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Enjoying music consistently engages key structures of the neural auditory and 
reward systems such as the right superior temporal gyrus (R STG) and ventral 
striatum (VS). Expectations seem to play a central role in this effect, as preferences 
reliably vary according to listeners’ uncertainty about the musical future and 
surprise about the musical past. Accordingly, VS activity reflects the pleasure of 
musical surprise, and exhibits stronger correlations with R STG activity as pleasure 
grows. Yet the reward value of musical surprise – and thus the reason for these 
surprises engaging the reward system – remains an open question. Recent models 
of predictive neural processing and learning suggest that forming, testing, and 
updating hypotheses about one’s environment may be  intrinsically rewarding, 
and that the constantly evolving structure of musical patterns could provide 
ample opportunity for this procedure. Consistent with these accounts, our group 
previously found that listeners tend to prefer melodic excerpts taken from real 
music when it either validates their uncertain melodic predictions (i.e., is high in 
uncertainty and low in surprise) or when it challenges their highly confident ones 
(i.e., is low in uncertainty and high in surprise). An independent research group 
(Cheung et al., 2019) replicated these results with musical chord sequences, and 
identified their fMRI correlates in the STG, amygdala, and hippocampus but not the 
VS, raising new questions about the neural mechanisms of musical pleasure that 
the present study seeks to address. Here, we assessed concurrent liking ratings 
and hemodynamic fMRI signals as 24 participants listened to 50 naturalistic, 
real-world musical excerpts that varied across wide spectra of computationally 
modeled uncertainty and surprise. As in previous studies, liking ratings exhibited 
an interaction between uncertainty and surprise, with the strongest preferences 
for high uncertainty/low surprise and low uncertainty/high surprise. FMRI results 
also replicated previous findings, with music liking effects in the R STG and VS. 
Furthermore, we  identify interactions between uncertainty and surprise on the 
one hand, and liking and surprise on the other, in VS activity. Altogether, these 
results provide important support for the hypothesized role of the VS in deriving 
pleasure from learning about musical structure.
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1. Introduction

Enjoying music is one of the most universally and consistently 
rewarding human pleasures (Dubé and Le Bel, 2003). Expectation 
seems to play an important role in this experience (Sloboda, 1991; 
Grewe et al., 2007; Salimpoor et al., 2011; Cheung et al., 2019; Shany 
et al., 2019), as music’s ever-changing structure is particularly well 
suited to elicit predictions, attention, and surprise (Meyer, 1956; 
Huron, 2006; Zald and Zatorre, 2011; Gebauer et al., 2012; Koelsch 
et al., 2019; Vuust et al., 2022). Even after repeated exposures, when 
listeners may have more (but not full) understanding of a stimulus, 
musical complexity significantly modulates liking (Smith and Cuddy, 
1986; North et  al., 2000; Madison and Schiölde, 2017; Gold 
et al., 2019b).

Neuroimaging studies provide valuable insights about the 
biological mechanisms underlying the relationship between musical 
expectations and pleasure. A recent meta-analysis of 38 studies 
identified a robust association between music liking and neural 
activity in the ventral striatum (VS), anterior prefrontal cortex (aPFC), 
and right superior temporal gyrus (R STG) (Mas-Herrero et  al., 
2021b), which comprise key structures of the reward and auditory 
processing networks (Zatorre et al., 2002; Haber and Knutson, 2010). 
The most prominent relationship was in the ventral striatum, where 
music liking ratings correlate with linear increases in hemodynamic 
response (Blood and Zatorre, 2001; Salimpoor et al., 2013; Martínez-
Molina et al., 2016) and dopaminergic activity (Salimpoor et al., 2011). 
The striatum, and especially the nucleus accumbens (NAc) that is 
found in its ventral aspect, is a central hub of the neural reward 
system, and receives inputs from the prefrontal cortex, subcortical 
limbic regions, and dopaminergic midbrain nuclei (Haber and 
Knutson, 2010). With these connections, the NAc integrates affective 
and goal-oriented information for action selection (Floresco, 2015). 
Perhaps most notably, the NAc is the primary site of reward prediction 
errors (RPEs) as measured in rodents, monkeys, and humans: changes 
in endogenous activity that signal the difference between the expected 
and experienced value of goal-oriented events (Schultz et al., 1997; 
Rutledge et al., 2010; Chase et al., 2015; Floresco, 2015). RPEs in the 
ventral striatum could therefore account for much of the pleasure 
associated with musical expectation and surprise, as we and others 
have hypothesized (Zald and Zatorre, 2011; Gebauer et  al., 2012; 
Zatorre and Salimpoor, 2013; Salimpoor et al., 2015).

Our team previously tested this RPE-based hypothesis for music 
(Gold et al., 2019a) with a paradigm and computational model common 
in the global RPE literature (Watkins, 1989; Sutton and Barto, 1998; 
Gläscher et al., 2010; Daw et al., 2011). Specifically, and since research on 
RPEs has largely focused on action selection, in our prior study 
participants chose between arbitrary alternatives during music listening 
(e.g., blue vs. yellow) that were associated with different probabilities of 
the music ending pleasantly vs. unpleasantly, based on the ongoing 
context (Gold et al., 2019a). While the participants were never told about 
these probabilities explicitly, their choices indicated learning of the 
contingencies throughout the task. At the same time, functional magnetic 

resonance imaging (fMRI) data indicated that blood oxygen level-
dependent (BOLD) responses in the NAc reflected computationally 
modeled RPEs and were linked to successful task completion, providing 
compelling evidence of RPEs. This finding therefore demonstrated that 
an aesthetic stimulus like music can elicit RPEs, just like – and in the same 
context as – the more concrete rewards previously used in these 
experiments, such as money, food, or juice. Yet while those other rewards 
offer clear adaptive benefits such as nutrition or the means to procure it, 
the biological value of music remains unclear.

One possible explanation of music’s value is the reward of 
learning itself, and especially learning to improve one’s predictions 
(Vuust and Kringelbach, 2010; Zald and Zatorre, 2011; Gebauer et al., 
2012; Koelsch et al., 2019; Vander Elst et al., 2021). Humans and 
non-human animals are willing to sacrifice food and money to learn 
non-instrumental information – i.e., that which they cannot 
necessarily use to gain future rewards – such as answers to trivia 
questions or the probability that a predetermined reward is en route 
(Bromberg-Martin and Hikosaka, 2009; Kang et al., 2009; Bennett 
et  al., 2016; Brydevall et  al., 2018). Receiving this information 
activates the ventral striatum and dopamine release therein (Kang 
et al., 2009; Bromberg-Martin and Hikosaka, 2011; Jepma et al., 2012; 
Ripollés et al., 2014; Brydevall et al., 2018). Meanwhile, as patterns of 
rhythm, melody, harmony, and other features unfold and evolve over 
time, they facilitate the generation, evaluation, and updating of 
predictions – often with opportunities to test those updated 
predictions in the next musical phrase, chorus, movement, etc. 
(Meyer, 1956; Huron, 2006; Zald and Zatorre, 2011; Gebauer et al., 
2012). Several studies show that humans automatically and implicitly 
learn about musical structure and make predictions based on it (Loui 
and Wessel, 2007, 2008; Loui et al., 2010; Hansen and Pearce, 2014; 
Barascud et al., 2016), even from birth (Partanen et al., 2013; Virtala 
et al., 2013). The pleasure of music listening may therefore derive at 
least in part from rewards associated with learning about musical 
structure, commensurate with ventral striatal activity and 
dopamine transmission.

The aesthetic pleasure of learning is not a new concept, although 
it has received renewed attention in the last few years (Franklin and 
Adams, 2011; Salimpoor et  al., 2011, 2013; Van de Cruys and 
Wagemans, 2011; Chmiel and Schubert, 2017; Wassiliwizky et al., 
2017). In the 19th century, Wilhelm Wundt hypothesized that stimuli 
of intermediate complexity, uncertainty, or novelty were more 
arousing, rewarding, and pleasurable (Wundt, 1874). In the 1960s and 
‘70s, Daniel Berlyne identified this hypothesized “Wundt effect” in 
terms of an inverted U-shaped relationship between measures of 
complexity (e.g., predictability, surprise, uncertainty, or familiarity) 
and liking (Berlyne, 1971, 1974). Since then, a wealth of cross-
disciplinary research has found similar inverted U-shaped 
relationships between complexity on the one hand, and attention, 
curiosity, motivation, and learning on the other (Kang et al., 2009; 
Abuhamdeh and Csikszentmihalyi, 2012a,b; Gottlieb et  al., 2013; 
Baranes et al., 2015; Oudeyer et al., 2016; Chmiel and Schubert, 2017; 
Brydevall et al., 2018). Music may therefore modulate learning, and 
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thus the reward thereof, according to its complexity (Smith and 
Cuddy, 1986; North et al., 2000; Madison and Schiölde, 2017).

To examine this possibility, in a previous study our team used a 
well-validated model of musical informatics (Pearce, 2005, 2018) to 
quantify the complexity of a variety of real-world musical melodies, 
both in terms of information content (i.e., surprise) and entropy (i.e., 
predictive uncertainty), and compared these measures to liking 
ratings (Gold et  al., 2019b). As hypothesized, we  found inverted 
U-shaped relationships between complexity and liking, which 
persisted across several repetitions. We also identified an interaction 
between information content and entropy, such that listeners reliably 
preferred music that was relatively low in one of these features and 
high in the other. In other words, and in keeping with models of 
prediction-based learning (Friston, 2005, 2010; Pearce, 2005; O’Reilly, 
2013; Koelsch et  al., 2019; Vuust et  al., 2022), listeners preferred 
surprising events when their uncertainty was low (informing them 
that they did, in fact, have more to learn), and unsurprising ones 
when their uncertainty was high (signaling that their uncertain 
predictions were, in fact, correct). These findings support the idea 
that learning about musical structure is intrinsically rewarding, and 
may account for the neural reward system’s involvement in 
musical pleasure.

Using a similar approach, Cheung et  al. (2019) modeled the 
information content and entropy of chord sequences from real-world 
pop music, and evaluated both the liking ratings and BOLD activity 
associated with each chord during fMRI. Like our team, these authors 
found that information content and entropy had interacting effects on 
liking ratings, with the highest ratings reserved for uncertain and 
surprising or highly certain and unsurprising chords. In addition, 
their neuroimaging analyses implicated the superior temporal gyrus 
(STG) and medial temporal lobe (i.e., amygdala and hippocampus) in 
this interaction. Yet while ventral striatal activity covaried with 
entropy, it did not reflect significant effects of information content or 
the interaction between them, reigniting questions about why this 
structure and its dopamine transmission so robustly correlate with 
musical pleasure (cf. Blood and Zatorre, 2001; Salimpoor et al., 2011; 
Martínez-Molina et al., 2016; Gold et al., 2019a; Mas-Herrero et al., 
2021a,b).

In the context of these questions, the present study has three 
primary aims. First, we assess the replicability of previously reported 
relationships between liking ratings, musical information content, 
and entropy, and hypothesize that we will find an interaction similar 
to those in Cheung et al. (2019) and Gold et al. (2019b). Second, 
we use fMRI to investigate whether the brain regions implicated in 
musical pleasure show different responses for liked vs. disliked 
surprises during naturalistic music listening, consistent with our 
group’s prior work on action-oriented RPEs. And third, we evaluate 
how neural activity (indexed with fMRI BOLD signals) reflects 
behavioral information content × entropy interactions. While 
Cheung et al. (2019) also examined information content × entropy 
interactions with fMRI, our study differs from theirs in that we draw 
on real-world musical excerpts of different genres and time periods 
that vary widely in surprise and uncertainty, operationalize 
information content and entropy for entire melodic excerpts rather 
than individual chords, and relate the BOLD responses for musical 
complexity to music liking. With this approach, we expect to find 
evidence of information content × entropy effects in brain regions 
associated with musical pleasure.

2. Materials and methods

The participants, stimuli, information-theoretic modeling, 
experimental procedure, and data acquisition were previously 
described in Gold (2019). Analysis scripts are available at https://
github.com/benjaminpgold/auditory-reward-pleasure-of-musical-
expectancies.git.

2.1. Participants

This study was approved by the Research Ethics Board of the 
Montreal Neurological Institute. Screening questionnaires ensured 
that participants were neurologically healthy, had normal hearing, had 
not participated in previous experiments with the stimuli (Gold et al., 
2019b), and were eligible to undergo safe fMRI scanning. We also 
confirmed that all participants listened to Western tonal music and 
that their musical expectations were not largely based on atonal or jazz 
music, which frequently deviate from the structures of Western folk 
and classical music we used to train our computational model, by 
asking the volunteers’ five favorite genres; none of them listed any 
atonal or jazz genres. The sample size was 24 (17 females, 7 males, 
mean age ± standard deviation = 22.08 ± 2.70 years).

Nine participants had formal musical experience, but only two 
were still actively playing music (whole-group mean musical 
experience ± standard deviation = 2.89 ± 4.52 years). These participants 
placed at approximately the 33rd percentile of normative Goldsmiths 
Musical Sophistication Index scores (Müllensiefen et al., 2014) (mean 
total score ± standard deviation = 72.78 ± 20.96), and within typical 
ranges on the Barcelona Music Reward Questionnaire (Mas-Herrero 
et al., 2013) (mean total score ± standard deviation = 81.39 ± 10.80).

2.2. Stimuli

We used 50 experimental stimuli, plus two for practice trials. All 
of these were excerpts of real, pre-composed music collected from 
public Musical Instrument Digital Interface (MIDI) databases, most 
of them from the following websites: www4.osk.3web.
ne.jp/~kasumitu/eng.htm, www.classicalarchives.com/midi.html, and 
www.baldwinsmusic.com. Each of these stimuli were also used in our 
previous research (Gold et al., 2019b), and contained examples of 
several musical genres from a wide range of time periods, composers, 
tonalities, and meters (Supplementary Table S1). We  used only 
monophonic stimuli (i.e., containing only one tone at a time) to avoid 
the confounding effects of harmony (i.e., chordal relationships) and 
polyphony (i.e., multiple voices), and we reduced other confounds by 
normalizing the peak amplitudes to the same level with Audacity® (© 
1999–2018 Audacity Team), limiting the stimuli to 30 ± 2 s, and 
synthesizing the MIDI stimuli into Waveform Audio File (WAV) 
format. We also standardized the tempo of each stimulus to either 96, 
120, or 144 bpm – whichever sounded most musically appropriate – 
with MuseScore (© 2018 MuseScore BVPA). These considerations 
constrained our stimuli to excerpts that were either solo pieces or 
melodic lines from polyphonic pieces.

We converted these stimuli into naturalistic-sounding WAV files 
with the Kontakt 5 synthesizer (© 2018 Native Instruments GmbH) 
within the Ableton Live 9 digital audio workstation (© 2018 Ableton). 
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We generated each excerpt with a flute digital synthesizer, digitally 
filtered them to resemble the acoustics of a music studio, and 
randomly shifted the note onsets on the order of milliseconds using 
Ableton’s Groove Pool with 25% randomization for “humanization” 
– i.e., to prevent the stimuli from sounding mechanical and unnatural.

2.3. Information-theoretic modeling

Across many different experimental paradigms and musical 
samples, the Information Dynamics of Music (IDyOM) model has 
been shown to provide reliable measures of musical unpredictability/
surprise (as represented by information content) and uncertainty 
(as represented by entropy) in Western listeners (Pearce, 2005, 2018; 
Pearce and Wiggins, 2006; Pearce et al., 2010a; Omigie et al., 2012; 
Egermann et al., 2013; Hansen and Pearce, 2014; Sauvé et al., 2018). 
IDyOM has significantly outperformed similar models and 
explained up to 83% of the variance in listeners’ pitch expectations 
(Pearce, 2005, 2018; Pearce et al., 2010b; Hansen and Pearce, 2014), 
while also successfully predicting several electrophysiological, 
psychophysiological, and subjective emotional responses (Carrus 
et  al., 2013; Egermann et  al., 2013; Omigie et  al., 2013; Sauvé 
et al., 2018).

We used IDyOM to operationalize the amount of surprise and 
uncertainty in our stimuli, following the same procedure as in our 
group’s previous work (see Gold et  al., 2019b for details). This 
approach involved training an IDyOM model on a large corpus of 
Western tonal music to simulate how humans learn musical statistics 
through long-term exposure and also on each stimulus to simulate 
how humans learn about the statistical properties of each individual 
piece. Given this training, our IDyOM model calculated the 
information content and entropy of each note, derived from 
probability distributions of its pitch and inter-onset interval in context. 
We  then computed the weighted mean information content and 
entropy for each stimulus by multiplying its note-by-note measures by 
their relative duration and averaging these duration-weighted values, 
again following the procedure outlined in Gold et  al. (2019b). 
Throughout the manuscript, we refer to these measures as mDW-IC 
(mean duration-weighted information content) and mDW-Entropy 
(mean duration-weighted entropy).

2.4. Experimental procedure

During scanning (see below), participants listened to each 30-s 
MIDI stimulus using MRI-compatible S14 Insert Earphones 
(Sensimetrics Corporation, Malden, MA), pre-set to a comfortable 
volume, while a fixation cross appeared on the screen via an angled 
mirror on top of the MRI head coil. The task was conducted with 
Presentation® software (Neurobehavioral Systems, Inc., Berkeley, CA). 
As they listened, the participants rated how much they liked the 
music, in real time, with an MRI-compatible Legacy Joystick in their 
right hand (Current Designs, Inc., Philadelphia, PA). The joystick 
position ranged from −150 to 150, sampled at 1000 Hz. They were 
instructed that they should be rating their moment-by-moment liking 
whenever music was playing, but that they would only see the fixation 
cross throughout the experiment to avoid vision-related confounds in 
the functional MRI signal. The time between stimuli was randomly 
jittered between 5.5 and 6.5 s to allow for separable hemodynamic 

responses and to prevent participants from successfully predicting 
when stimuli would begin.

Before the experimental task, participants experienced three 
practice trials using stimuli that did not occur during the experiment 
for familiarization and to ensure that they understood the instructions. 
During the first two practice trials, the participants could see a vertical 
bar for their ratings, labeled “not at all” on the bottom and “very 
much” at the top, with a cursor that moved as the joystick did. In the 
third practice trial, which repeated the same stimulus as the first one, 
the bar and cursor were no longer visible and participants only saw a 
fixation cross on the screen.

To avoid anchoring effects, we sorted the stimuli into five clusters 
of mDW-IC using Matlab’s k-means clustering algorithm, and 
randomly selected one stimulus from each cluster to constitute the 
first five stimuli of the experiment so that the participants could 
acclimate to the range of stimuli present in the rest of the experiment. 
After these five, the remaining 45 stimuli occurred in a random and 
participant-specific order.

Shortly after they had left the scanner, participants rated their 
prior familiarity with the experimental stimuli, also via Presentation 
software, with one of the following options: “I did not know any of 
them; I knew about 1–10 of them; I knew about 11–20 of them; I knew 
about half of them; I knew about 30–40 of them; I know almost all of 
them.” Thirteen participants said “I did not know any of them” and 
eleven said “I knew about 1–10 of them,” showing that the stimuli were 
for the most part unfamiliar.

2.5. FMRI data acquisition and 
preprocessing

We acquired MRI data with a Siemens MAGNETOM Prisma fit 
3 T scanner and a 32-channel head coil at the McConnell Brain 
Imaging Centre of the Montreal Neurological Institute. We used a 
T2*-weighted multi-band echo planar imaging sequence to collect 
whole-brain functional blood oxygen level-dependent (BOLD) 
images at high temporal resolution (54 slices, TE = 30 ms, TR = 654 ms, 
multi-band acceleration factor = 6, flip angle = 60°, matrix 
size = 210 × 210 × 135, voxel size = 2.5 mm isotropic). We also collected 
reversed phase-encode scans to acquire pairs of images with 
susceptibility-induced distortions in opposite directions and estimate 
the off-resonance field of our T2*-weighted images (Andersson et al., 
2003), and then unwarped our volumes using FSL’s topup command 
(Smith et al., 2004). When whole-brain coverage was not possible 
with these parameters, we prioritized ventral temporal and frontal 
regions at the cost of dorsal parietal ones. The experimental task 
occurred over two functional runs of 25 trials and about 17 min each, 
with a short break in between for rest, except for one participant who 
opted to end the experiment during the 49th trial. We  therefore 
discarded this participant’s data for the 49th and 50th trials.

We also collected a high-resolution T1-weighted image for each 
participant (MPRAGE: TE = 2.98 ms, TR = 2,300 ms, matrix 
size = 256 × 256 × 192, voxel size = 1 mm isotropic) for anatomical 
registration. We preprocessed the functional images with FSL FEAT 
Version 6 (FMRIB, UK), starting with discarding the first 6 volumes 
(3.924 s) of each run to accommodate scanner drift. Then, following 
the procedure outlined in Pruim et al. (2015), we performed motion 
correction and calculated movement regressors (with FSL MCFLIRT), 
4D mean intensity normalization, and spatial smoothing (with a 
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Gaussian 5-mm FWHM kernel) before using ICA-based Automatic 
Removal of Motion Artifacts (ICA-AROMA) to clean the data of 
motion-related artifacts. We then removed linear trends and effects of 
white-matter and cerebrospinal-fluid signals by regressing these out 
of the 4D data, and high-pass filtered the resulting time series with 
Gaussian-weighted least-squares straight-line fitting sigma = 50 s. 
Finally, we used FSL FLIRT with 12 DOF to linearly register each 
functional run to the participant’s T1-weighted space, and FSL FNIRT 
with 10-mm warp resolution to non-linearly normalize the volumes 
to the MNI152 2-mm standard brain. Reported coordinates are in 
Montreal Neurological Institute space.

2.6. Behavioral analyses

As in our team’s previous work (Gold et al., 2019b), and in Cheung 
et al. (2019), we used linear mixed-effects models to detect group-level 
effects that arise from the trial-by-trial and individual-by-individual 
variability. Using Matlab’s fitlme function and the procedure 
recommended in Diggle et al. (2002) and Zuur et al. (2009), we first 
optimized the random-effects structure of a “beyond-optimal” model 
(including all relevant fixed effects and interactions) according to the 
Akaike information criterion via restricted maximum likelihood 
estimation, identifying and incorporating any differences between 
participants (e.g., their baseline liking) that could help explain their 
ratings. We then optimized the fixed-effects structure via likelihood 
ratio tests of nested models and Akaike information criterion of other 
models using maximum likelihood estimation, and finally evaluated 
the model with restricted maximum likelihood estimation. Separate 
mixed-effects models evaluated the main effects of mDW-IC (i.e., 
surprise), mDW-Entropy (i.e., uncertainty), and the interaction 
between them, using z-scored values of these variables to allow for 
comparisons between their linear and quadratic effects.

While linear mixed-effects modeling is a powerful tool for probing 
interactions such as that between mDW-IC and mDW-Entropy, 
visualizing the results of this approach is often difficult due to the 
intercepts and/or slopes that vary across individual participants. 
We thus present the estimated responses of the best-fitting models, as 
in prior studies (e.g., Cheung et al., 2019; Gold et al., 2019b). Yet to aid 
the interpretability of the complex interactions between mDW-IC and 
mDW-Entropy on liking ratings, we also supplemented our linear 
mixed-effects model by categorizing stimuli for simpler visualization. 
Specifically, and following our previous procedure (Gold et al., 2019b), 
we  classified each stimulus according to its mDW-Entropy and 
mDW-IC using Matlab’s k-means clustering algorithm to obtain data-
driven stimulus categories. Starting with six points roughly 
corresponding to stimuli of low or high mDW-Entropy and low, 
medium, or high mDW-IC (see Supplementary Figure S1), this 
algorithm identified six stimulus clusters through Euclidean distance 
minimization without any information about the participants’ liking 
ratings. We then assessed the mean and standard error of the average 
liking ratings for each of these categories and plotted the results.

2.7. FMRI analyses

We tested the effects of mDW-IC, mDW-Entropy, and liking by 
generating subject-specific parametric regressors of the mDW-IC, 

mDW-Entropy, and average liking rating for each stimulus, each 
normalized from −1 to 1 to accommodate individual differences in 
the ranges of the ratings used and enable comparisons across 
regressors and participants. We then created parametric interaction 
regressors through element-wise multiplication: i.e., by multiplying 
the normalized mDW-IC value for each stimulus by its normalized 
mDW-Entropy value (for the interaction between surprise and 
uncertainty) or by its subject-specific, normalized liking value (for the 
interaction between surprise and liking). To control for the effects of 
musical onsets and music vs. silence, we also created binary spike 
regressors for the beginning and binary music regressors for the 
duration of each stimulus. Since the mDW-IC, mDW-Entropy, average 
liking, and interaction regressors were all parametric modulations of 
the music vs. silence regressor, which in turn covaried with the 
musical onsets regressor, we orthogonalized each of these with respect 
to the binary music vs. silence and musical onsets terms.

We convolved all of these regressors with a canonical 
hemodynamic response function and its temporal derivatives to 
account for temporal variations. We then conducted first-level general 
linear models (GLMs) for each run of each participant. In addition to 
the aforementioned regressors of musical onsets and music vs. silence, 
the models we evaluated consisted of:

 1. BOLD as a function of Liking.
 2. BOLD as a function of mDW-IC.
 3. BOLD as a function of mDW-Entropy.
 4. BOLD as a function of (mDW-IC × Liking).
 5. BOLD as a function of (mDW-IC × mDW-Entropy).

Since interaction effects may sometimes arise from only one of the 
interacting variables, we  also conducted parallel GLMs for these 
relationships. In the first one, we assessed BOLD as a function of 
(mDW-IC  ×  Liking) + mDW-IC + Liking, with the latter two 
regressors orthogonalized with respect to the first. In the second one, 
we examined BOLD as a function of (mDW-IC × mDW-Entropy) + 
mDW-IC + mDW-Entropy, with the latter two regressors 
orthogonalized with respect to the first.

These GLMs also included 24 motion regressors to account for 
movement-related variance: one for each directional axis, one for each 
derivative of each axis, and the squares of these 12 values. We also 
scrubbed volumes with framewise displacement above 0.9 with 
additional nuisance regressors (cf. Siegel et al., 2014). These motion-
related regressors were not convolved.

We then conducted second-level fixed-effects analyses for each 
participant to average the contrast estimates of each participant’s two 
runs, and group-level mixed-effects analyses to evaluate whole-group 
results. For visualization and transparency, we present these group 
effects for the whole brain at an uncorrected threshold of z ≥ 2. For 
statistical analyses, we evaluated effects in three a priori regions of 
interest (ROIs) defined by a meta-analysis of music-specific reward 
correlates (Mas-Herrero et al., 2021b). For each of these ROIs – which 
centered on the ventral striatum (VS), right superior temporal gyrus 
(R STG), and anterior prefrontal cortex (aPFC) – we extracted the 
average beta values for each regressor of interest and conducted 
two-tailed t-tests to assess their difference from a null effect of 0. For 
the main effect of liking, we also tested whether participants’ average, 
non-normalized liking ratings throughout the task (i.e., their overall 
or ‘baseline’ music liking) covaried with the BOLD activity in any of 
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the a priori ROIs. We report uncorrected p-values and those corrected 
with the Benjamini–Hochberg false discovery rate (FDR) procedure.

Since the liking ratings reflected movements of a joystick, and the 
striatum plays a well-documented role in motor control, we assessed 
whether any liking effects in the a priori VS ROI could be attributed 
to movement rather than liking per se. To do so, we extracted the mean 
preprocessed BOLD signal of the ROI for each trial, as well as the 
variance of the joystick rating time series (after z-scoring the ratings 
for each participant) and the mean and variance of the root mean 
square absolute head movement (derived from FSL MCFLIRT). 
We also computed the Pearson’s correlation between the VS BOLD 
data and head motion time series for each trial. We then fit linear 
mixed-effects models to investigate the relationships between these 
features across trials, scanning runs, and participants, determining the 
random effects structures as in Diggle et al. (2002) and Zuur et al. 
(2009) and corrected the p-values of these tests for multiple 
comparisons. These models consisted of:

 1. Mean VS BOLD activity as a function of joystick movement 
(i.e., Liking rating variance).

 2. Mean head movement as a function of joystick movement.
 3. Mean VS BOLD activity as a function of mean head movement.
 4. Mean VS BOLD activity as a function of head 

movement variance.
 5. VS BOLD-head motion correlation as a function of 

joystick movement.

To facilitate the visualization and interpretation of interaction 
effects (mDW-IC  ×  Liking and mDW-IC  ×  mDW-Entropy), 
we separated the stimuli into distinct categories and plotted the BOLD 
responses associated with each, as in our categorical analysis of the 
behavioral mDW-IC × mDW-Entropy interaction described above. 
However, instead of the six categories we  used to analyze the 
behavioral interaction, we generated just four categories for the fMRI 
interactions to prevent the noisiness of BOLD data from leading to 
undersampled clusters.

Since liking ratings are inherently subjective, we generated subject-
specific categories to interrogate the mDW-IC × Liking interaction. 
Specifically, we normalized each participant’s liking ratings to range from 
−1 to 1 (matching the range of the normalized mDW-IC values), and 
then categorized stimuli with normalized mDW-IC ≤ 0 and subject-
specific liking ≤0 as low mDW-IC and low liking, those with normalized 
mDW-IC ≤ 0 and subject-specific liking >0 as low mDW-IC and high 
liking, etc. We then conducted a GLM with binary regressors of these 
categories and the onset spike regressor, evaluated the participants’ 
average BOLD responses for these four stimulus categories, and assessed 
the significance of these categorical interactions with repeated-measures 
ANOVAs in each a priori ROI (including terms for the main effects of 
mDW-IC and Liking). We report uncorrected and FDR-corrected p 
values. To better understand the interaction effect and accommodate for 
the noisiness of BOLD data along with minor registration and/or 
activation peak anomalies, we also examined categorical responses in 
activation clusters from the original (non-categorical) interaction GLM 
(thresholded at uncorrected p ≤ 0.01) that overlapped with the a priori 
ROIs and visualized the significant result(s).

Since the mDW-IC and mDW-Entropy values for each stimulus 
are not subject-dependent, we used k-means clustering to categorize 

the stimuli for follow-up analyses of the mDW-IC × mDW-Entropy 
interaction (Supplementary Figure S1). We then conducted GLMs 
with a binary regressor for each of the four categories and the onset 
spike regressor, skipping the binary regressor for the duration of each 
stimulus since it would simply be  the sum of the four category 
regressors. Next, we  evaluated the BOLD responses for these 
categories in each a priori ROI and activation cluster from the original 
GLM of this interaction (thresholded at uncorrected p ≤ 0.01) that 
overlapped with them (including terms for the main effects of 
mDW-IC and mDW-Entropy) to visualize the interaction effects. 
We report uncorrected and FDR-corrected p-values.

3. Results

3.1. Liking ratings replicate the interaction 
between musical surprise and uncertainty

The best-fitting model of the relationship between surprise 
(mDW-IC) and liking ratings expressed a negative linear relationship 
(Figure 1A) with subject-varying intercepts (95% CI = 19.06, 34.54) 
and slopes (95% CI = 4.05, 9.64). This model explained 46.2% of the 
variance in liking ratings (p < 0.001) with its negative linear coefficient 
(β = −12.30, p < 0.001). An alternative model that added a quadratic 
effect of surprise on liking ratings was also significant (p < 0.001), but 
its quadratic term was not (linear β = −11.32, p < 0.001; quadratic 
β = −0.70, p = 0.223). Accordingly, this alternative model did not fit 
liking ratings better than the one with only a linear term [likelihood 
ratio test χ2(1, N = 24) = 1.48, p = 0.223].

For the relationship between uncertainty (mDW-Entropy) and 
liking, the best-fitting model indicated an inverted U-shaped 
Wundt effect (Figure  1B). This model explained 38.4% of the 
variance in liking ratings (p < 0.001) and contained a negative linear 
term (β = −9.30, p < 0.001), a negative quadratic term (β = −3.71, 
p < 0.001), and random effects of participant intercepts (95% 
CI = 7.96, 29.06), uncertainty slopes (95% CI = −11.71, −6.89), and 
uncertainty2 slopes (95% CI = −5.29, −2.13). Alternative models 
with only linear or quadratic fixed-effects terms yielded significantly 
worse fits of liking ratings, as indicated by likelihood ratio tests 
[linear + quadratic model vs. linear-only model χ2(1, N = 24) = 21.05, 
p < 0.001; linear + quadratic model vs. quadratic-only model χ2(1, 
N = 24) = 56.10, p < 0.001].

We also observed a significant interaction between surprise 
(mDW-IC) and uncertainty (mDW-Entropy) on liking ratings. The 
best-fitting linear mixed-effects model of this interaction revealed a 
saddle-shaped effect wherein participants preferred stimuli of low 
uncertainty and intermediate surprise or those of high uncertainty 
and low surprise (Figure 1C). This model explained 49.6% of the 
variance in liking ratings (p < 0.001) and contained linear and 
quadratic terms for both surprise and uncertainty, as well as their 
interactions, as well as random intercepts (95% CI = 22.73, 43.72) and 
surprise slopes (95% CI = 1.50, 3.48) across participants. Categorizing 
each stimulus into bins of low or high uncertainty and low, medium, 
or high surprise also showed the greatest ratings for stimulus clusters 
of high uncertainty and low surprise or low uncertainty and low-to-
intermediate surprise (Figure 1D) in a pattern that closely resembles 
prior findings (Gold et al., 2019b).
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3.2. Normalized liking ratings correlate 
with R STG responses, while average liking 
correlates with VS activity

Before investigating how neural responses to musical complexity 
related to music liking, we  first assessed the main effect of liking 
ratings on our sample’s BOLD activity. This analysis suggested that 
changes in normalized liking ratings significantly covaried with 
changes in the BOLD signals of the R STG a priori ROI [t(23) = 2.56, 
uncorrected p = 0.018, FDR-corrected p = 0.053], while effects in the 
VS (uncorrected p = 0.166) and aPFC (uncorrected p = 0.185) failed to 
reach significance (Figures 2A,B).

Though normalizing liking ratings reduces inter-individual variance, 
some of that variance may be informative: i.e., reflecting differences in 

the participants’ overall or baseline liking of the stimuli. We therefore 
compared each individual’s BOLD responses to music liking (i.e., liking 
β) with their average liking rating throughout the task. These linear 
regressions revealed an effect in the a priori VS ROI [F(1,22) = 4.83, 
β = 0.06, uncorrected p = 0.039, FDR-corrected p = 0.116] such that 
participants who tended to rate the stimuli higher had stronger liking-
related responses in this region (Figure  2C). Though excluding the 
participant with the highest overall liking weakened this result 
(uncorrected p = 0.271), reducing outlier effects with robust regression 
validated the original finding [F(1,22) = 4.92, β = 0.05, uncorrected 
p = 0.037, FDR-corrected p = 0.112]. Effects in the a priori R STG and 
aPFC ROIs were not significant (uncorrected ps ≥ 0.134).

Since the participants in this study registered their liking ratings 
by moving a joystick, and the striatum in particular plays a major role 

FIGURE 1

Effects of musical surprise and uncertainty on liking. (A) Linear mixed-effects modeling indicated a significant negative linear relationship between 
surprise (measured as standardized mean duration-weighted information content, or mDW-IC) and liking ratings (p  <  0.001). The best-fitting model had 
subject-varying intercepts and slopes, but only the model-adjusted data points (in blue) and trend line (in red) are shown here for clarity. (B) The best-
fitting linear mixed-effects model of uncertainty (measured as standardized mean duration-weighted entropy, or mDW-Entropy) and liking ratings 
indicated negative linear and quadratic terms consistent with a Wundt effect (p  <  0.001). This model contained subject-varying intercepts and slopes, 
but only the model-adjusted data points (in blue) and trend line (in red) are shown here for clarity. (C) Linear mixed-effects modeling of interactions 
between surprise (raw, i.e., unstandardized mDW-IC) and uncertainty (raw mDW-Entropy) on liking ratings revealed a saddle-shaped effect with higher 
ratings for stimuli of low uncertainty and intermediate surprise or those of high uncertainty and low surprise (p  <  0.001). The best-fitting model 
contained subject-varying intercepts and slopes for the effect of surprise, but only the model-predicted ratings are shown here for clarity, using a blue-
to-red color scale. (D) Categorizing the stimuli with three levels of mDW-IC and two levels of mDW-Entropy helped to illustrate the interaction 
between surprise and uncertainty on liking ratings. The mean liking ratings  ±  the standard error of the mean (S.E.M.) are shown here for each cluster of 
stimuli.
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in movement, we probed the above results to determine whether they 
could be explained by motor activity rather than liking. Specifically, 
we extracted the BOLD signals from the a priori VS ROI in each trial 

and evaluated whether movements of the head or joystick correlated 
with these signals. Linear mixed-effects models indicated that the 
variance of liking ratings (i.e., the extent of joystick manipulation) was 

FIGURE 2

Neural effects of liking ratings. (A) Whole-group normalized liking ratings covaried with BOLD activity in a number of regions, including the R STG and 
the VS. Data are visualized in MNI space at an uncorrected threshold of z  ≥  2 in a red-to-yellow color scale, while the a priori regions of interest (ROIs) 
from Mas-Herrero et al. (2021b) are outlined in light blue. (B) Extracting the BOLD effects for each a priori ROI revealed a positive effect of normalized 
liking ratings on R STG activity (uncorrected p  =  0.018) but not VS or aPFC activity (uncorrected ps  ≥  0.166). Individual-participant βs are shown in grey 
dots, while the mean for each ROI is shown with red lines and the mean  ±  standard deviation (S.D.) of each distribution is shown in white boxes. 
(C) Participants’ average liking ratings for all stimuli significantly covarsied with their BOLD responses to liking (i.e., liking β) in the VS (uncorrected 
p  =  0.039) but not in the R STG or aPFC (uncorrected ps  ≥  0.135). Data are visualized as dots with the liking βs in arbitrary units (a.u.), along with the line 
of best fit (in dashes) and its standard error (shaded) for the linear regression between average liking ratings and liking βs in each ROI. L, left; R, right; VS, 
ventral striatum; R STG, right superior temporal gyrus; aPFC, anterior prefrontal cortex. * Uncorrected p  <  0.05.
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not correlated with the VS BOLD response (uncorrected p = 0.139) but 
did exhibit a slight relationship with the amount of head motion in a 
trial (β = 0.03, uncorrected p = 0.021, FDR-corrected p = 0.105). Yet VS 
BOLD activity was not significantly affected by the mean (uncorrected 
p = 0.831) or variance (uncorrected p = 0.094) of head movement, and 
the relationship between VS BOLD signals and head motion was not 
related to the variance of joystick movement (uncorrected p = 0.880). 
The above effects of ventral striatal BOLD signals are not therefore 
attributable to motion.

3.3. The VS reflects an interaction between 
surprise and liking

The interaction between musical surprise (mDW-IC) and liking 
significantly engaged the R STG ROI [t(23) = 2.92, uncorrected 
p = 0.008, FDR-corrected p = 0.023], with non-significant effects in the 
VS (uncorrected p = 0.409) and aPFC (uncorrected p = 0.392) 
(Figures 3A,B). Each a priori ROI exhibited overlap with an activation 
cluster, though, and so we examined these clusters as well as the a 
priori ROIs in follow-up analyses. A parallel GLM that included 
covariates for the main effects of surprise and liking yielded highly 
similar results (Supplementary Figure S2).

To better understand these interactions, we divided the stimuli 
into four categories according to their mDW-IC value and subject-
specific liking rating (see Materials and Methods). Where the GLM 
indicated a significant effect, we then visualized the average BOLD 
responses for each category to discern the nature of their interaction. 
Finally, we qualitatively compared the patterns of these categorical 
BOLD responses to an axiomatic model of reward prediction errors 
(RPEs), which indicates increasing responses for more surprising and 
liked stimuli and decreasing responses for more surprising and 
disliked ones (see Rutledge et  al., 2010; Fouragnan et  al., 2017; 
Figure 3C).

This approach revealed that the BOLD activity in the a priori R 
STG ROI (Figure 3E) and the activation cluster that overlapped with 
it (Figure 3F) followed the same pattern of responses across the four 
stimulus categories, with more surprising stimuli eliciting less activity 
especially when they were also disliked. Conversely, the ventral striatal 
cluster overlapping with the a priori ROI was the only one that 
resembled the axiomatic pattern (Figure 3D), suggesting that this 
region might exhibit RPEs during music listening (cf. Shany et al., 
2019; Gold et al., 2019a).

3.4. Surprise and uncertainty interact in VS 
BOLD responses, following a different 
pattern than behavioral 
surprise × uncertainty effects

The interaction between surprise (mDW-IC) and uncertainty 
(mDW-Entropy) did not reach significance in the a priori ROIs 
(uncorrected ps ≥ 0.297), and only the VS ROI overlapped with a 
subthreshold activation cluster (Figures 4A,B). A parallel analysis that 
included covariates for the main effects of surprise and uncertainty 
yielded a highly similar pattern of results (Supplementary Figure S3).

As in the above surprise × liking analysis, we divided the stimuli 
into four categories to characterize the shape of any interactions. For 
comparisons to the behavioral results, we also recalculated the average 

liking ratings for the surprise × uncertainty interaction across these 
four stimulus categories (Figure 4C). This procedure indicated that 
none of the a priori ROIs or overlapping activation clusters had 
patterns of responses that resembled the behavioral results. Instead, 
the interaction in the cluster overlapping the a priori VS ROI 
illustrated a crossover effect, with lesser activity for stimuli with low 
uncertainty and high surprise or high uncertainty and low surprise 
(Figure 4D).

We also evaluated main effects of surprise (mDW-IC) and 
uncertainty (mDW-Entropy) for completeness. These results are 
shown in Supplementary Figure S4.

4. Discussion

Prominent models of music enjoyment point to a central role of 
expectancy in the psychological, neural, and psychophysiological 
processes underlying pleasure (Meyer, 1956; Huron, 2006; Zald and 
Zatorre, 2011; Gebauer et al., 2012; Zatorre and Salimpoor, 2013; 
Salimpoor et al., 2015; Koelsch et al., 2019; Vuust et al., 2022). These 
models are based on music’s ability to establish and manipulate 
patterns; the occurrence of peak emotional, autonomic, and neural 
responses surrounding dramatic changes in musical structure; and the 
involvement of the brain’s reward system – which signals the value of 
anticipated and surprising events – in musical pleasure (Sloboda, 
1991; Blood et al., 1999; Blood and Zatorre, 2001; Steinbeis et al., 2006; 
Grewe et al., 2007; Salimpoor et al., 2011, 2013; Egermann et al., 2013; 
Mas-Herrero et  al., 2021b). However, evidence that directly and 
specifically associates the neural processing of musical expectancies 
to reward structures or pleasure is quite limited.

The present study therefore seeks to link musical expectancies to 
both pleasure and its neural substrates. Using a naturalistic music 
listening paradigm and information-theoretic modeling during fMRI 
scanning, we replicate previous reports of music liking varying with 
musical uncertainty and surprise, and then extend this research to 
implicate the reward system in these effects. We also test the widely 
held hypothesis that the ventral striatum integrates information on 
musical reward and surprise, as in reward prediction errors (RPEs), 
providing crucial evidence reflecting this phenomenon during 
naturalistic listening.

4.1. Musical uncertainty and surprise jointly 
affect liking ratings

Our behavioral results align with previous reports of interactions 
between musical uncertainty and surprise on liking. We  find this 
interaction using a mixed-effects linear model (Figure  1C), like 
Cheung et al. (2019), and further visualize it with stimulus clusters 
(Figure  1D), like Gold et  al. (2019b). Also like in these previous 
studies, this interaction stems from preferences for music with high 
uncertainty and low surprise or low uncertainty and medium surprise, 
supporting models that attribute pleasure to either validating an 
uncertain model of one’s environment (in this case, music) or adding 
new information to a model strong enough to accommodate it (cf. 
Koelsch et al., 2019; Vuust et al., 2022).

Our interaction effect differs from that of Cheung et al. (2019), 
however, in that ours is based on ~30-s melodies from multiple eras 
and genres (Supplementary Table S1) while theirs was based on 2.4-s 
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FIGURE 3

Neural effects of surprise × liking interactions. (A) Whole-group interactions between surprise (operationalized as mean duration-weighted information 
content, or mDW-IC) and liking ratings covaried with BOLD activity in a number of regions, including the R STG and the VS. Data are visualized in MNI 
space at an uncorrected threshold of z  ≥  2 in a red-to-yellow color scale, while the a priori regions of interest (ROIs) from Mas-Herrero et al. (2021b) 
are outlined in light blue. (B) Extracting the BOLD effects for each a priori ROI revealed a significant effect in the R STG activity (uncorrected p  =  0.008) 
but not VS or aPFC activity (uncorrected ps  ≥  0.392). Individual-participant βs are shown in grey dots, while the mean for each ROI is shown with red 
lines and the mean  ±  standard deviation (S.D.) of each distribution is shown in white boxes. (C–F) Dividing the stimuli into liked vs. disliked excerpts at 
two levels of surprise allowed for further inspection of this interaction. (C) We illustrate how BOLD responses for each stimulus category would look if 
following the axiomatic properties of reward prediction errors (RPEs), in arbitrary units (a.u.) (see Rutledge et al., 2010; Fouragnan et al., 2017). (D) The 
activation cluster in the VS (i.e., the red-yellow cluster overlapping with the light-blue outline in the coronal slice from A) exhibited a pattern of 
responses resembling the axiomatic properties of RPEs: i.e., similar activity for liked vs. disliked stimuli of low surprise, greater activity for liked stimuli of 
high surprise, and lesser activity for disliked stimuli of high surprise. Data are visualized as mean BOLD responses  ±  the standard error of the mean 

(Continued)
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chords arranged in the progressions of late 20th-century pop songs. 
Our stimuli thus contain higher levels of uncertainty and surprise: see 
Table  1. In fact, we  find that liking ratings decline for our most 
surprising stimuli even when uncertainty is low, while Cheung et al. 
only report greater liking for more surprising music during low 
uncertainty. This subtle difference could reflect a contrast between 
melodic vs. harmonic music processing, or the existence of a threshold 
for the pleasure of surprise. Future studies should investigate harmonic 
complexity and liking with a wider range of stimuli.

Analyzing the main effect of uncertainty reveals an inverted 
U-shaped Wundt effect on liking ratings (Figure 1B), consistent with 
many models and reports of liking intermediate complexity in musical 
and other domains (Kang et  al., 2009; Abuhamdeh and 
Csikszentmihalyi, 2012a,b; Witek et al., 2014; Baranes et al., 2015; 
Chmiel and Schubert, 2017; Brydevall et al., 2018; Matthews et al., 
2019; Gold et al., 2019b). Again, these models posit that the draw of 
intermediate complexity is its ability to optimize arousal, attention, 
curiosity, and learning (Berlyne, 1971, 1974; Gottlieb et al., 2013; Kidd 
and Hayden, 2015; Oudeyer et al., 2016; Koelsch et al., 2019).

Yet surprise exhibits a linear effect on liking ratings, with liking 
decreasing as surprise increases (Figure 1A). At first glance, this result 
contrasts with our group’s prior finding of a quadratic, Wundt effect 
between these variables (Gold et al., 2019b). However, that effect was 
characterized by both linear and quadratic terms, such that more 
surprising stimuli evoked decreasing liking ratings in a curvilinear 
fashion – consistent with the linear relationship that we observe here. 
In both the present and our group’s previous studies, our choice to use 
real-world musical excerpts for ecological validity may have prevented 
us from observing stronger effects of the initial, rising portion of an 
inverted U-shaped effect, since sampling a sufficient range of 
complexity is a common issue in assessing Wundt effects that often 
leads to quadratic shapes appearing linear (Chmiel and Schubert, 
2017). In the present study as opposed to our group’s previous one, the 
background noise of the MR scanner may have exacerbated this issue 
by contributing to a more unpleasant and entropic environment. 
Given the interactions between uncertainty and surprise, this noise 
might have thus driven preferences towards less surprising stimuli, 
resulting in a linear rather than quadratic effect. Future research on 
music complexity processing and liking in different environments can 
help elucidate this finding.

4.2. Interactions between musical surprise 
and liking are observable in neural activity 
during naturalistic listening

Analyzing the neural correlates of interactions between surprise 
and liking reveals effects in both the VS and R STG (Figure 3). These 
results indicate that neural auditory and reward regions are engaged 
in not just music liking but also how liking interacts with musical 

surprise in naturalistic listening. Further inspection suggests that 
these interactions arise from greater differences between low and high 
surprise responses among disliked stimuli.

These interactions conform with models that implicate reward 
prediction errors (RPEs) in musical pleasure, since RPEs similarly 
involve the joint processing of value and surprise (Schultz et al., 1997; 
Rutledge et al., 2010; Chase et al., 2015; Floresco, 2015). RPEs are 
closely linked with learning to maximize rewards and minimize 
punishments, and are most robustly found in dopamine and BOLD 
signals in the VS (Schultz et al., 1997; Rutledge et al., 2010; Chase 
et  al., 2015; Floresco, 2015). Accordingly, we  and others have 
hypothesized that music’s ability to manipulate expectations, induce 
strong feelings of reward and pleasure, and evoke VS activity – 
especially at moments of dramatic changes in musical structure – may 
be due to RPE computation (Zald and Zatorre, 2011; Gebauer et al., 
2012; Zatorre and Salimpoor, 2013; Salimpoor et al., 2015). Our group 
previously investigated this possibility by adapting a commonly used 
decision-making task to musical contingencies and modeling the 
musical rewards, predictions, and errors that arose (Gold et al., 2019a). 
This research demonstrated that music could elicit RPEs in the VS, but 
did so in a context more suited to understanding action selection than 
musical pleasure.

In contrast, the present results suggest that musical surprises may 
tap into neural mechanisms of reward even during ecologically valid, 
naturalistic music listening. These results also complement those of 
the only other study, to our knowledge, that has directly examined the 
neural correlates of the interaction between musical surprise and 
liking. Using expert musicians to annotate moments of surprise, Shany 
et  al. (2019) found that BOLD activity in the VS reflected a 
surprise × liking interaction. However, this effect was driven by large 
responses for surprises during highly liked music, with no indication 
that BOLD responses decreased for surprising and disliked music. 
Our findings thus provide the first evidence of a formally modeled 
surprise  ×  liking interaction, and specifically one in the VS that 
follows the pattern of responses in RPEs. Accordingly, and as Shany 
et al. also posited, our results are consistent with the hypothesis that 
implicit expectations about musical events and structure may 
ultimately give rise to RPEs.

Nonetheless, it remains unclear how sensory expectations and 
surprises regarding, e.g., what note is heard at what time, relate to 
reward values and prediction errors in music. Emerging evidence 
suggests that midbrain dopamine neurons encode both sensory and 
reward prediction errors, contributing to the idea that learning about 
one’s environment may be intrinsically rewarding (see, e.g., Bromberg-
Martin et al., 2010; Bromberg-Martin and Hikosaka, 2011; Keiflin and 
Janak, 2017; Sharpe et al., 2017). Meanwhile, listening to music often 
seems to lead to automatic and implicit learning of its structure (Loui 
and Wessel, 2007, 2008; Loui et al., 2010; Hansen and Pearce, 2014; 
Barascud et al., 2016). Better recollection of musical pieces, indicative 
of learning, is also associated with greater pleasure during listening 

(S.E.M.) in arbitrary units (a.u.). (E) The interaction in the a priori R STG also exhibited similar activity for liked vs. disliked stimuli of low surprise, but with 
decreasing responses for high surprise regardless of liking. Data are visualized as mean BOLD responses ± the standard error of the mean (S.E.M.) in 
arbitrary units (a.u.). (F) The activation cluster in the R STG (i.e., the red-yellow cluster overlapping with the light-blue outline in the axial slice from 
panel A) exhibited a pattern of responses highly similar to that of the a priori R STG ROI. Data are visualized as mean BOLD responses  ±  the standard 
error of the mean (S.E.M.) in arbitrary units (a.u.). L, left; R, right; VS, ventral striatum; R STG, right superior temporal gyrus; aPFC, anterior prefrontal 
cortex. ** Uncorrected p  <  0.01.

FIGURE 3 (Continued)
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– unless dopaminergic signaling is dampened (reviewed in Ferreri and 
Rodriguez-Fornells, 2022). These findings suggest that musical reward 
and pleasure may at least in part arise from gaining information about 

musical structure, i.e., sensory events (see, e.g., Vuust and Kringelbach, 
2010; Zald and Zatorre, 2011; Gebauer et al., 2012; Koelsch et al., 2019; 
Vander Elst et al., 2021). While more research is needed to uncover 

FIGURE 4

Neural effects of surprise × uncertainty interactions. (A) Whole-group interactions between surprise (operationalized as mean duration-weighted 
information content, or mDW-IC) and uncertainty (operationalized as mean duration-weighted entropy, or mDW-Entropy) covaried with BOLD activity 
in a number of regions, including the VS. Data are visualized in MNI space at an uncorrected threshold of z  ≥  2 in a red-to-yellow color scale, while the 
a priori regions of interest (ROIs) from Mas-Herrero et al. (2021b) are outlined in light blue. (B) Extracting the BOLD effects for each a priori ROI 
revealed no significant effects (uncorrected ps  ≥  0.297). Individual-participant βs are shown in grey dots, while the mean for each ROI is shown with 
red lines and the mean  ±  standard deviation (S.D.) of each distribution is shown in white boxes. (C,D) Dividing the stimuli into two levels of surprise and 
two levels of uncertainty allowed for further inspection of this interaction. (C) Across four categories (as opposed to the six used in Figure 1D), liking 
ratings exhibit relatively similar responses for stimuli with low uncertainty (regardless of surprise) and those with high uncertainty and low surprise. In 
contrast, stimuli with high uncertainty and high surprise receive much lower average liking ratings. Data are visualized as mean liking ratings ± the 
standard error of the mean (S.E.M.). (D) The activation cluster in the VS (i.e., the red-yellow cluster overlapping with the light-blue outline in the coronal 
slice from panel A) exhibited a crossover effect, with low uncertainty yielding more activity for low vs. high surprise and high uncertainty yielding more 
activity for high vs. low surprise. Data are visualized as mean BOLD responses  ±  the standard error of the mean (S.E.M.) in arbitrary units (a.u.).
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the precise processes through which sensory predictability and 
surprise confer reward value, the interactions that we observe between 
musical surprise and liking in auditory and reward structures provide 
support for these regions’ hypothesized roles in linking musical 
expectancies to pleasure (Zald and Zatorre, 2011; Gebauer et al., 2012; 
Zatorre and Salimpoor, 2013; Salimpoor et al., 2015; Koelsch et al., 
2019; Vander Elst et al., 2021).

4.3. The ventral striatum also reflects 
interacting uncertainty and surprise, in an 
unexpected pattern

FMRI data also indicate an interaction between uncertainty and 
surprise on BOLD activity in the striatum (Figures 4A,D). Although 
Cheung et al. (2019) did not find evidence of interacting harmonic 
uncertainty and surprise in this region, its strong association with 
both musical pleasure (Blood and Zatorre, 2001; Salimpoor et al., 
2011, 2013; Martínez-Molina et al., 2016; Mas-Herrero et al., 2021b) 
and predictive processing (Schultz et al., 1997; Rutledge et al., 2010; 
Chase et al., 2015; Floresco, 2015; Fouragnan et al., 2017; Shany et al., 
2019; Gold et al., 2019a) led us to hypothesize that its activity profile 
would reflect the processing underlying the behavioral interaction. 
However, the shape of this effect did not closely resemble the 
behavioral one (Figures 4C,D). Specifically, stimuli low in uncertainty 
and high in surprise elicited relatively high liking ratings but low 
BOLD responses, while those with high degrees of both uncertainty 
and surprise exhibited low liking ratings but the second-highest 
BOLD activity. Moreover, this effect arose in a relatively dorsal portion 
of the striatum that extends into the caudate, which has been 
associated with the anticipation of rewards – including peak musical 
pleasure – as opposed to the experience of pleasure per se (Haber and 
Knutson, 2010; Salimpoor et al., 2011). The interaction that we observe 
here might thus reflect a different aspect of musical complexity 
processing than the experience of pleasure.

4.4. Limitations

The present study has some important limitations. Most notably, 
our fMRI results have relatively small effect sizes that could betray 

type I errors rather than true effects. Adjusting significance levels 
these results to reduce potential type I  errors thus decreased the 
number of effects deemed significant. There are several possible 
explanations for these limited effect sizes. One is that our short, 
monophonic, and mostly classical stimuli in the flute timbre did not 
elicit strong, naturalistic hedonic feelings, dampening the experience 
of pleasure and its relationship to complexity that we investigated. 
Another possibility is that our information-theoretic model and/or its 
parameters may not fully capture the hemodynamics of deriving 
pleasure from musical complexity. As this model evaluates musical 
features note-by-note, it may not be the best tool for studying relatively 
slow BOLD signals over the course of an entire melody or piece.

Collinearity between model terms is also likely to reduce effect 
sizes in interaction analyses. For example, we find a strong, linear 
relationship between musical surprise and liking (Figure 1A). This 
relationship differs from previous reports of inverted U-shaped effects 
of musical surprise on liking out of scanning contexts, including one 
that used the same stimuli as the present study (Chmiel and Schubert, 
2017; Cheung et al., 2019; Gold et al., 2019b). As suggested above, the 
noise and relative discomfort of being in the MR scanner may have 
shifted participants’ preferences towards stimuli with fewer and 
smaller surprises. Whatever the reason, though, this correlation 
between surprise and liking limits our power to determine how 
surprise and liking interact in terms of BOLD activity.

Uncertainty and surprise are also closely related, both conceptually 
and in the variables we use to operationalize them here (Pearson’s r = 0.48, 
p < 0.001). Though we  identify some interactions between them, 
consistent with other studies (Cheung et al., 2019; Gold et al., 2019b), their 
correlation again limits our power to distinguish these effects from type 
I errors. The noisiness of BOLD data also hampers statistical power, which 
could make interactions between uncertainty and surprise especially 
difficult to pinpoint with fMRI. Moreover, while these stimulus features 
are orthogonal in several contexts, music may not be one of them: i.e., 
auditory sequences with uncorrelated surprise and uncertainty might not 
be perceived or processed as “music.” Determining the extent to which 
these features are separable in music, and identifying/developing stimuli 
that separate them, will be an important step in further dissecting their 
independent and interacting effects. Doing so will be  especially 
challenging when averaging across several musical events, as stimuli with 
more surprise on average are consequently more uncertain. More time-
resolved analyses that capture the temporal dynamics between musical 
surprise and uncertainty might thus be better suited to differentiating 
their effects.

In fact, the temporal dynamics of music play a large role in its capacity 
for emotion and pleasure (Salimpoor et al., 2011; Gebauer et al., 2012; 
Pearce and Wiggins, 2012; Koelsch et al., 2019; Vander Elst et al., 2021). 
Averaging measures like surprise, uncertainty, and liking across a musical 
stimulus could therefore obfuscate some degree of their effects and 
interactions. For example, Mueller et al. (2015) report that ventral striatal 
responses to music decline after roughly 10 s. Fortunately, models like 
IDyOM can provide reliable estimates of note-by-note surprise and 
uncertainty (Pearce, 2005), while on-line ratings can capture participants’ 
responses to musical events as they occur. On the other hand, the high 
degree of variability in both the speed and the extent of raters’ reactions 
makes it difficult to associate on-line ratings with the event(s) that led to 
them or to compare such ratings across individuals. While some studies 
have handled these concerns with limited and well-defined scales (e.g., a 
rating range of 1–4 where 1 means “no pleasure,” 2 means “low pleasure,” 

TABLE 1 Comparison of musical complexity features in the present 
stimuli and those of Cheung et al. (2019).

Information content Entropy

Event 
level

Stimulus 
average

Event 
level

Stimulus 
average

Gold et al. 

(present 

study)

0.21 – 

38.29
2.66 – 17.19 1.19 – 10.50 3.97 – 5.36

Cheung et al. 

(2019)

0.05 – 

22.53
3.57 – 6.96 0.23 – 7.79 2.34 – 3.86

Calculations for the information content and entropy values in the present are described in 
the Materials and Methods, though note that the values listed here are not duration-weighted 
to facilitate comparison. Information content and entropy values for the Cheung et al. (2019) 
stimuli come directly from that manuscript, which also describes the procedure for deriving 
them. Cells indicate the range of information content or entropy values for each event (note 
or chord) in the experiment or for the average values obtained from each stimulus.
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etc., see Salimpoor et al., 2009, 2011; Mas-Herrero et al., 2021a), the much 
broader range of available ratings in the present study limited the 
interpretability and comparability of time-resolved joystick movements. 
Moreover, a supplementary analysis of the effect of liking on neural 
responses indicates that modeling the entirety (i.e., ~30 s) or just the onset 
(i.e., the first ms) of a stimulus yields highly similar results 
(Supplementary Figure S5). Modeling the first 10 s of a stimulus yields a 
slightly different pattern of activity, but doing so also overlooks the 
changes in liking, uncertainty, and surprise that occur past this window.

5. Conclusion

Despite these limitations, our findings lend new support to current 
models of musical processing and pleasure. We  replicate behavioral 
evidence of an important role for predictive complexity in music liking, 
and present new evidence that links the pleasure of processing musical 
complexity directly to auditory and reward structures during naturalistic 
listening. In one analysis, we  find an interaction between musical 
uncertainty and surprise in the striatum that supports this region’s 
hypothesized role in deriving pleasure from learning about musical 
structure. In another, we  find an interaction between surprise and 
pleasure that supports the involvement of reward prediction errors in 
musical pleasure by suggesting that the striatum conveys reward signals 
based on musical expectations. These findings illustrate that melodic as 
well as harmonic complexity (cf. Cheung et al., 2019) is relevant for 
musical enjoyment and auditory-reward processing, and brings us closer 
to understanding what exactly makes music so pleasurable.
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