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The appreciation of dance, film, and other temporal art forms relies on the continuous integration of auditory
and visual streams. In this study, we investigate how bimodal audiovisual preferences arise from unimodal
auditory and visual preferences. To this end, we created and validated the open-resource complexity
in audiovisual aesthetics stimulus set (https://osf.io/e5uh9/), consisting of 120 short, dynamic, and abstract
auditory, visual and audiovisual stimuli in which auditory and visual complexity corresponds to the number
and variety of elements. In Experiment 1, 87 participants rated liking and perceived complexity for each
stimulus, with visual, auditory, and audiovisual blocks fully randomized. In Experiment 2, 53 participants
rated how much they liked each stimulus with the audiovisual block presented first to avoid potential bias
arising from prior experience of unimodal stimuli and the simultaneous complexity judgements.
Structural equation modeling and linear mixed-effects analysis show that liking for audiovisual stimuli
can be explained by a weighted sum of liking for their auditory and visual components modulated by audio-
visual congruence. Audiovisual preferences exhibit inverted-U-shaped relationships with auditory and
visual complexity, the latter mediated by perceived complexity and modulated by congruence. Our findings
provide a carefully controlled departure point for better understanding the role of prediction of sequential
structure for the experience of dynamic audiovisual art forms such as dance or film.
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Most experiences in life are multimodal (Møller et al., 2021; Stein,
2012) and unfold in time (Spence & Squire, 2003; Stevenson &
Wallace, 2013). This is especially true for the appreciation of temporal

arts such as film, dance, or theatre. These art forms involve integrat-
ing at least two—auditory and visual—sensory modalities. Film,
media, and performance scholars have long argued that the appreci-
ation of (e.g., liking for) these art forms relies on the congruence
of their structural and semantic unimodal features (Chion, 1994;
Cohen, 2013; Jordan, 2011; Tsay, 2013). However, research in
audiovisual aesthetics using naturalistic stimuli like dance or film
is difficult because their formal features (e.g., auditory and visual
complexity) are not easily separated from their semantic features,
including narrative or emotional expression through the human
body. In the present study, we use carefully controlled nonrepresen-
tational stimuli varying in auditory and visual complexity to address
two critical questions: First, we test how liking for audiovisual stim-
uli relates to liking for their unimodal auditory and visual com-
ponents. Second, we explore how liking for dynamic audiovisual
stimuli relates to objective and subjective complexity measures,
introducing new measures for dynamic visual complexity.

Relationship Between Liking for Audiovisual Stimuli and
for Their Unimodal Auditory and Visual Components

The Gestalt principle that the whole is greater than the sum of its
parts refers to the perception of an object or phenomenon being dif-
ferent from the mere addition of its constituent elements (Köhler,
1971/1930; Wertheimer, 1938/1924). In the context of appreciation
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of audiovisual stimuli, it remains unclear how appreciation of bimo-
dal (e.g., audiovisual) stimuli is related to appreciation of its unim-
odal components. We expect the Gestalt principle to apply, but
there are several ways in which it could do so: First, liking for bimo-
dal stimuli might reflect a weighted sum of liking for their unimodal
components. Second, the unimodal influences may not be indepen-
dent but interact. Third, combining auditory and visual components
may produce new emergent properties influencing liking for the
audiovisual whole.
Research on audiovisual integration provides clues as to how audi-

tory and visual components combine to produce liking for audiovi-
sual stimuli. Audiovisual integration is flexible and adaptive,
varying with the relative relevance and reliability of the underlying
perceptual components and expectations about the origin and cau-
sality of the signal (Meijer et al., 2019; Parise et al., 2012; Rohe
& Noppeney, 2018). Spatial and temporal cues influence the relative
weighting of visual and auditory information, resulting in the dom-
inance (capture) of one kind of information over the other. Examples
include visual capture—for example, McGurk (McGurk &
MacDonald, 1976; Spence & Soto-Faraco, 2010, for a review) or
ventriloquist effects (Alais & Burr, 2004)—and auditory capture—
or temporal ventriloquism (Burr et al., 2009; Morein-Zamir et al.,
2003). Research suggests preeminence of the auditory stream (audi-
tory capture) when temporal properties are more salient and, con-
versely, preeminence of the visual stream (visual capture) when
spatial properties are more salient. Integration is optimal (Holmes,
2007; Stanford et al., 2005; Stevenson & James, 2009) when the
unimodal components share spatial (Meredith & Stein, 1986a,
1996) and temporal (Meredith et al., 1987; Miller & D’Esposito,
2005; Senkowski et al., 2007) sources—consistent with the common
cause or unity assumption (see Chen& Spence, 2017 for a review)—
and when they are similarly salient (Holmes, 2009; Kayser et al.,
2005; Meredith & Stein, 1983, 1986b; Perrault et al., 2005).
Therefore, an uneven weighting of liking for the unimodal compo-
nents could point to attention directed to either unimodal component
driving liking for the audiovisual composite.
Regarding emerging properties, we focus on congruence between

the complexity of the auditory and visual components of audiovisual
stimuli. In research on the perception of film music, Lipscomb and
Kendall (1994; see also Lipscomb, 2005) proposed that attentional
focus is maintained on the audiovisual composite rather than on
either unimodal stream in isolation when semantic associations
between auditory and visual streams are deemed appropriate based
on previous experience and to the extent to which auditory and
visual accent structures are consistent. Lipscomb (1999) found sup-
port for such structural consistency when using animations by
Norman McLaren (corroborated with artificially controlled materi-
als in Lipscomb, 2005) but not when using film extracts. This
suggests that the effect may depend on the nature of the material
and led the author to call for reliable, quantitative metrics of audio-
visual complexity. These ideas have been substantially developed
in Cohen’s (2013) congruence-association model. According to it,
semantic and structural relationships between music and visual com-
ponents of film (also text, speech, and sound effects) are initially
processed independently, allowing for structural congruence (as
investigated here) to be assessed independently from semantic con-
gruence before these components are integrated into a working nar-
rative, which is in turn influenced by expectations derived from
long-term memory.

Relationship Between Complexity and Liking for
Audiovisual Stimuli

Stimulus complexity influences the experience of both auditory
and visual stimuli (Berlyne, 1970, 1971; Chmiel & Schubert,
2017; Nadal et al., 2010). It affects recognition memory (Halpern
&Bartlett, 2010), learning (Flagg et al., 1976), physiological arousal
(Potter & Choi, 2006), and attention, with auditory dominating
visual complexity for attention maintenance (Alwitt et al., 1980;
Wartella & Ettema, 1974). Moreover, complexity appears to influ-
ence appreciation across cultures, albeit with some elements of
cross-cultural variation (Che et al., 2018). Liking has typically
been reported to be maximal for stimuli with intermediate complex-
ity (Berlyne, 1970, 1971; Berlyne & Boudewijns, 1971). However,
many empirical results deviate from this general trend due to different
definitions of complexity, experimental manipulations—including
stimuli and measures (Che et al., 2018; Marin et al., 2016;
Martindale et al., 1990; Nadal et al., 2010)—and analytical
approaches—for example, whether considering individual or group-
averaged responses (Clemente, 2022; Güçlütürk et al., 2016; Marin
& Leder, 2018). Regarding dynamic auditory stimuli like music,
genuine evidence for negative quadratic relationships between musi-
cal complexity and liking constitutes only a minority (26.3%) of the
results reviewed by Chmiel and Schubert (2017). It is, therefore,
unclear whether complexity and liking for dynamic audiovisual
stimuli will display a linear or nonlinear (i.e., quadratic) relationship.

The influence of objective, feature-based complexity might be
mediated by perceived complexity (e.g., Berlyne, 1971). However,
most literature focuses on direct relationships between stimulus prop-
erties or their perceptual representations and liking, with scarce coun-
terexamples (e.g., Clemente et al., 2023). Taking subjective ratings of
liking and complexity for each stimulus enables a direct and system-
atic examination of whether perceptual representations of complexity
(subjective complexity) mediate the impact of objective complexity
on liking. Our study aims to delineate the relative influence of objec-
tive and subjective complexity for dynamic audiovisual stimuli.

Measures of Auditory, Visual, and Audiovisual
Complexity

Whereas research on complexity and liking for dynamic auditory
or static visual stimuli is relatively widespread, liking for dynamic
audiovisual complexity has yet to receive comparable attention.
One of the main difficulties in operationalizing audiovisual com-
plexity is the need to identify a measure of complexity that can be
applied across both auditory and visual streams.

In music and other sound streams, complexity can vary as a result of
the number of tones in a sequence (Mindus, 1968), chord structure
(Berlyne et al., 1967), rhythm and syncopation (Heyduk, 1975), struc-
tural change (Mauch & Levy, 2011), variety in pitch, note durations,
loudness, and timbre (Berlyne & Boudewijns, 1971). The expectancy-
basedmodel (Eerola&North, 2000; Eerola et al., 2006), or expectancy-
violation model (EV; Eerola, 2016), and the MUsical STimulus com-
plexity model (Clemente et al., 2020) consist of composite measures
of weighted structural features that have also been found prominent in
the visual modality (Nadal et al., 2010): number (event density) and
variety and organization of elements (computed as different forms of
entropy in the MUsical STimulus complexity and pitch proximity,
tonal ambiguity, and rhythmic variation in the optimal EV models).
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While complexity measures are relatively well defined for static
images (e.g., Fernandez-Lozano et al., 2019; Machado et al.,
2015), attempts to develop a formal measure of dynamic visual com-
plexity are scarce. Existing tools are highly stimulus-specific and
need to be sufficiently validated. For instance, Watt and Welch
(1982) measured the visual complexity of children’s television pro-
grams. In an alternative approach, Kearns and O’Connor (2004)
applied Shannon entropy to calculate moving-image complexity.
Finally, Orlandi et al. (2020) assessed the dynamic visual complex-
ity of dance movements as entropy characterizations in the context of
dance aesthetics. They showed that viewers prefer movements with
variable yet predictable changes in speed and acceleration. However,
none of these studies address how the complexity of dynamic visual
and auditory components might interact.
One way to overcome the modality-specificity of existing com-

plexity measures is to apply information-based theories and models
(Kesner, 2014; Koelsch et al., 2019; Van de Cruys et al., 2017; Van
de Cruys & Wagemans, 2011). However, to our knowledge, com-
plexity measures based on information-based models of dynamic
visual or audiovisual stimuli had yet to be available. The
Information Dynamics Of Music (IDyOM; Pearce, 2005, 2018)
is a well-established framework for investigating the impact of
information-theoretic properties on the perception and appreciation
of music (Clemente et al., 2020; Sauvé & Pearce, 2019). It is a sys-
tem for constructing multiple-viewpoint, variable-order Markov
models for predictive modeling of probabilistic structure in sym-
bolic, sequential auditory domains like music. IDyOM acquires
knowledge about a domain through statistical learning and gener-
ates conditional probability distributions representing the esti-
mated likelihood of each event in a sequence, given the
preceding context and incremental training on the current stimu-
lus.1 From the conditional probability estimates for each event,
IDyOM computes Shannon entropy, which reflects the prospective
predictive uncertainty of the model’s probabilistic prediction
given the context, and information content (IC), which reflects
the contextual unpredictability of the event that actually follows
from the model’s perspective. Although no information-based
complexity model existed for dynamic visual or audiovisual stim-
uli, IDyOM’s architecture is flexible enough to enable the
computation of information-theoretic measures of any sequence
of discrete events. Here, we used IDyOM to quantify auditory com-
plexity and, for the first time, dynamic visual complexity, provid-
ing comparable and generalizable measures of dynamic auditory
and visual complexity.

Aim and Hypotheses

Our overarching aim was to investigate liking for dynamic audio-
visual displays in relation to the complexity of their auditory and
visual components. Specifically, our first goal was to test the hypoth-
esis that liking for the audiovisual whole is greater than the plain sum
of liking for the unimodal components. Our second goal was to
unveil the structure of relationships between stimulus complexity,
perceived complexity, and liking for dynamically time-varying
audiovisual stimuli.
To this end, we first created a novel stimulus set of dynamic

unimodal and bimodal stimuli varying parametrically in auditory,
visual, and audiovisual complexity, respectively. Then, we ran
two experiments: Experiment 1 investigated links between

objective and subjective complexity measures and how they relate
to liking. Experiment 2 replicated Experiment 1 in an in-person set-
ting and established a direct link between objective complexity and
liking, eliminating two potential confounds: First, bimodal stimu-
lus blocks were always presented before unimodal blocks to avoid
priming of bimodal preferences by the prior rating of unimodal
preferences. Second, participants rated only liking to prevent influ-
ence of concurrently rating perceived complexity on liking ratings.

To address our two main goals, we ran two analyses: First, we
tested the hypothesis conforming to the Gestalt principle that the
whole is greater than the (plain) sum of its parts (Köhler, 1971/
1930; Wertheimer, 1938/1924; Experiments 1 and 2) and exam-
ined the nature of the relationship between liking for audiovisual
stimuli and liking for the unimodal components. We expected
that liking for the auditory and visual components would differ-
ently influence liking for the audiovisual composite and a moder-
ating role of audiovisual congruence. Second, we tested the
hypothesis of a mediating role of perceived complexity on the
impact of stimulus complexity on liking (Experiment 1). In addi-
tion, we expected negative quadratic effects of auditory and visual
complexity on liking.

Method

Participants

In both experiments, native English speakers from the general
population were unaware of the study’s purpose and reported normal
or corrected-to-normal vision and hearing and no cognitive impair-
ments. Ethical approval was granted by the Psychology Department
at Goldsmiths, University of London.

Previous research using mixed-effects models with random
effects per participant and stimulus consistently employed sample
sizes of around 40 participants (e.g., Clemente et al., 2021, 2022;
Corradi et al., 2020). Following recommendations for online stud-
ies (Sauter et al., 2020; Stewart et al., 2017), we doubled this sam-
ple size. According to Judd et al.’s (2017) power calculator (https://
jakewestfall.shinyapps.io/two_factor_power/), both experi-
ments—in which all participants rated 120 stimuli on each
scale—would have a power of 1 for a moderate effect size of 0.5,
which was expected by default given the lack of previous research
with our experimental manipulations. In Experiment 1, 90 partici-
pants were recruited through Prolific (https://www.prolific.co/)
with a minimum approval rate of 80% and compensated for partic-
ipation following Prolific recommendations. Three participants with
missing or invalid datawere consequently excluded from the analyses.
In Experiment 2, 53 UK residents took part and were compensated
with £5.

We used the Goldsmiths Musical Sophistication Index (Gold-
MSI; Müllensiefen et al., 2014) general factor scale to characterize
the sample emulating the distribution in the general population.
The demographic data distributions in the final sample (Table 1)

1 In the present research, IDyOMwas configured to use a short-termmodel
(STM) only, though it can also be configured to use a separate model given
training prior to the stimulus (the long-term model or LTM), often from a
large body of stimuli representing the outcome of long-term schematic stat-
istical learning. The STM and LTM can also be combined in both
configurations.
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approach those in the general population (age median= 40.50,
50.57% women, 49.43% men, United Kingdom, 20222).

Stimuli

A novel set of 120 nonrepresentational 10-s stimuli was created:
the complexity in audiovisual aesthetics (CAVA) stimulus set con-
sists of auditory, visual, and audiovisual sequences varying in com-
plexity. Complexity was manipulated by systematically increasing
the number (event density) and variety of elements (modality-
specific variability between events; Nadal et al., 2010) in the audi-
tory and visual modalities separately, as described below. The
CAVA set is publicly available as an open resource for research at
https://osf.io/e5uh9/ in MOV and MP4 formats.
The visual stimuli (V) consist of white horizontallymoving vertical

lines on a black background, inspired by McLaren and Lambart’s
abstract animation Lignes Verticales. The number of lines (event

density) and velocities (modality-specific variability) determine
feature-based complexity in the visual modality. Five feature-based
complexity levels were defined. The simplest visual stimulus contains
two moving lines: The first line completes a horizontal journey from
one side to the other for the duration of the video (0.1 Hz). The second
line makes a return trip horizontally across the screen, thus traveling
twice as fast (0.2 Hz). The most complex sequence contains 10 mov-
ing lines, the fastest traveling 10 times (1 Hz) across the screen.
Therefore, each feature-based complexity level increases the number
of lines by two, resulting in two, four, six, eight, or ten lines for
each level (1–5). In addition, each level is presented in two movement
directions: In left–right, lines move from left to right, whereas in
right–left, theymove from right to left. This results in 10 visual stimuli
(Figure 1) created using Adobe After Effects CC2018.

Table 1
Demographic Data

Experiment N Age (range, M, SD) Gender (w, m, other) Gold-MSI (range, M, SD)

1 87 19–68, 34.15, 11.88 45, 40, 2 48–99, 70.24, 9.96
2 53 20–61, 29.64, 8.53 29, 24, 0 35–120, 77.51, 21.77

Note. Gold-MSI refers to the score in the general factor scale. w=women; m=men; Gold-MSI=Goldsmiths
Musical Sophistication Index.

Figure 1
Visual Sequence Structure

Note. Each row represents a vertical line. Stimuli of a given complexity level include the corresponding
vertical lines indicated on the left of the figure. Diamonds on the far left indicate a line leaving one side
of the display at the beginning of the stimulus, while diamonds on the far right indicate a line arriving at
the same side of the display at the end of the stimulus. Diamonds at intermediate time points indicate a
line arriving at one end of the display and leaving in the opposite direction. For example, the first row indi-
cates a vertical line that started on one side of the visual display and arrived at the other side 10 s later, while
the second row indicates a vertical line that starts on one side of the visual display, arrives at the other side 5 s
later, and returns to the original side after 10 s. A stimulus with a complexity level of 1 comprises both these
lines presented simultaneously. See the online article for the color version of this figure.

2 Source: https://www.statista.com.
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The auditory stimuli (A) were designed to replicate the structure of
the visual stimuli mapped into the auditory domain. They consist of
0.35-s sine tones belonging to the A-major triad in the range
A3–A6. Each stimulus comprises between two and ten pitches,
each of which sounds repeatedly with a specific period. Thus, the
number of sounds (event density) and pitches (modality-specific var-
iability) constitute feature-based complexity in the auditory modality.
Five auditory feature-based complexity levels (1–5) were defined: The
simplest sequence comprises two pitches and five events. The most
complex sequence comprises 10 pitches distributed across 65 events.
Each complexity level is presented in two pitch directions: In low–
high, the pitches proceed from low to high, whereas in high–low,
they proceed from high to low. This results in 10 auditory stimuli
(Figure 2) created using Adobe Audition CC2018.
The 10 auditory and 10 visual sequences were orthogonally com-

bined to produce 100 audiovisual stimuli in Adobe Premier Pro CC
2018. Therefore, each audiovisual stimulus is characterized by a spe-
cific degree of congruence between auditory and visual complexity:
Minimal when the feature-based complexity levels are most dissim-
ilar and maximal when these levels are the same in both sensory
modalities. Furthermore, because the auditory and visual stimuli fol-
lowed the same principles of rhythmic construction (cf., Figures 1
and 2), audiovisual congruence entails synchrony, in the sense that
each visual event (a line reaching the frame of the screen) occurs
at the same time as the corresponding auditory event (a sine tone)
and vice versa.
The stimuli conform to, or leverage, the three principles of opti-

mal multimodal integration (Chen & Spence, 2017; Holmes,

2007; Stanford et al., 2005; Stevenson & James, 2009): First, they
originate from the same source, the laptop, complying with the
spatial rule (Meredith & Stein, 1986a, 1996). Second, they involve
perfect synchrony between the beginning and end of the auditory
and visual streams when congruence is high, accommodating the
temporal rule (Meredith et al., 1987; Miller & D’Esposito, 2005;
Senkowski et al., 2007). Third, by combining visual and auditory
components with greater or lesser degrees of congruence in com-
plexity, they vary in compatibility with the inverse-effectiveness
rule (Holmes, 2009; Kayser et al., 2005; Meredith & Stein, 1983,
1986b; Perrault et al., 2005).

Measures

We manipulated feature-based complexity as the number (event
density) and variety of elements (modality-specific variability
between events; Nadal et al., 2010) in each sensory modality over
time. This was achieved by varying event density and event variabil-
ity while orthogonally contrasting presentation modes (H–L vs. L–H
pitch and R–L vs. L–R line movement direction). However, this
feature-based operationalization of complexity is limited because
it is, by definition, specific to the features manipulated—which
may not be present in other stimuli. Furthermore, neither event den-
sity nor event variability reflects the complexity of the sequential
configuration of the stimulus.

Therefore, we measured information-based complexity by
developing IDyOM (Pearce, 2018) models of the auditory and
visual streams. Information-based complexity measures are not

Figure 2
Auditory Sequence Structure

Note. Each horizontal row is dedicated to a particular pitch sounding with a particular periodicity, as indi-
cated by the blue (dark gray) rectangles, each of which represents the timing of a sine tone with the corre-
sponding pitch class (A, C#, E) and octave designation (3–6). A stimulus of a given complexity level
includes the corresponding pitches (rows) indicated on the left of the figure. Two versions of the stimuli
are provided: the high–low condition in which higher pitches are more frequently repeated, and the low–
high condition in which lower pitches are more frequently repeated—given the symmetric (mirror-like)
structure of the stimuli. For example, in the low–high condition, the first row indicates an A3 that sounds
at 0 and 10 s, while the second row indicates a C#4 that sounds at 0, 5, and 10 s. A stimulus with complexity
Level 1 includes the pitches indicated on the first two rows of the figure presented simultaneously. See the
online article for the color version of this figure.
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only sensitive to the number and variety of elements but also the
sequential structure of the stimuli. Therefore, they are more gener-
alizable to other kinds of discrete sequential stimuli. In this context,
the auditory stimuli can be represented as sequences of sound
events differing in pitch, while the visual stimuli can be represented
as sequences of visual events (line arrivals at one side of the display
or the other) differing in movement velocity. Sequences of auditory
and visual events with the same complexity level have identical
timing.
Among the IDyOM information-based measures available, IC

was preferred over entropy on theoretical grounds—it reflects the
unpredictability of actual events rather than the model’s prospective
predictive uncertainty given the context—and on practical
grounds—it has been used successfully as the main information-
theoretic complexity measure in previous research (Cheung et al.,
2019; Clemente et al., 2020; Gold et al., 2019; Sauvé & Pearce,
2019), which affords comparison across studies. The feature-based
and information-based measures used in this research accompany
the CAVA stimulus set.
To assess congruence, we subtracted from four the absolute

value of the difference between the auditory and visual complexity
levels and divided by four to normalize in the range from 0 (least
congruence) to 1 (perfect congruence). Therefore, although the
scale is continuous and comparable to the complexity measures,
its levels are categorical and were treated as such in the analyses
(Table 2).
The CAVA set in MOV and MP4 formats and the corresponding

feature-based and information-based measures are publicly available
as open resources for research at https://osf.io/e5uh9/. Detailed val-
idation analysis is provided as online supplemental materials. The
results show that our systematic manipulation captured participants’
abilities to perceive and appreciate different levels of auditory com-
plexity and show a nearly perfect correlation between information-
based and feature-based complexity measures. Importantly, all
three measures of complexity (feature-based, information-based,
and perceived) predicted liking for audiovisual stimuli, and neither
line movement direction (L–Ror R–L) nor pitch movement direction
(H–L or L–H) predicted liking.

Procedure

In Experiment 1, participants completed the online experiment
created and hosted using Gorilla Experiment Builder (https://
www.gorilla.sc; Anwyl-Irvine et al., 2020). After providing
informed consent, prospective participants performed a browser
soundcheck, a built-in volume calibration and a headphone

screening (Milne et al., 2021). Block (auditory, visual, and audio-
visual) order was counterbalanced across participants, and stimu-
lus order was individually randomized for each participant
(Figure 3). A 1-s fixation cross preceded each visual and audiovisual
stimulus. Immediately after stimulus presentation, participants rated
their liking for each stimulus on a 7-point Likert scale anchored by dis-
like a lot (1) and like a lot (7) and how complex they perceived the
stimulus to be on a 7-point Likert scale anchored by very simple (1)
and very complex (7). They were instructed to make judgments
quickly and intuitively and encouraged to use the full range of each
rating scale. Following the rating blocks, the participants completed
the Musical Sophistication Index general factor scale (Gold-MSI;
Müllensiefen et al., 2014), an abridged version incorporating aspects
from all five subscales. Finally, participants provided basic, customary
demographic data (age and gender). Participants were allowed to take
breaks between blocks but were required to complete the experiment
in a single session, which took about 40 min.

In Experiment 2, participants were tested individually on site.
The experiment was conducted on a 15-inch MacBook Pro using
PsychoPy2 Version 1.85.4 (Peirce et al., 2019). All participants
sat approximately 50 cm from the experimenter’s laptop, were
undisturbed during the experimental session, and listened to the
audio and audiovisual stimuli through ATH-R70x headphones
with the volume set at a comfortable level. The stimuli, question-
naires, measures, and experimental paradigm were identical to
Experiment 1 except for two differences: First, we only collected
liking ratings to prevent any influence of perceived complexity
on liking. Second, the bimodal block always preceded the uni-
modal blocks to prevent a direct influence of unimodal on bimodal
liking ratings. The order of auditory and visual blocks was counter-
balanced across participants (Figure 1). Therefore, Experiment 2
was conducted in a more controlled setting, restricted to liking

Table 2
Audiovisual Congruence Levels

Levels − Auditory complexity +

− 0 .25 .50 .75 1
Visual complexity .25 .50 .75 1 .75

.50 .75 1 .75 .50

.75 1 .75 .50 .25
+ 1 .75 .50 .25 0

Note. Auditory complexity increases from left (very simple) to right (very
complex). Visual complexity increases from down (very simple) to top
(very complex). Numbers denote audiovisual complexity congruence from
0 to 1.

Figure 3
Design of E1 and E2

Note. E1= Experiment 1; E2= Experiment 2; AV= audiovisual; A=
auditory; V= visual. See the online article for the color version of this figure.
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ratings to avoid any potential confounding effects of taking simul-
taneous complexity ratings and prevented the experience of the
audiovisual stimuli from being biased by prior experience of the
unimodal stimuli.

Data Analysis

Relationship Between Liking for Audiovisual Stimuli and
for Their Unimodal Auditory and Visual Components

We analyze the data in Experiments 1 and 2 separately using lin-
ear mixed-effects modeling (Hox et al., 2010; Snijders & Bosker,
2012), following Barr et al.’s (2013) recommendation to model
the maximal random-effects structure justified by the experimental
design. We compare four models: Model 1 reflects bimodal audio-
visual preferences as the sum of unimodal auditory and visual
preferences. Model 2 retains the summative analysis but allows
for weighted contributions of auditory and visual preferences.
Model 3 adds congruence to the weighted sum without interactions.
Model 4 introduces interactions between congruence and liking for
each component. Therefore, Models 1–2 test for simple or weighted
additive linear effects, whereas Models 3–4 test for the contribution
of an emerging property, congruence, in addition or interaction with
such additive effects.
All models include intercepts and slopes per participant and

intercepts per stimulus as random effects to account for the vari-
ability within and between participants and stimuli. To examine
the relevance of such variability, we test whether removing fixed
and random effects from each model in a stepwise model reduction
improves the model fit through likelihood-ratio tests. Otherwise,
we prefer the saturated model. For statistically significant differ-
ences (p, .05), lower Akaike information criterion (AIC) and
Bayesian information criterion (BIC) indicate a better fit to the
data of one model over another. In cases of conflicting criteria,
Vrieze (2012) and Yang (2005) recommend prioritizing AIC
over BIC. Finally, we compare the best-fitting Models 1–4 following
the same procedure.
All analyses are performed within the R environment for statis-

tical computing, R Version 4.2.3 (R Core Team, 2023). For the
mixed-effects models, we use the lmer function in the “lme4”
package (Bates et al., 2015) and the “lmerTest” package
(Kuznetsova et al., 2017) to estimate the p values for the t tests
based on the Satterthwaite approximation for degrees of freedom,
which produces acceptable Type-1 error rates (Luke, 2017). We
report the model r2 for fixed effects only (marginal) and fixed
plus random effects (conditional) regarding each response variable
in the preferred model in each Experiment and interpret them
according to Chin (1998). Effect sizes are calculated using the
effectsize function in the “effectsize” package (Ben-
Shachar et al., 2020) and are interpreted following Gignac and
Szodorai’s (2016) recommendations.

Relationship Between Complexity and Liking for
Audiovisual Stimuli

We analyze data in Experiment 1 using structural equation mod-
eling (SEM) to test for a mediating effect of perceived complexity on
the relationship between the stimulus properties and liking in the
context of audiovisual stimuli varying in complexity (IC).
Following the rationale above, the internal models making up the

SEM involve random effects per participant and stimulus, and the
variables are not assumed to be normally distributed. Therefore,
we apply piecewise SEM (or confirmatory path analysis; Shipley,
2009), which expands upon traditional SEM by introducing a flexi-
ble mathematical framework that can incorporate a variety of model
structures, distributions, and assumptions, including interactions,
non-Gaussian responses, random effects, hierarchical models, and
alternate correlation structures.

We compare models with linear and quadratic terms to test
for the inverted-U-shaped relationship between complexity and
liking (Berlyne, 1971; Chmiel & Schubert, 2017; Nadal et al.,
2010). Then, a stepwise model reduction is conducted for each con-
figuration, starting with the following fixed-effects structure in
R syntax—while the random effects have the form (1|stimulus) +
([fixed]|participant)—:

perceivedComplexity"auditoryIC + visualIC +
auditoryIC:congruence+visualIC:congruence

liking" perceivedComplexity+auditoryIC+
visualIC+congruence+auditoryIC:congruence+
visualIC:congruence

Each SEM is adjusted according to three parameters: unsaturated
model (nonsignificant paths to test the SEM fit: df. 0), global good-
ness of fit (sufficiently lowC: p. .05), and absence of missing paths
(tests of directed separation: p. .05). We implement the SEM anal-
ysis using the psem and plot functions in the “piecewiseSEM”

package (Lefcheck, 2016), Version 2.3.0. The psem output includes
unstandardized and standardized estimates for each predictor (allow-
ing comparisons within and between models), statistical signifi-
cance, and coefficients of determination reported and interpreted
as in the previous section.

Results

Relationship Between Liking for Audiovisual Stimuli and
for Their Unimodal Auditory and Visual Components

Removing effects (whether predictors, interactions or random
effects) significantly worsens the model fit (all ps, .01).
Consistently across experiments, the model of liking as a function
of aggregated liking for the unimodal stimuli is outperformed
by the model allowing for different weightings. The model fit
is further improved when introducing congruence and is finally
surpassed by the model considering interactions between con-
gruence and liking for each unimodal component (Table 3 and
Figure 4).

Across experiments, the best-fitting model reveals that liking for
audiovisual stimuli is positively associated with liking for the corre-
sponding unimodal stimuli. Audiovisual congruence shapes how
much audiovisual liking is explained by liking for the unimodal
components, as it boosts the effect of liking for auditory stimuli in
Experiment 1 and that of liking for visual stimuli in Experiment 2
(Table 4).

Relationship Between Complexity and Liking for
Audiovisual Stimuli

SEM analyses are conducted to examine whether perceptual rat-
ings of complexity mediate the relationship between stimulus
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complexity measures and liking. The models with linear predictors
fail to converge. The model with the following structure in R syntax
yields the best fit to the data (AIC= 53,284.34, χ2= 2.20, p= .53,
df= 3, C= 10.95, p= .09, df= 6):

perceivedComplexity" visualIC2 + auditoryIC2:
congruence + visualIC2:congruence

liking" perceivedComplexity + auditoryIC2 +
congruence + visualIC2:congruence

Perceived complexity follows a negative quadratic relationship
with visual IC. Liking is positively associated with perceived com-
plexity, follows a negative quadratic relationship with auditory IC,
increases with congruence, and follows a negative quadratic rela-
tionship with visual IC moderated by congruence. In other
words, auditory IC and congruence directly affect liking, whereas
the effect of visual complexity on liking is partially mediated by
perceived complexity and moderated by congruence (Table 5 and
Figure 5).

Discussion

We created, validated, and made publicly available a new
stimulus set and generalizable measures of auditory and visual
dynamic complexity. These tools allowed us to investigate two
important aspects of audiovisual aesthetics. First, we tested the
Gestalt principle that the whole is greater than the sum of its
parts in the context of liking for audiovisual stimuli varying in
auditory and visual complexity. Second, we examined the rela-
tionship between stimulus properties, their perceptual representa-
tions, and liking for audiovisual stimuli varying in auditory and
visual complexity.
The results of the validation analysis (see online supplemental

materials) suggest that the CAVA set has good construct validity
in systematically manipulating perceived auditory, visual, and
audiovisual complexity, and support the use of information-based
measures over feature-based measures. Extending IDyOM model
to dynamic visual information provides a meaningful and generaliz-
able quantification of information-based complexity to study the
structural complexity of audiovisual stimuli.
The results of the model comparisons addressing our first research

question suggest that liking for audiovisual stimuli can be explained
as a weighted additive function of liking for both unimodal

components, distinctly moderated by audiovisual congruence: It
enhanced the effect of liking for the auditory component when per-
ceived complexity was overtly rated (Experiment 1), whereas it
enhanced the effect of liking for the visual component when com-
plexity was not explicitly rated (Experiment 2).

Several implications are worth considering here: First, the moder-
ating role of congruence supports the Gestalt principle that the whole
is greater than the (plain) sum of its parts (Köhler, 1971/1930;
Wertheimer, 1938/1924) in that the contributions of each component
are not identical and that an emergent property (congruence between
auditory and visual complexity) exerts a moderating influence on
such contributions sensitive to the context of evaluation. This entails
shifts in the relative importance of each unimodal component, which
aligns with capture effects (Spence & Squire, 2003; Stevenson &
Wallace, 2013). Second, people do not usually experience auditory
and visual components separately before experiencing the audio-
visual whole, and smaller effects of liking for the unimodal compo-
nents in Experiment 1 than in Experiment 2 suggest some mitigation
by concurrent complexity ratings. In this sense, Experiment 2 more
closely resembles liking for audiovisual stimuli in the real world. In
this case, the results indicate a closer link between congruence and
visual complexity or a greater malleability of the visual than the
auditory component. Third, the differences between the impact of
auditory and visual complexity on perceived complexity and liking
and their relations with congruence align with distinct processing of
auditory and visual streams (Griffin et al., 2002; Macaluso et al.,
2004; Peretz & Coltheart, 2003; Peretz & Zatorre, 2005). Fourth,
the susceptibility to context (i.e., presentation order and concurrence
of evaluative judgements) concurs with current knowledge on sen-
sory valuation, fruit from the interplay of subject, object, and context
(Skov, 2019).

The results of the SEM addressing our second research question
also suggest distinct effects of auditory and visual complexity and
a moderating role of audiovisual congruence on visual complexity:
Liking for audiovisual stimuli increased with perceived complexity—
which in turn increased for intermediate visual complexity—
intermediate auditory complexity, and congruence between auditory
and visual complexity, which was enhanced for intermediate visual
complexity. Thus, the results support an inverted-U-shaped relation-
ship between auditory complexity and liking for audiovisual stimuli
(Berlyne, 1970, 1971), in line with predictive processing theories of
appreciation (e.g., Van de Cruys et al., 2022).

Table 3
Models of Liking for Audiovisual Stimuli as a Function of Liking for Auditory and Visual Stimuli and Audiovisual Congruence

E M Model configuration of fixed effects in R syntax AIC BIC χ2 df p

1 1 I(a.liking + v.liking) 26,538 26,587
2 a.liking + v.liking 25,985 26,063 560.52 4 ,.01
3 a.liking + v.liking + c 25,866 25,979 129.59 5 ,.01
4 a.liking + v.liking + c + a.liking:c + v.liking:c 25,852 25,979 17.49 2 ,.01

2 1 I(a.liking + v.liking) 18,934 18,980
2 a.liking + v.liking 18,684 18,756 257.98 4 ,.01
3 a.liking + v.liking + c 18,568 18,673 126.09 5 ,.01
4 a.liking + v.liking + c + a.liking:c + v.liking:c 18,559 18,677 12.74 2 ,.01

Note. ANOVA mixed-model likelihood ratio tests of different configurations of models of liking for the audiovisual stimuli as a function of liking for their
auditory (a.liking) and visual (v.liking) streams and congruence in each experiment. The configurations represent the fixed effects of the model
equation in R syntax. AIC and BIC for each model are reported together with the statistics of the multiple comparisons in each Experiment: χ2, df, and
p value. Preferred models are highlighted in bold. E= experiment; M=model; AIC=Akaike information criteria; BIC=Bayesian information criteria;
c= congruence; ANOVA= analysis of variance.
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Together with the previous analysis, the results also suggest that
visual complexity might be more directly relevant to perceptual eval-
uation of complexity, while auditory complexity might be more
directly relevant to liking. The explanation for these observed
modality differences is unclear. We might speculate that unpleasant
auditory stimuli would be more difficult to ignore than unpleasant
visual stimuli, leading to a greater effect of auditory complexity
on liking. Furthermore, participants may be more familiar with pro-
cessing dynamic auditory stimuli than dynamically time-varying
visual stimuli in everyday life, so variations of complexity in
dynamic visual components could have been more salient than var-
iations of complexity in the auditory components and had a greater
effect on complexity ratings. However, before such speculations can
be tested, research is required to corroborate or contest these findings
with other dynamic audiovisual stimuli.
Audiovisual congruence (Cohen, 2013; Lipscomb, 1999, 2005) is

for the current stimuli equivalent to the simultaneous occurrence of
lines and sounds, in keeping with the temporal (Meredith et al.,

1987; Miller & D’Esposito, 2005; Senkowski et al., 2007) and
inverse-effectiveness rules (Holmes, 2009; Kayser et al., 2005;
Meredith & Stein, 1983, 1986b; Perrault et al., 2005; Stanford
et al., 2005) of audiovisual integration (Spence & Squire, 2003;
Stevenson & Wallace, 2013). Correspondence between temporal
structures allows inferring the environmental source causing the
sensory data (Parise et al., 2012; Senkowski et al., 2007) so that
perfectly or highly aligned visual and auditory streams contribute
to a unitary, coherent, and fully integrated percept, facilitating pro-
cessing fluency (Chenier & Winkielman, 2018; Reber, 2011;
Reber et al., 2004; Schwarz et al., 2021). The results suggest that
congruence amplifies the impact of liking for the unimodal compo-
nents (Experiment 1) and visual complexity (Experiment 2) on lik-
ing for audiovisual stimuli. This finding advances our understanding
of how perceptual and evaluative judgments are distinct albeit
related cognitive processes (Jacobsen & Höfel, 2003).

The role of perceptual representations of stimulus properties on the
relationship between those properties and appreciation has only

Figure 4
Liking for Audiovisual Stimuli as a Function of Liking for Their Auditory (Left) and Visual
(Right) Components in E1 (Top) and E2 (Bottom) for Each Congruence Level

Note. Although the direction of the effects of congruence are consistent across experiments and unimodal
stimuli, they only reach significance for auditory stimuli in Experiment 1 and for visual stimuli in
Experiment 2. Dashed black lines represent neutral ratings in the Likert scale. Shaded areas represent
95% CI. E1= Experiment 1; E2= Experiment 2; CI= confidence interval. See the online article for the
color version of this figure.
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started to be systematically examined (e.g., Clemente et al., 2023;
Clemente, Board, et al., 2024; Clemente, Kaplan, & Pearce, 2024).
The results of the SEM support amediating role of perceived complex-
ity on the effects of visual complexity on liking. This finding concurs
with those regarding other domains and stimulus properties (e.g.,
visual contour in Clemente et al., 2023) and supports the role of per-
sonal and contextual factors in evaluative judgments (Skov, 2019).
Perceived complexity was the main predictor of liking for audiovisual
stimuli, showing preeminence of subjective over objective complexity
in appreciation (Van Geert & Wagemans, 2020). However, it is plau-
sible that the effects were somehow inflated as judgments of complex-
ity and liking were given concurrently.
Across models, analyses, and experiments, the largest proportion of

the variance was explained by the random effects and removing them
worsened the fit to the data. This means that accounting for variability
between and within participants and stimuli was essential for examin-
ing liking for audiovisual objects and the role of stimulus and perceived
complexity in liking. This fact underscores the paramount relevance of
individual differences in perceptual and evaluative judgments and the
need to place them at the center of empirical investigation (Clemente,
2022; Corradi et al., 2020). Since the vast majority of studies on per-
ception and appreciation typically disregard such variability as noise,
reinterpretation of existing research might be advisable.

Limitations and Future Work

Besides those already acknowledged, we highlight some methodo-
logical limitations here. First, our CAVA stimulus set manipulates

dynamic auditory and visual complexity using simple visual shapes
and sine tones. Importantly, however, the CAVA stimulus set is
based on genuine abstract audiovisual artworks and is thus relevant
and ecologically valid as a model for nonrepresentational audiovisual
art forms, including nonnarrative dance (Howlin et al., 2020). While
we view this as a useful starting point, further research is needed to
understand the role of dynamic visual and auditory complexity in the
appreciation of naturalistic stimuli. A recent and relevant example in
this vein is Frame et al.’s (2023) study investigating cross-modal influ-
ences on appreciation when presenting naturalistic auditory and visual
stimuli simultaneously. This study differed from the present research in
that the visual stimuli were static images (of artworks) and, therefore,
did not have a dynamic temporal structure that could be aligned (ormis-
aligned) with the auditory stimulus; the results showed independent
additive contributions of auditory and visual pleasure ratings on plea-
sure for the audiovisual whole. Other studies have shown that music
biases emotional responses to dance movements (Christensen et al.,
2014; Reason et al., 2016), but hearing the sounds that dancers produce
(e.g., footsteps and breathing) can reduce liking for the same dance
movement despite meeting all criteria for optimal audiovisual integra-
tion (Jola et al., 2014; Orgs & Howlin, 2022). Conceivably, perceived
meaningfulness (Martindale et al., 1990) of audiovisual congruence
can outweigh the importance of structural complexity when people
appreciate representational audiovisual artworks like film, theatre, or
dance. Our new dynamic measure of visual complexity could be devel-
oped to distinguish the relative contribution of syntactic (dynamic
audiovisual complexity) and semantic (narrative or storyline) features
to further the understanding of the appreciation of these art forms.

Table 4
Best-Fitting Model of Liking for Audiovisual Stimuli as a Function of Liking for Auditory and Visual
Stimuli and Audiovisual Congruence

E r2m r2c Fixed effects in R syntax β df t p d [95% CI]

1 .12 .58 a.liking .13 186.88 3.92 ,.01 0.20 [0.15, 0.25]
v.liking .18 141.03 5.17 ,.01 0.20 [0.14, 0.26]
congruence −.12 381.32 −0.66 .51 0.08 [0.03, 0.12]
a.liking:congruence .12 2,588.31 4.08 ,.01 0.04 [0.02, 0.05]
v.liking:congruence .04 1,323.46 1.19 .23 0.01 [−0.01, 0.03]

2 .18 .37 a.liking .28 133.35 7.11 ,.01 0.33 [0.26, 0.40]
v.liking .08 155.86 2.20 ,.01 0.17 [0.12, 0.23]
congruence −.10 502.94 −0.36 .72 0.12 [0.06, 0.17]
a.liking:congruence .04 2,639.75 1.02 .31 0.01 [−0.01, 0.04]
v.liking:congruence .14 4,281.42 3.50 ,.01 0.04 [0.02, 0.07]

Note. Estimated effects of liking for auditory (a.liking) and visual (v.liking) stimuli and audiovisual congruence.
Significant effects are highlighted in bold. E= experiment; r2m=marginal coefficient of determination; r2c =
conditional coefficient of determination; β= unstandardized estimate; d= effect size; CI= confidence interval.

Table 5
Models in the Structural Equation Model of Liking for Audiovisual Stimuli

Response r2m r2c Predictor b SE df Critical value p β

Perceived complexity .08 .65 Visual IC2 −−−−−.71 0.19 103.25 −−−−−3.64 ,.01 −−−−−.32
Auditory IC2: congruence −.40 0.21 98.31 −1.90 .06 −.14
Auditory IC2: congruence .28 0.30 96.81 0.94 .35 .09

Liking .10 .54 Perceived complexity .24 0.01 4,833.18 22.67 ,.01 .26
Auditory IC2 −−−−−.13 0.05 133.35 −−−−−2.72 .01 −−−−−.07
Congruence .53 0.14 122.51 3.78 ,.01 .10
Visual IC2: congruence −−−−−.23 0.08 141.97 −−−−−2.98 ,.01 −−−−−.08

Note. Significant effects are highlighted in bold. r2m=marginal coefficient of determination; r2c = conditional coefficient of determination; b= unstandardized
estimate; β= standardized estimate; IC= information content.
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Second, although these experiments systematically manipulated
dynamic feature-based complexity across modalities and linked it
with information-based complexity in the CAVA set, the relation-
ship between feature-based complexity and IC and their contribu-
tion to liking may differ for other stimuli. Therefore, generalizing
the present experimental approach to other bimodal stimuli is crit-
ical. In addition, auditory and visual complexity could be charac-
terized in other ways. For instance, intermittent dots instead of
moving lines would be more directly comparable to the pitches
in the auditory modality. That said, we did not find an influence
of pitch or line movement direction on liking for audiovisual dis-
plays, suggesting that specific low-level visual or auditory features
are less important than the higher-level attributes of complexity or
congruence.
Lastly, the samples were characterized in terms of musical but not

visual sophistication, and we did not manipulate domain-specific
expertise systematically. Nonetheless, domain-specific expertise is
known to affect the role of complexity in liking (Hekkert & van
Wieringen, 1996; Lahdelma & Eerola, 2020; Orr & Ohlsson,
2005; Popescu et al., 2019; Skov & Kirk, 2021). Therefore, future
research should investigate the impact of visual and musical sophis-
tication and other relevant traits on the relationship between com-
plexity and liking for bimodal stimuli.

Conclusion

The present research investigates the role of complexity and the
relationships between stimulus complexity and perceived complex-
ity in liking by systematically manipulating comparable auditory
and visual dynamic complexity. In so doing, we contribute a
novel stimulus set and generalizable computational measures of
auditory and visual dynamic complexity, all of which are available
as open resources for research at https://osf.io/e5uh9/. Liking for
audiovisual stimuli can be explained as a weighted combination
of liking for its auditory and visual components moderated by
audiovisual congruence depending on the relative salience of per-
ceived complexity. Furthermore, liking is maximal for intermedi-
ate levels of auditory and visual complexity, the latter mediated
by perceived complexity and enhanced by congruence. Crucially,
the most variance is explained by variability due to participants
and stimuli, highlighting the importance of considering individual
differences.
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