hundred eight-chord sequences were randomly 

sampled from this dataset, with repeated chords removed, 

under the constraint that no song appeared twice. Sequences 

were played with a piano timbre at a tempo of 60 beats per 

minute without metrical cues. Bass notes were played in the 

octave below middle C, non-bass notes in the octave above. 

Procedure 

Participants took the experiment individually in a quiet 

room at a desktop computer, navigating the experiment using 

keyboard and mouse. Audio was played over headphones. 

The main part of the experiment comprised 150 trials for 

each participant. In each trial, the participant was played a 

sequence of eight chords and instructed to rate the sixth chord 

in this sequence, termed the target, for surprisingness. This 

chord was visually cued by a continuous clock-like animation, 

and surprisingness ratings were given on a scale from one to 

nine using the computer keyboard. Participants were given 10-

second breaks every 25 trials. Each participant’s 150 chord 
sequences were randomly chosen under the constraints that no 

participant heard the same sequence twice and that each of the 

300 possible chord sequences was presented equally often to 

all participants over the course of the study. 

The main part of the experiment was preceded by a 

training routine which included three practice trials. After the 

main part of the experiment, the participant completed a short 

questionnaire concerning basic demographic details and 

familiarity with popular music, and then completed the 

musical training component of the Goldsmiths Musical 

Sophistication Index (Gold-MSI; Müllensiefen et al., 2014). 

On average the procedure lasted approximately 40 minutes. 
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Results 

Data Preprocessing 

One participant was found to give the same response for 

all 150 stimuli, and so their data were removed from further 

analyses. The remaining 49 participants had their ratings 

standardized to z-scores to normalize across individual 

differences in scale usage, and then these z-scores were 

averaged across participants to produce a mean surprisal 

rating for each chord sequence. These surprisal ratings were 

then z-transformed again across all stimuli, so that the mean 

surprisal rating would be zero and the standard deviation one. 
Each of the four computational models was applied to the 

target chord in each chord sequence. Model outputs were 

converted to z-scores to facilitate comparison across models. 

Model Predictive Performances 

The predictive performance of each model was assessed in 

terms of its Pearson correlation with mean surprisal ratings: a 

high correlation means that the model predicted perceived 

surprisal well. These results are summarized in Figure 1 and 
the last column of Table 1. The three auditory short-term 

memory models did not display significant positive 

correlations with mean surprisal ratings. Surprisingly, Milne 

et al.’s model displayed a significant correlation in the 

opposite direction to that predicted by theory: greater spectral 

distance was significantly associated with lower surprisal 

ratings (r(298) = −.169, p = .003, 95% CI = [−.277, −.057]). 

In contrast, IDyOM model outputs exhibited a moderately 

large positive correlation with surprisal ratings (r(298) = .641, 

p < .001, 95% CI = [.569, .703]). A linear regression model 

predicting surprisal ratings from the four computational 

models found a significant coefficient for the IDyOM model 
(p < .001) but non-significant coefficients for the remaining 

models (all p-values > .3). 

Model Correlations 

Table 1 displays pairwise correlations within the set of 

computational models. Leman’s (2000) model outputs and 

Milne et al.’s (2011) model outputs were fairly well correlated 

(r(298) = .591, p < .001, 95% CI = [.512, .660]). Surprisingly, 
Collins et al.’s (2014) model outputs were not significantly 

correlated with any of the other model outputs (all p-

values > .3). IDyOM model outputs were significantly 

negatively correlated with Milne et al.’s (2011) model outputs 

(r(298) = −.203, p < .001, 95% CI = [−.309, −.092]) but not 

significantly correlated with outputs of the other two models 

(both p-values > .2). 
 

Table 1.  Pairwise Pearson correlation coefficients for surprisal 

ratings and the four computational models. 

 Milne et 

al. (2011) 

Collins et 

al. (2014) 

IDyOM Surprisal 

ratings 

Leman (2000) .591 −.004    .071   .036 

Milne et al. 

(2011) 

   .053  −.203 −.169 

Collins et al. 

(2014) 

    .04 −.007 

IDyOM      .641 

Musical Examples 

Figure 2 displays four specific chord sequences from the 

dataset; corresponding model outputs are displayed in Table 2. 

These examples were selected as follows: a) the most and b) 

the least surprising stimuli according to Leman’s (2000) 

model; c) the most and d) the least surprising stimuli 

according to the IDyOM model. 

Figure 1.  a) Scatterplots of mean surprisal rating (z-score) against model prediction (z-score) for the four computational 

models. Linear regression lines are plotted for each model, with the standard errors of these lines shaded in grey. b) Bar 

chart displaying Pearson correlation coefficients for the relationship between each model’s predictions and mean surprisal 

ratings. The error bars denote 95% confidence intervals. ‘ASTM’ stands for auditory short-term memory. 
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Figure 2.  Four example stimuli. Target chords are indicated by 

asterisks. Sequence a) is the most surprising stimulus in the 

corpus, according to Leman’s (2000) model. Sequence b) is the 

least surprising according to Leman’s (2000) model. Sequence c) 

is the most surprising according to the IDyOM model. Sequence 

d) is the least surprising according to the IDyOM model. Precise 

model outputs and participant ratings are given in Table 2. 

a

b

c

d

*

*

* 

*

Sequence a) comprises solely bare fifths. The progression 

from ‘EB’ to ‘GD’ on the sixth chord is considered somewhat 

unsurprising by listeners (z = −0.101): in this context, ‘EB’ 
implies E minor, and ‘GD’ implies G major, so the passage is 

simply a version of the common progression i-III with the 

third of each chord removed. However, this passage is 

considered particularly unexpected by Leman et al.’s (2000) 

model and Milne et al.’s (2011) model. This is presumably 

because the missing thirds are the two common tones between 

these chords; without them, the chords are rather acoustically 

dissimilar. 

Sequence b) alternates between two inversions of the same 

major triad. The target chord is very spectrally similar with its 

previous context, yielding low surprisal ratings from Leman et 
al.’s (2000) model and Milne et al.’s (2011) model. 

Surprisingly, Collins et al.’s (2014) gives a relatively high 

surprisal rating for this chord. As expected, the IDyOM model 

finds the chord relatively predictable, in large part because the 

same transition occurs several times in the stimulus. 

Sequence c) begins with conventional progressions along 

the circle of fifths. However, the target chord is very tonally 

distant from its context: it corresponds to a semitone 

displacement of the previous chord with a tonic pedal in the 

bass. Correspondingly, most of the models predict high 

surprisal. The exception again is Collins et al.’s (2014), which 

predicts only moderate surprisal. 
Sequence d) was considered very unsurprising by the 

participants and by the IDyOM model, but very surprising by 

the auditory short-term memory models. It corresponds to a 

major-mode IV-V progression, which is very common in 

Western popular music. The IDyOM model therefore finds the 

progression very predictable, because similar progressions 

occur many times in the corpus and even at the start of the 

same chord sequence. However, the two chords are not 

particularly similar spectrally speaking, and so they are 

considered surprising by the auditory short-term memory 

models. 

Table 2.  Surprisal ratings as predicted by the models and as 

reported by the participants. All scores are z-scores where higher 

scores correspond to higher surprisal. 

 

Leman 

(2000) 

Milne 

et al. 

(2011) 

Collins 

et al. 

(2014) 

IDyOM Participants 

a)   2.17   2.51 0.49   0.06 −0.10 

b) −3.74 −2.16 0.35 −0.21 −1.50 

c)   1.00   0.56 0.02   3.07 1.28 

d)   1.35   1.54 0.79 −1.11 −1.56 

Discussion 

We tested two competing explanations of harmonic 

expectation: an auditory short-term memory explanation and a 

statistical learning explanation. According to the former, 

harmonic expectation is a low-level process driven by the 
accumulation of auditory images in short-term memory. 

According to the latter, harmonic expectation reflects 

probabilistic predictions of listeners which derive from 

internalized statistical knowledge about musical styles.  

The results were unambiguous. None of the auditory short-

term memory models produced statistically significant 

correlations with surprisal ratings in the direction predicted by 

theory. In contrast, the statistical learning model predicted 

surprisal ratings moderately well. The results therefore 

strongly corroborate the statistical learning account over the 

auditory short-term memory account. 

It is plausible that the statistical learning model might 

outperform the auditory short-term memory models, but 

highly surprising that the latter models should not outperform 
chance. Pre-existing literature gives the impression that 

harmonic syntax is ineluctably correlated with spectral 

similarity, with the result that auditory short-term memory 

models can explain the results of most existing harmonic 

expectation studies (Bigand et al., 2014). However, we found 

that these models had no explanatory power for our dataset. 

Moreover, their predictions did not correlate positively with 

the predictions of the statistical learning model, suggesting 

that the correlation between spectral similarity and harmonic 

syntax was minimal at best. 

We suggest several possible reasons for this discrepancy. 
First, while previous studies typically used stimuli in the style 
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of Western classical music, this study used stimuli from 

Western popular music, where spectral distance seems to be a 

worse predictor of harmonic style (Harrison & Pearce, 2018). 
Second, many previous studies tested perception of final 

chords in sequences, whereas we tested the perception of non-

final chords. Stylistic expectations will differ between these 

contexts. Third, much of the harmonic expectation literature 

relies on harmonic priming paradigms with the listener’s task 

being to detect tuning or timbre deviants. Both of these tasks 

involve detecting deviations in acoustic spectra, and it is clear 

that this might be facilitated by maximizing spectral similarity 

between successive chords. Reliance on this paradigm might 

therefore overemphasize the role played by spectral similarity 

(and correspondingly auditory short-term memory) in 
harmonic expectation. Fourth, we have yet to exhaust the 

potential of each computational model. Leman’s (2000) model 

might perform better with different time constants (e.g. 

Bigand et al., 2014). Milne et al.’s (2011) model might be 

improved by incorporating inharmonic partials, different 

degrees of spectral smoothing, or a continuously decaying 

echoic memory. The predictors used in Collins et al.’s (2014) 

model might still have useful explanatory power, even if the 

regression model doesn’t generalize well. Likewise, many 

computational aspects of the harmonic IDyOM model remain 

to be psychologically optimized. 

We intend to explore these computational models further 
in ongoing research. However, as the results stand, it seems 

that auditory short-term memory is insufficient to explain 

harmonic expectation. We have shown that one viable 

alternative is statistical learning. However, several other 

alternatives exist at the sensory end of the sensory-cognitive 

spectrum. In particular, earlier literature has emphasized the 

importance of roughness and voice-leading distance in 

harmonic expectation, both of which correspond to relatively 

low-level psychological processes (Bigand, Parncutt, & 

Lerdahl, 1996). Perhaps it is time to re-examine these 

alternative sensory models. 
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