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Abstract
We present a novel set of 200Western tonal musical stimuli (MUST) to be used in research on perception and appreciation of music. It
consists of four subsets of 50 stimuli varying in balance, contour, symmetry, or complexity. All are 4 s long and designed to bemusically
appealing and experimentally controlled. We assessed them behaviorally and computationally. The behavioral assessment (Study 1)
aimed to determine whether musically untrained participants could identify variations in each attribute. Forty-three participants rated the
stimuli in each subset on the corresponding attribute.We found that inter-rater reliability was high and that the ratingsmirrored the design
features well. Participants’ ratings also served to create an abridged set of 24 stimuli per subset. The computational assessment (Study 2)
required the development of a specific battery of computational measures describing the structural properties of each stimulus. We
distilled nonredundant compositemeasures for each attribute and examinedwhether they predicted participants’ ratings. Our results show
that the composite measures indeed predicted participants’ ratings. Moreover, the composite complexity measure predicted complexity
ratings as well as existing models of musical complexity. We conclude that the four subsets are suitable for use in studies that require
presenting participants with short musical motifs varying in balance, contour, symmetry, or complexity, and that the stimuli and the
computational measures are valuable resources for research in music psychology, empirical aesthetics, music information retrieval, and
musicology. The MUST set and MATLAB toolbox codifying the computational measures are freely available at osf.io/bfxz7.
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Introduction

Valuing objects is crucial for making decisions, comparing
and choosing among alternatives, and prioritizing actions
(Berridge & Kringelbach, 2013; Kringelbach, & Berridge,
2009; Levy & Glimcher, 2012). Music is ideally suited for
studying evaluative judgments, for three reasons: First, it is a
good example of a cultural product whose appreciation relies
on basic and general valuation systems (Mallik, Chandra, &
Levitin, 2017; Salimpoor & Zatorre, 2013; Shepard, 1982;
Trehub & Hannon, 2006). Second, music combines many
features of sound to produce virtually unlimited works that
vary across composers, styles, times, and cultures (Cross,
2006; Rohrmeier, Zuidema, Wiggins, & Scharff, 2015;
Trainor & Unrau, 2011). Finally, people place a high personal
value on music (Nieminen, Istók, Brattico, Tervaniemi, &
Huotilainen, 2011): they use it to regulate their emotions
(Thoma, Ryf, Mohiyeddini, Ehlert, & Nater, 2012) and to
enhance the cohesion and coordination in groups
(Dissanayake, 2008; Savage, Brown, Sakai, & Currie,
2015), and they are willing to invest time, effort, and money
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in recorded and live performances (Huron, 2003;
Müllensiefen, Gingras, Musil, & Stewart, 2014).

The valuation of music involves the interaction of
modality-specific and modality-general attributes (Marin,
Lampatz, Wandl, & Leder, 2016; Marin & Leder, 2013;
Purwins et al., 2008). Its aesthetic appreciation depends on
many factors, including familiarity, perceived complexity,
and predictability (Brattico & Pearce, 2013; Edmonston,
1969; Heyduk, 1975; Koelsch, Vuust, & Friston, 2018;
Payne, 1980; Pereira et al., 2011; Van den Bosch,
Salimpoor, & Zatorre, 2013), which also mediate the valua-
tion of visual stimuli, from architecture to design and art (De
Lange, Heilbron, & Kok, 2018; Forsythe, Mulhern, & Sawey,
2008; Forsythe, Nadal, Sheehy, Cela-Conde, & Sawey, 2011;
Madison & Schiölde, 2017; Tinio & Leder, 2009). Aside from
the roles of these factors, however, little is known about the
extent to which the valuation of musical and visual objects
relies on common attributes. With few exceptions (e.g., com-
plexity in Marin & Leder, 2013), a direct examination of their
influence on the valuation of music and visual stimuli has
been prevented by the absence of materials comparable across
modalities.

In this paper, our goal was to facilitate research on
modality-general attributes and domain-general processes
in the valuation of music by (1) creating a set of mu-
sical stimuli (MUST) suitable for studying modality-
general attributes in the valuation of music; (2)
assessing the stimulus set behaviorally and computation-
ally; (3) analyzing how both kinds of assessments relate
to each other, to stimulus design features, and to
existing measures of complexity; and (4) making the
MUST set and computational measures available to
other researchers through the Open Science Framework
(OSF) at osf.io/bfxz7. We designed the set and compu-
tational measures to be useful in many fields, including
empirical aesthetics, musicology, music psychology, and
music information retrieval.

We focused on four attributes: balance, contour, sym-
metry, and complexity. Their influence on the valuation
of visual stimuli is well tested (Gartus & Leder, 2017;
Gómez-Puerto, Munar, & Nadal, 2015; Jakesch & Leder,
2015; Locher, Gray, & Nodine, 1996; Palumbo &
Bertamini, 2016; Tinio & Leder, 2009; Van Geert &
Wagemans, 2019; Vartanian et al., 2019; Wilson &
Chatterjee, 2005). For instance, research in empirical aes-
thetics indicates that people generally prefer objects and
designs that are symmetric (Jacobsen & Höfel, 2002;
Gartus & Leder, 2013), complex (Nadal, Munar, Marty,
& Cela-Conde, 2010; Machado et al., 2015), balanced
(Wilson & Chatterjee, 2005), and curved (Bertamini,
Palumbo, Gheorghes, & Galatsidas, 2016; Corradi,
Chuquichambi, Barrada, Clemente, & Nadal, 2019). Most
of these preferences seem to transcend boundaries of

culture (Che, Sun, Gallardo, & Nadal, 2018) and even spe-
cies (Munar, Gómez-Puerto, Call, & Nadal, 2015).

The effects of these attributes on evaluative judgments are
not confined to the visual domain. Evaluative judgments of
music are also influenced by contour (e.g., Gerardi & Gerken,
1995; Schmuckler, 2015; Thorpe, 1986; Trehub, Bull, &
Thorpe, 1984), symmetry (e.g., Balch, 1981; Bianchi, Burro,
Pezzola, & Savardi, 2017; Krumhansl, Sandell, & Sergeant,
1987;Mongoven&Carbon, 2017), complexity (e.g., Marin &
Leder, 2013; Pressing, 1999; Steck & Machotka, 1975;
Streich, 2007), balance, and proportion (Juslin, 2013;
Winner, Rosenblatt, Windmueller, Davidson, & Gardner,
1986), as accounted for by a large number of musicological
and music-theoretical studies (e.g., Cook, 1987; Grey,
1988) and treatises on form (e.g., Caplin, Hepokoski, &
Webster, 2010; Leichtentritt, 1911) and composition (e.g.,
Schoenberg, A., 1967). Could the fact that balance, con-
tour, symmetry, and complexity influence evaluative judg-
ments in the visual and musical domains owe to cross-
modal processes? Testing this intriguing possibility re-
quires, however, materials that are directly comparable,
analogous in specific dimensions in the auditory and vi-
sual modalities.

We intended our stimuli to be bothmusically appealing and
experimentally controlled. Excerpts from the existing reper-
toire (e.g., Marin & Leder, 2013; Egermann, Pearce, Wiggins,
& McAdams; 2013; Gingras et al., 2016) have the advantage
of being naturalistic, but also the drawback that somemight be
more familiar than others, have different duration, and include
other sources of uncontrolled variability. Conversely, con-
trolled sequences of synthesized sounds can minimize extra-
neous variables (e.g., Shmulevich & Povel, 2000; Steck &
Machotka, 1975), but they also reduce musical appeal and
ecological validity. We therefore chose to compose motifs that
combine the musical appeal of genuine musical excerpts with
the experimental control of synthesized sequences.

Once the stimuli were composed, we subjected them to two
assessments. First, we conducted a behavioral experiment
(Study 1) to determine whether the design parameters we ma-
nipulated to produce variations in balance, contour, symmetry,
and complexity translated into perceived variations in each of
these attributes by musically untrained participants. Based on
the results of this experiment, we created an abridged set of
stimuli to be used more efficiently in experimental settings.
Second, we developed several computational measures for
each parameter manipulated to compose the stimuli (Study
2). These computational measures served (i) to describe each
motif in terms of structural properties, (ii) to derive nonredun-
dant composite measures for each attribute (balance, contour,
symmetry, and complexity), (iii) to ascertain which of the
composite measures, or combination thereof, explain partici-
pants’ assessments of the stimuli attributes in the behavioral
experiment, and (iv) to compare the explanatory adequacy of
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our composite measures of complexity with other objective
methods for computing musical complexity.

Design of the musical stimuli

The MUST set consists of 200 original musical motifs
composed by the first author—an accomplished profes-
sional musician with broad compositional and performing
experience—using Finale 2012 (MakeMusic Coda Music
Technologies), and comprising four subsets of 50 stimuli
that vary in terms of a specific attribute: Balance,
Contour, Symmetry, and Complexity. Four additional mo-
tifs were composed for each subset to be used as exam-
ples while giving experimental instructions.

The motifs in the MUST Balance subset capture and trans-
late into music the variation in balance among the visual stim-
uli in Wilson and Chatterjee’s (2005) set. This set consists of
diverse arrangements of seven hexagons or circles of distinct
sizes. These stimuli were created to vary in balance, measured
as the average of eight symmetry components over the axes of
the stimuli (Fig. 1, first column). The motifs in the Contour
subset reflect the kind of variation between the curved and
sharp contours of Bertamini et al.’s (2016) visual stimuli.
These stimuli were designed as closed black figures based
on circles, ovals, or lobed ovals, and matched in the number
of vertices. Half of them had curved contours, and the other
half had sharp-angled contours (Fig. 1, second column). The
musical motifs in the Symmetry and Complexity MUST sub-
sets were composed to capture the variation in symmetry and
complexity in Jacobsen and Höfel’s (2002) set of visual de-
signs. This set consists of a series of images of solid black
circles with a centered white square containing triangles that

are combined to form designs of varying complexity and
symmetry. Half of the configurations are symmetric, and
the other half, asymmetric, and the stimuli in both halves
match for different degrees of complexity, corresponding
to the number of constituent elements (Fig. 1, third and
fourth columns). Unlike Jacobsen and Höfel (2002), who
developed visual designs varying in both symmetry and
complexity, we present a subset varying in complexity
and a separate one varying in symmetry.

The composer used her musical and artistic expertise to
manipulate specific musical parameters to generate variation
within each target attribute: balance, contour, symmetry, and
complexity (Table 1). The compositional process also aimed
to make the set coherent, and the stimuli comparable across
sensory modalities and equivalent in musical attributes.

Mirroring the sets of visual images described above, the
motifs in the Complexity subset vary along a continuum
(from simpler to more complex). In contrast, those in the
other three sets belong to one of two poles: balanced vs.
unbalanced (Balance), smooth vs. jagged (Contour), and
symmetric vs. asymmetric (Symmetry) (see Fig. 2 for ex-
amples of the scores, and Table 1 for the parameters used to
design the stimuli). For the Balance, Contour, and
Symmetry subsets, the stimuli were designed to achieve
high between-pole and low within-pole variation in the
target parameters, while minimizing variation in the other
parameters. Because timbre and intensity are constant
across all stimuli, variations in the four attributes were
created using pitch, rhythm, and harmonic implication.

Balance subset Stimuli vary in their equilibrium, as applied
both to the distribution of notes throughout the motif and to
the distance of the tensional peak from the central time point.

Fig. 1 Examples of visual stimuli designed by Wilson & Chatterjee (2005) for balance; Bertamini, Palumbo, Gheorghes, & Galatsidas (2016) for
contour; and Jacobsen & Höfel (2002) for symmetry and complexity
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Melodic and harmonic tension contribute to the climax and
consequently to balance, but for such brief and constrained
stimuli, it stands to reason that they play a weaker role than
the distribution of notes in time. A motif is balanced if its
notes are uniformly distributed with relation to a central cli-
max (or center of mass, in analogy to physical gravity). A

motif is unbalanced if most notes accumulate at either the
beginning or ending.

Contour subset Stimuli differ in terms of interval size and
rhythmic change, leading to differences in the profile of their
melodic line. Although contour may also refer to the direction

Fig. 2 Musical stimuli sample scores in each subset, all to be played at q = 120 (i.e., quarter note at 120 bpm)

Table 1 Summary of parameters used to design the musical stimuli in each subset

Attribute Parameter Feature

Balance Balanced Unbalanced

Distribution of elements/events Regular Irregular

Climax position Centered Skewed

Tension Progressive Unprepared

Contour Smooth Jagged

Intervals Only small (≤ fourths) Large (> fourths) & small

Durations Progressive, small changes Sudden, large changes

Symmetry Symmetric Asymmetric

Vertical mirror structure Yes No

Complexity Simpler More complex

Number of elements/events Few Many

Variety of elements/events Low High

Predictability High Low

Behav Res



of melodic movement (i.e., rising, falling, or constant pitch
intervals regardless of their size), we define it as melodic
shape or configuration, thus determined by interval size and
duration (or onset) ratios. Therefore, for the smoothmotifs, we
used only small intervals (≤ fourths, predominantly seconds)
and rhythms in which successive note durations change very
little, while jagged motifs included large intervals (> fourths)
and sudden rhythmic shifts.

Symmetry subset Stimuli differ to the extent they are symmet-
rical around a central vertical axis. In symmetric motifs, the
second half is a literal retrograde repetition of the first half.
They thus have a mirror reflection structure—e.g., A(B)A,
ABC(C)BA. The only exception to strict symmetry is that
the duration of the first and last notes may not be equal be-
cause of notational constraints. In asymmetric motifs, there is
no such retrograde repetition.

Complexity subset Stimuli vary in the number, variety, and
predictability of their elements or events. More complex mo-
tifs have many notes varying widely in duration, pitch interval
size, and register. Conversely, simplermotifs are characterized
by a small number of highly predictable notes with repeated
uncomplicated patterns.

We strove to minimize variation in all attributes other than
the intended one, even though we expected some inter-
correlations between the parameters defining different attri-
butes. For instance, all other parameters being equal,
symmetric patterns will be judged as simpler than asymmetric
designs, both in the visual and the auditory modalities, as they
imply redundancy by definition. This is why all stimuli in the
Complexity subset are symmetric, all included in Contour and
Balance are asymmetric, and all stimuli in the Symmetry sub-
set have medium to low complexity (as complexity hampers
the perception of symmetry; Mongoven & Carbon, 2017). We
obtained estimates of the file sizes of the musical motifs using
lossless compression format FLAC (Free Lossless Audio
Codec) to uncompressed WAV (Waveform Audio File
Format) files, for it appears to be a good approximation of
complexity ratings of musical stimuli (Marin & Leder,
2013). This enabled us to ensure that the asymmetric and
symmetric poles of the Symmetry subset did not differ signif-
icantly in terms of complexity (t(48) = 1.595, p = .117) as
assessed by FLAC compression. Just like visual curves imply
more information than polygons, the pitch entropy is higher
by definition in the jagged than in the smooth stimuli.
However, the t-tests revealed no significant differences be-
tween the poles of the Contour subset (t(48) = 2.007,
p = .050). In contrast, the FLAC compression sizes of the
unbalanced motifs were, overall, significantly larger than
those of the balanced ones (t(48) = 6.555, p < .001), probably
because self-similarity may be higher in balanced designs.
Furthermore, symmetry in the visual and music domains can

be regarded as an extreme form of balance. Therefore, all
motifs except the unbalanced were composed with a high
degree of balance. Finally, all except those in the Contour
subset possessed medium contours (not too jagged, not
too smooth).

Short monophonic melodies are the musical analogues to
the abstract visual patterns in the visual sets. Althoughmusical
pieces are often polyphonic, we retained the underlying har-
mony in our motifs, together with the factors related to the
stimulus that may define the attributes in both short monopho-
nic and long polyphonic music. To avoid harmony being un-
duly affected by the manipulations, we carefully used simple
harmonic sequences and rhythmic figures, thereby maintain-
ing the musical structure and style similar for both poles in the
Balance, Contour, and Symmetry subsets. Finally, tessiture
and tempi were compensated within subsets and never ex-
treme. The fastest tempo is 180 bpm, and the pitch range spans
from C2 to C6 (provided A4 = 440 Hz), approximately the
human vocal range.

All stimuli were composed using the same musical id-
iom, including language and style (Western tonal-func-
tional), key (C Major), texture (monophonic), timbre (pi-
ano-like; Garritan Sound Library for Finale, MakeMusic),
duration (4 s), overall and instantaneous loudness (no
changes in musical dynamics or spatial cues), and other
acoustical properties (i.e., expressive performance and re-
cording inconsistencies and variability are nonexistent). A
length of 4 s seems optimal for experimental settings
where visual correspondence is of relevance, because it
does not imply an excessive working memory load and
approximates presentation times of images in studies of
visual aesthetics, allowing comparisons between auditory
and visual research findings. Moreover, nonmusicians’
short-term memory for music is thought to span about
3–5 s (Schaal, Banissy, & Lange, 2015; Snyder &
Snyder, 2000), and the perception of musical symmetry
is optimal within this duration (Mongoven & Carbon,
2017; Petrović, Ačić, & Milanković, 2017).

Study 1: Behavioral assessment of musical
stimuli

Method

Participants

Forty-three self-reported nonmusicians (none of whom had
ever received higher education in music or was a
professional musician; see full questionnaire in Appendix A,
Supplementary Materials) aged 18–55 years (M = 29.31,
SD = 10.56, 24 female, 18 male, one not reported) took part
in the study. All gave informed consent before participating
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and reported normal or corrected-to-normal vision and hear-
ing, and no cognitive impairments. Participants were unaware
of the purpose of the study, and all study procedures followed
local ethical guidelines and the Declaration of Helsinki.

Materials

The stimuli were the 200 motifs described above, and the four
example stimuli for each subset, presented in WAV format
using Open Sesame (Mathôt, Schreij, & Theeuwes, 2012).

Procedure

The study was conducted at the Laboratory of Psychology of
the University of the Balearic Islands. Each of the 43 partici-
pants rated each of the 50 musical motifs in each subset pre-
sented as a different experimental block consisting of instruc-
tions (available in Appendix A), four examples (two for each
pole) to illustrate the instructions, five practice trials, and the
experimental task itself. The five stimuli for the practice trials
were selected from the 50 in each subset, counterbalanced
across participants. Thus, although participants rated 45
stimuli in each subset, all 50 stimuli received ratings.
The order of the blocks was also counterbalanced. The
order of the 45 stimuli used in the experimental task
was randomized individually. All stimuli were presented
in sound-attenuated cabins through headphones.

At the beginning of each block, a text introduced and
defined the attribute according to its design parameters,
and four illustrative examples were played. During the first
examples, the participants adjusted headsets and volume to
personal comfort levels, which remained unmodified
throughout the experiment. They then rated the five prac-
tice stimuli under the experimenter’s supervision and as-
sistance. After the experimenter had made sure that partic-
ipants understood the task and all doubts had been re-
solved, the participants rated the 45 remaining stimuli
alone using Likert scales ranging from 1 to 5 and anchored
by very balanced (1) and very unbalanced (5) for Balance,
very smooth (1) and very jagged (5) for Contour, very
symmetric (1) and very asymmetric (5) for Symmetry, and
very simple (1) and very complex (5) for Complexity. The
rating scale appeared after each musical motif had ended,
and served as a cue for response. The rating was self-
paced, and the participants could play each stimulus as
many times as they wished before rating it. The procedure
was the same for all blocks. After finishing each block, the
participants could rest for a moment before going on to the
next. A brief questionnaire followed the last block, record-
ing information on demographics, musical education, and
general feedback (included in Appendix A). The whole
experimental session lasted about 40 minutes, after which
the participants were debriefed and thanked.

Data analysis

This behavioral assessment had two objectives. The first
was to determine whether untrained participants perceived
variations in the defining attribute for each subset, that is
to say, whether stimuli designed to be more complex, for
instance, would indeed be perceived and rated by nonmu-
sicians as more complex. To this end, we first assessed
inter-rater reliability for each subset using intraclass cor-
relation coefficients (ICC3,k; Shrout & Fleiss, 1979). We
then conducted Wilcoxon signed-rank tests (given that the
Shapiro–Wilk test of normality revealed that several of
the distributions were not normal) to determine whether
mean ratings for stimuli in each pole in the dichotomous
subsets (Balance, Contour, and Symmetry) differed signif-
icantly. For the continuous subset (Complexity), we cal-
culated the Spearman correlation between the FLAC file
size of each musical motif and its mean rating.

The second aim was to select part of the musical motifs
in each subset to assemble an abridged set that could be
applied in future studies in a shorter session. We wished
to include motifs that participants agreed belonged to the
different poles in each subset. Following Nadal et al.’s
(2010) method, we calculated the mean and standard de-
viation of each stimulus’ ratings. For each subset, we
selected the 12 stimuli with the highest mean rating and
the 12 stimuli with the lowest mean rating (those per-
ceived as most balanced, smooth, symmetric, and simple,
and those perceived as the most unbalanced, jagged,
asymmetric, and complex), provided the standard devia-
tion of participants’ ratings was below the 75th percentile,
and that the mean rating placed the motif in the pole it
was designed to be in. We thus assembled four subsets
containing 24 stimuli each, 12 in each pole, maximizing
the difference between and minimizing the difference
within levels. This ensured that stimuli represented ex-
treme poles of each dimension and that participants did
not disagree on their allocation. Finally, to verify whether
the motifs in each pole of each subset of the abridged set
actually corresponded to different levels, we compared
their mean ratings using Wilcoxon nonparametric tests.

Results

Inter-rater reliability

The average fixed raters’ ICC was high for all subsets: for
Balance, ICC3,k = .94, 95% CI [.92, .96]; for Contour,
ICC3,k = .97 [.96, .98]; for Symmetry, ICC3,k = .84 [.77, .90];
for Complexity, ICC3,k = .99 [.98, .99]. These values show
that participants understood the task and judged the stimuli
in very similar ways.
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Ratings of attributes

According to the Shapiro–Wilk tests, the mean ratings of
each motif were not normally distributed for the Balance
(W = 0.842, p < .001, skew = −0.092, kurtosis = −1.788),
Contour (W = 0.843, p < .001, skew = 0.052, kurtosis =
−1.790), and Complexity (W = 0.85147, p < .001, skew =
−0.713, kurtosis = −1.040) subsets, whereas the distribu-
tion of Symmetry ratings did not differ significantly from
normality (W = 0.982, p = 0.628).

Participants’ ratings corresponded well to the design fea-
tures of musical motifs in each subset (Fig. 3). Wilcoxon tests
showed significant differences between the mean ratings of
balanced (M = 2.2, SD = 0.3) and unbalanced (M = 3.82,
SD = 0.18) motifs in the Balance subset (W = 0, p < .001), be-
tween jagged (M = 3.99, SD = 0.32) and smooth (M = 2.06,
SD = 0.25) motifs in the Contour subset (W = 625, p < .001),
and between asymmetric (M = 3.09, SD = 0.54) and symmetric
(M = 2.47, SD = 0.41) motifs in the Symmetry subset (W =
513, p < .001). Spearman correlation analysis indicated a
strong relation between the FLAC file size and mean rating
for the motifs in the Complexity subset (rs = .78, p < .001). In
sum, reflecting the design features of the stimuli, participants
gave higher unbalance scores to the unbalanced stimuli than
to the balanced stimuli, higher jaggedness scores to jagged
than to smooth stimuli, higher asymmetry scores to
asymmetric than to symmetric stimuli, and higher complexity
scores to complex than to simple stimuli.

Creation of the abridged set

Following the procedure described above, we selected the 12
stimuli that received the most extreme ratings of balance and
unbalance, smoothness and jaggedness, symmetry and asym-
metry, and simplicity and complexity, provided there was no
strong disagreement among the raters (Balance SD75th = 1.40;
Contour SD75th = 1.26; Symmetry SD75th = 1.57; Complexity
SD75th = 1.01). We also selected two additional stimuli from
each pole of each subset (the next two most extreme items) to
be used as practice trials when employing the abridged set.
The whole abridged set therefore includes 96 musical motifs
representing the extreme poles of balance, contour, symmetry,
and complexity, plus 16 practice stimuli. The list is available
in Appendix C in the Supplementary Materials.

Figure 4 graphically represents the relation between the
mean and the standard deviation of the ratings for each stim-
ulus. The general trend, at least in the Symmetry and
Complexity subsets, is for participants to agree more in their
ratings of stimuli close to the extreme of the poles, and less in
their rating of stimuli far from the poles. Wilcoxon tests indi-
cated that for each of the abridged subsets, the selected stimuli
in each pole (filled dots in Fig. 4) received significantly dif-
ferent ratings (for each of the four abridged subsets separately,
W = 0, p < .001). Thus, in the abridged subsets, the rated un-
balance for unbalanced stimuli (M = 3.92, SD = 0.1) was
higher than for balanced stimuli (M = 2.01, SD = 0.17), the
rated jaggedness for jagged stimuli (M = 4.16, SD = 0.22)

Fig. 3 Correspondence between the behavioral assessment and the
design of the motifs. Boxplots are used for the discrete subsets of
Balance (a), Contour (b), Symmetry (c), and a scatterplot illustrates the
continuous subset Complexity (d). The boxes represent the median, first
and third quartiles; whiskers span Q1 − 1.5 × IQR (interquartile range) to

Q3 + 1.5 × IQR. For the Complexity subset (d), the regression line is
depicted with its 95% CI (gray ribbon). kB refers to kilobytes. The
figure includes rug plots of mean ratings (left), and FLAC file size for
the Complexity subset (bottom)
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was higher than for smooth stimuli (M = 1.93, SD = 0.15),
the rated asymmetry for asymmetric stimuli (M = 3.49,
SD = 0.27) was higher than for symmetric stimuli (M =
2.2, SD = 0.33), and the rated complexity was higher for
complex stimuli (M = 4.51, SD = 0.16) than for simple
stimuli (M = 1.49, SD = 0.36).

Discussion

The overarching goal of our research was to facilitate the
investigation of modality-general attributes and domain-
general processes in the valuation of music (see also
Margulis, 2016). To this end, we created four subsets of
50 brief musical motifs varying along a single dimension
(balance, contour, symmetry, or complexity) for use in
empirical aesthetics, musicology, music psychology, and
other fields. We conducted a behavioral assessment of the
stimuli with two aims: First, we wished to determine
whether musically untrained participants noticed the var-
iations in each subset, that is, whether they could distin-
guish between the balanced and unbalanced, smooth and
jagged, symmetric and asymmetric, and simpler and more
complex motifs. Second, we wished to assemble an
abridged version of our four subsets that could be applied
in future studies in a shorter session.

The results of the behavioral assessment show that partic-
ipants were clearly able to distinguish the stimuli with respect
to their defining attribute. This means, first, that variations in

each of the attributes were readily perceptible to participants,
and second, that participants’ ratings concurred with the de-
sign of the stimuli. The results also revealed a very high inter-
rater reliability, suggesting that participants understood the
task in a similar way and judged the musical motifs using
common criteria. This holds for all subsets, although the dif-
ferentiation between symmetric and asymmetric motifs of the
Symmetric subset seems to be less apparent than the distinc-
tion between the poles of other dichotomous subsets. A plau-
sible explanation is that musical symmetry may require higher
memory load and levels of attention than other attributes: one
would have to memorize and compare events of the motif
several seconds apart and in reversed order with high accuracy
to discern whether it is symmetric (Krumhansl et al., 1987;
Mongoven & Carbon, 2017). Nevertheless, even though
slightly lower, the inter-rater reliability was still high, and
while the standard deviations were slightly higher for the
Symmetry subset, these values were not excessive, and the
mean ratings for each pole were significantly different.
Participants’ ratings, in sum, reliably mirrored the design pa-
rameters of the musical motifs. We conclude, therefore, that
the four subsets are suitable for use in future studies that re-
quire presenting participants with short musical motifs vary-
ing in balance, contour, symmetry, or complexity.

The presentation of 50 stimuli in each subset might be too
long in some studies. We therefore used the ratings provided
by our participants to derive an abridged version of each sub-
set, selecting the 24 stimuli that represented the most extreme

Fig. 4 Distribution of means and standard deviations of ratings for each
musical motif in each subset: Balance (a), Contour (b), Symmetry (c), and
Complexity (d). Filled dots correspond to motifs selected for the abridged
set. The figure includes rug plots of the mean (bottom) and the standard

deviation (SD) of the ratings (left). Curved lines depict local polynomial
regression fitting (SD ratings ~ M ratings), for which the gray ribbon
represents the 95% CI
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poles of each attribute, and for which there was no substantial
disagreement among raters. As a general trend, the agreement
among participants was highest for stimuli close to the ex-
tremes. We also selected training stimuli for each attribute.
Thus, the complete abridged set contains 96 short musical
motifs to be used in future studies, in addition to 16 equivalent
training motifs (2 for each pole of each of the 4 attributes): the
abridged Balance subset includes 12 clearly balanced and 12
clearly unbalancedmusical motifs, the abridged Contour sub-
set includes 12 clearly smooth and 12 clearly jagged musical
motifs, the abridged Symmetry subset includes 12 clearly
symmetric and 12 clearly asymmetric musical motifs, and
the abridged Complexity subset includes 12 clearly simple
and 12 clearly complex musical motifs.

Study 2: Computational assessment
of musical stimuli

This study had four main goals: (1) to develop a series of
specific computational measures that provide a suitable de-
scription of each of the 200 musical motifs in terms of struc-
tural properties, (2) to derive nonredundant composite mea-
sures for each attribute, (3) to determine which of the com-
posite measures, or combination thereof, explained partici-
pants’ ratings of each attribute in Study 1, and (4) to compare
the explanatory adequacy of our composite measures of com-
plexity with existing methods. Our aim was, therefore, to find
the most complete model integrating the contributions of all
parameters manipulated in the design of the stimuli.

Method

Computational measures of musical attributes

We implemented several basic, conceptually irreducible, com-
pact, and quantitative computational measures of the design
parameters of each of the four attributes. Appendix B in the
SupplementaryMaterials describes the measures in detail, and
Appendix C presents the values of the computational mea-
sures for each stimulus in each corresponding subset.

Higher values correspond to more unbalance, jaggedness,
asymmetry, and complexity. The measures were devised to
assess each of the attributes in our MUST set, but we expect
them to generalize to other stimuli, experimental paradigms,
and researchers. A comprehensive description and formula-
tion of the computational measures, together with a rationale
for their selection, is presented as Appendix B in the
Supplementary Materials. The corresponding functions for
MATLAB integrate the MUST toolbox, available at osf.io/
bfxz7 and https://github.com/compaes.

Balance As conceived here, balance is related to the distribu-
tion of events and the position of the climax in the course of a
tensional process. We implemented three measures that cap-
ture three different aspects of the global perception of balance
based on the distribution of events and the relative positions of
each motifs’ center of mass and geometric center (Table 2).

Contour Contour perception is related to the magnitude of
changes in pitch and duration. Small changes are perceived as
smooth, whereas large changes are perceived as abrupt or jag-
ged.We implemented three measures of intervallic and melodic
abruptness, and one measure of rhythmic abruptness (Table 2).

Symmetry The only form of symmetry considered is vertical
mirror reflection: the strict retrogradation of all sounds (pitch
and duration) from a central axis. Due to notation restrictions,
an adjustment of the last note duration was sometimes needed
(to equalize it to the first one). We implemented two measures
of this kind of musical symmetry (Table 2).

Complexity The complexity of the motifs was manipulated by
varying the quantity and variety of elements in pitch and du-
ration, resulting in variations in predictability. We implement-
ed one measure of the number of elements, and seven mea-
sures that capture different aspects related to the variety of
elements and their predictability (Table 2).

Our battery of measures takes advantage of the state of the
art in music information research, music cognition, and related
fields, while going further in designing new measures. For
instance, event density and pitch entropy are common in
existing models of perceived complexity, such as Eerola
et al.’s Expectancy-Violation model (EV; Eerola, 2016).
However, Eerola and colleagues based their analysis on pitch
classes, whereas we consider absolute pitch, and our measures
of entropy of pitches go beyond pitch entropy in considering,
for example, the entropy of tuples and intervals (see Appendix
B). Some measures include an application of established prin-
ciples and algorithms correspondingly cited (e.g., Shannon
entropy, Parncutt’s model), while other measures are entirely
original (e.g., Symmetry measures).

To determine whether variation in the parameters
pertaining to each attribute actually contribute to variation in
that attribute and not—or not significantly—to variation in the
other three attributes, we also applied the full battery of mea-
sures detailed in Table 2 to the 200 musical motifs. The results
indicate that the manipulations of parameters pertaining to any
given attribute did not result in notable effects on other attri-
butes. This analysis is reported in Appendix D.

Composite nonredundant measures

Given that the measures described above capture different
aspects (e.g., melodic abruptness and durational abruptness)
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of the same attribute (e.g., contour), we expected multiple
regression models to contain some redundancy and
multicollinearity. Therefore, we conducted four principal
components analyses (PCA), one for each attribute, in
order to extract nonredundant components for each attri-
bute. We then used these components as predictors of
participants’ ratings.

Before running the PCA, several tests were conducted to
evaluate the adequacy of the data for factor analysis. Bartlett’s
test of sphericity quantifies the overall significance of all cor-
relations within the correlation matrix (p < .050). The Kaiser-
Meyer-Olkin (KMO> .50) assesses the sampling adequacy
and the strength of the relationships among variables. Values
of the determinant of the correlation matrix over 10−5 indicate
an acceptable amount of multicollinearity in the data set.

Factors were retained following Jolliffe’s (eigenvalues >
0.70; Jolliffe, 1972) criterion and inspecting the cumulative
proportion explained. When extracting more than one factor,
oblimin rotation was performed, given that factors relating to
the same attribute were not entirely orthogonal. We calculated
the component scores for each stimulus and treated these as
composite computational measures of balance, contour, sym-
metry, and complexity in the subsequent analyses.

Explaining participants’ ratings of musical attributes

We used linear mixed-effects models (Hox, Moerbeek, &
van de Schoot, 2010; Snijders & Bosker, 2012) to analyze
the effects of the predictors (the composite computational
measures obtained in the PCA) on participants’ responses
for each subset. They account simultaneously for the
between-subject and within-subject effects (Baayen,

Davidson, & Bates, 2008), and are thus especially suitable
for responses that may vary between individuals and stim-
uli (Silvia, 2007; Brieber, Nadal, Leder, & Rosenberg,
2014; Cattaneo et al., 2015; Vartanian et al., 2019). We
created a model for each subset to assess the predictive
power of the components with respect to participants’
responses. The structure of all models was the same. We
modeled the behavioral ratings of balance, contour, sym-
metry, and complexity considering the corresponding
composite measures, and their interactions when more
than one, as fixed effects. We included random intercepts
and slopes for the composite measures, and their interac-
tion when more than one, within participants, following
Barr, Levy, Scheepers, and Tily’s (2013) recommendation
to model the maximal random-effect structure. In addition
to avoiding loss of power and reducing type I error, this
enhances the possibility of generalizing results to other
participants.

Following Aguinis, Gottfredson, and Joo (2013), and con-
sidering the nature of our study, we looked for highly influen-
tial observations among participants’ ratings by inspecting
Cook’s distance (Cook, 1979). The threshold was set at 4/(N
− k − 1), where N is the number of observations (N = 43) and k
is the number of explanatory variables.

All analyses were carried out within the R environment for
statistical computing, R version 3.5.1. (R Core Team, 2018).
We used the principal( ) function in the ‘psych’ package
(Revelle, 2018), the lmer() function of the ‘lme4’ package
(Bates, Maechler, Bolker, & Walker, 2015) and the
‘lmerTest’ package (Kuznetsova, Brockho, & Christensen,
2012) to estimate the p-values for the t-tests based on the
Satterthwaite approximation for degrees of freedom, and the

Table 2 Computational measures of the parameters used to compose musical motifs varying in Balance, Contour, Symmetry, and Complexity

Attribute Parameter Computational measure

Balance Distribution of elements/events
Climax position
Tension

Bisect unbalance: Equilibrium between the two halves of a stimulus
Center of mass offset: Distance between center of mass and geometric center
Event heterogeneity: Heterogeneity in the temporal distribution of events

Contour Intervals Average absolute interval: Average absolute pitch interval size
Melodic abruptness: Average interval size of changes of direction per note
Durational abruptness: Proportion of the stimulus with changes of direction

Durations Rhythmic abruptness: Average ratio of consecutive durations

Symmetry Vertical mirror structure Total asymmetry: Direct–retrograde accumulated pitch difference
Asymmetry index: Proportion of the stimulus with asymmetries

Complexity Number of elements/events Event density: Number of note events per time unit

Variety of elements/events
Predictability

Average local pitch entropy: Average pitch entropy of .25-s sliding windows
Pitch entropy: Entropy of pitch distribution
2-tuple pitch entropy: Entropy of 2-tuple pitch distribution
3-tuple pitch entropy: Entropy of 3-tuple pitch distribution
2-tuple interval entropy: Entropy of 2-tuple interval distribution
3-tuple duration entropy: Entropy of 3-tuple duration distribution
Weighted permutation entropy: Permutation entropy considering the SD of the

pitch distribution of each 3-note sequence
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‘influence.ME’ package (Nieuwenhuis, te Grotenhuis, &
Pelzer, 2012). Effect sizes were calculated following Judd,
Westfall, and Kenny’s (2017) indications.

Comparison with other objective measures of complexity

We are unaware of other computational measures or models of
perceived balance, contour, and symmetry that we could com-
pare with our own. There are, however, several general
models of perceived musical complexity, and we compared
the performance of these models with the ability of our com-
posite models to predict participants’ complexity ratings.
Order is thought to influence the perception of complexity in
both domains, as discussed in Nadal et al. (2010) and Van
Geert and Wagemans (2019). Besides the number and variety
of events, the computational measures within the MUSTcom-
plexity model (MUSTK) quantify various forms of entropy of
sequences of pitches, intervals, and durations, thus accounting
for diverse kinds of order and predictability, characteristic of
the musical language. These qualities make the MUSTK mod-
el suitable for comparison with models such as the
expectancy-violation model or the IDyOM. For fair compari-
son, we only considered complete models developed at the
same explanatory level and addressing the same dimension
(cf., Marin & Leder, 2013). We selected three models that
are suitable for short stimuli, that have been demonstrated to
be the best in their respective categories, and that have been
validated with Western tonal music:

FLAC compression. Free Lossless Audio Codec
(FLAC) is a compression format specific for audio files
(Coalson, 2008) that incorporates a linear autoregressive
predictor and has been proven a good indicator of per-
ceived musical complexity based on data redundancy
(Marin & Leder, 2013). In contrast to generic systems
such as ZIP, special attention is placed on the temporal
organization of structures (Robinson, 1994). We
employed the default settings at an online FLAC convert-
er (https://audio.online-convert.com/). Since all WAV
files had similar size (1.6 MB), we simplified
computations by using compressed file size as the
predictor.
Expectancy-Violation model. Eerola et al .’s
expectancy-based model (EBM; Eerola & North, 2000;
Eerola, Himberg, Toiviainen, & Louhivuori 2006), later
renamed Expectancy-Violation model (EV; Eerola,
2016), is a feature-based model. Concretely, we used
the EV4 model (Eerola, 2016) with predictors: tonal am-
biguity, pitch proximity, entropy of duration distribution,
and entropy of pitch-class distribution. This validated in-
strument is in line with our design, including some of the
parameters we manipulated to characterize the
Complexity subset, and is thus preferred over other

models such as Streich’s (2007). As pointed out by
Albrecht (2016), Eerola’s (2016) study convincingly in-
dicated that just a few low-level parameters could predict
a relatively large portion of the variance in judgments of
perceived melodic complexity. Eerola’s model has been
used to assess melodic complexity in several studies,
such as Fiveash, McArthur, and Thompson (2018), and,
more generally, musical features in Albrecht (2018).
Information Dynamics of Music model. The IDyOM
(Pearce, 2005; Pearce, 2018) is a variable-order Markov
model (Begleiter, El-Yaniv, & Yona, 2004; Bunton,
1997) that uses a multiple-viewpoint framework
(Conklin &Witten, 1995), allowing it to combine models
of different representations of the musical surface.
IDyOM has been shown to accurately predict Western
listeners’ pitch expectations in behavioral, physiological,
and EEG studies (e.g., Egermann et al., 2013; Hansen &
Pearce, 2014; Omigie, Pearce, & Stewart, 2012; Omigie,
Pearce, Williamson, & Stewart, 2013; Pearce, 2005;
Pearce, Ruiz, Kapasi, Wiggins, & Bhattacharya, 2010),
even better than static rule-based models (e.g., Narmour,
1991; Schellenberg, 1997). It has also been proved to
account for expectations of the timing of melodic events
(Sauvé, Sayed, Dean, & Pearce, 2018) and harmonic
movement (Sears, Pearce, Spitzer, Caplin, & McAdams,
2018; Harrison & Pearce, 2018), and to simulate other
psychological processes in music perception, including
similarity perception (Pearce &Müllensiefen, 2017), rec-
ognition memory (Agres, Abdallah, & Pearce, 2018),
phrase boundary perception (Pearce, Müllensiefen, &
Wiggins, 2010), and aspects of emotional experience
(Egermann et al., 2013; Gingras et al., 2016; Sauvé
et al., 2018). We used the IDyOM in two configurations:
first, the short-term model (STM) that learns incremen-
tally on each stimulus independently; second, adding to
the STM a long-term model (LTM) trained on a large
corpus of Western tonal music (903 folk songs and
chorales; datasets 1, 2, and 9 from Table 4.1 in Pearce,
2005, comprising 50,867 notes): the BOTH configura-
tion. This incorporates a learned model of schematic mu-
sical syntax, providing a measure of complexity relative
to the norms of the Western tonal musical style. Both
configurations predict the pitch and onset of every note
using a combined representation of melodic pitch interval
and tonal scale degree (for pitch), and inter-onset interval
ratio (in the case of onset).

To compare our composite computational measure of per-
ceived complexity with the models described above (FLAC,
EV4, and IDyOM in its two configurations), we first conduct-
ed four linear mixed-effects models. Participants’ ratings were
modeled using each motif’s complexity estimate produced by
FLAC, EV4, and IDyOM in its two configurations, as the
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independent variable. The design was similar to the com-
plexity model described above. We compared the results
of these models to the results of our MUSTK model using
likelihood ratio tests. For statistically significant differ-
ences (p < .050), lower Bayesian information criterion
(BIC) and Akaike information criterion (AIC) indicate a
better fit of one model over another.

Results

Computational measures of musical attributes

Appendix C in the Supplementary Materials collects the
values of each of the computational measures and components
for each of the 200 stimuli.

Composite nonredundant measures

Balance The computational measures in the Balance subset
were adequate for PCA (Bartlett's: χ2(3) = 173.822, p < .001;
Overall MSA = .75, MSA Bisect unbalance = .86; MSA Center of

mass offset = .68; MSA Event heterogeneity = .74; Determinant of the
correlation matrix = .025). The PCAwith oblimin rotation in-
dicated that the three initial Balance measures could be sub-
sumed into a single component explaining 95% of the vari-
ance. The three measures contributed with similar high load-
ings (bisect unbalance: .95; center of mass offset: .98; event
heterogeneity: .97). We calculated the component scores for
each stimulus (BC1) and regarded these as their Balance
scores (Table C1, Appendix C).

Contour The computational measures in the Contour subset
were suitable for PCA (Bartlett’s: χ2(6) = 135.974, p < .001);
Overall MSA = .70; MSA Average absolute interval = .66; KMO

Melodic abruptness = .65; KMO Durational abruptness = .85; KMO

Rhythmic abruptness = .64; Determinant of the correlation matrix =
.055). The PCA indicated that we should extract two compo-
nents according to Jolliffe's criterion (eigenvalue PC1 = 2.79;
eigenvalue PC2 = 0.87), explaining 91% of the variance. After
oblimin rotation, CC1 represented 71% of the explained var-
iance and received loadings from average absolute
interval (.99), melodic abruptness (.95), and durational
abruptness (.81). Rhythmic abruptness corresponded to
CC2 with a loading of .99. The component scores for
each of the stimuli constituted their Contour (CC1 and
CC2) scores (Table C2, Appendix C).

Symmetry The computational measures in the Symmetry sub-
set were suitable for PCA (Bartlett’s: χ2(1) = 92.403, p < .001;
Overall MSA = .50; MSA Total asymmetry = .50; MSA Asymmetry

index = .50; Determinant of the correlation matrix = .143). The
PCA resulted in a single component with eigenvalue 1.93,
explaining 96% of variance, and comprising total asymmetry

and asymmetry index with equal contributions of .98. The
component score for each stimulus (SC1) represented its
Symmetry score (Table C3, Appendix C).

Complexity We first checked whether the data set was ade-
quate for PCA. The determinant of the correlation matrix was
lower than 10−5, meaning that there was too much redundancy
in the data. Due to excessive multicollinearity, we removed
variables with high correlations with other variables: pitch
entropy, 2-tuple pitch entropy, and 3-tuple pitch entropy. The
remaining computational measures in the Complexity subset
were suitable for PCA (Bartlett’s: χ2(10) = 246.082, p < .001;
Overall MSA = .73; MSA Event density = .78; MSA Average local

pitch entropy = .75; MSA 2-tuple interval entropy = .71; MSA 3-tuple

duration entropy = .65; MSA Weighted permutation entropy = .68;
Determinant of the correlation matrix = .005). The PCA indi-
cated that two components should be extracted according to
Jolliffe’s criterion (eigenvalue PC1 = 3.47; eigenvalue PC2 =
1.00), explaining 89% of the variance. After oblimin rotation,
KC1 comprised event density (1.00), average local pitch
entropy (.96), 2-tuple interval entropy (.94), and weighted
permutation entropy (.60). These measures quantified the
number of elements and pitch entropies, and accounted for
72% of the explained variance. KC2 corresponded to 3-tuple
duration entropy (.96). The component scores for each stim-
ulus became their Complexity (KC1 and KC2) scores
(Table C4, Appendix C).

Explaining participants’ ratings of musical attributes

The results with the outliers included in the analysis described
here are reported inAppendix E in the SupplementaryMaterials.

Balance After removing three participants whose ratings were
highly influential according to Cook’s distances, and rerun-
ning the model, the linear mixed-effects model showed that
the component calculated in the PCA reported above (BC1)
was a strong predictor of participants’ balance ratings (ß =
0.925, t(38.952) = 7.992, p < .001). The effect of BC1 was me-
dium to large (d = 0.72).

Contour The only participant whose Cook’s distances were
above the threshold was removed from the model, which
was then run again. The new linear mixed-effects model of
contour showed that both components resulting from the PCA
were strong predictors of participants’ ratings of contour
(CC1: ß = 0.774, t(41.053) = 8.474, p < .001; CC2: ß = 0.370, t
(48.123) = 6.813, p < .001). The interaction effect was also sig-
nificant (ß = −0.221, t(57.200) = -6.298, p < .001), meaning that
the stronger the influence of one component on participants’
ratings, the weaker the influence of the other component. CC1
had a medium to large effect (d = 0.61), CC2 had a small to
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medium effect (d = 0.29), and the CC1*CC2 interaction had a
small effect (d = 0.17).

Symmetry When the highly influential participant had
been removed, the linear mixed-effects model revealed
that the Symmetry component (SC1) produced by the
PCA was a strong predictor of participants’ ratings of
symmetry (ß = 0.380, t(40.934) = 5.410, p < .001). The ef-
fect of SC1 was small (d = 0.24).

Complexity One participant highly influenced the model,
and was therefore removed. The resulting linear mixed-
effects model revealed that both components resulting
from the PCA were strong predictors of participants’ com-
plexity ratings, KC1 (ß = 1.183, t (41.409) = 30.729,
p < .001) and KC2 (ß = 0.140, t(45.394) = 5.322, p < .001).
In addition, a mutually enhancing interaction between
components was also significant (ß = 0.139, t(116.995) =
5.991, p < .001). KC1 had a very large effect (d = 1.26),
KC2 had a small effect (d = 0.15), and so did the
KC1*KC2 interaction (d = 0.15).

Comparison with existing models of perceived complexity

The four new linear mixed-effects models showed that other
existing models of musical complexity were also good predic-
tors of participants’ complexity ratings (Table 3). However,
the ANOVA mixed model likelihood ratio tests showed that
our model provided a better fit to the data than all but one of
the extant complexity models. Although the IDyOM STM
provided a better fit to the data than our MUSTK model ac-
cording to AIC and BIC, the difference was not statistically
significant (Table 4).

Discussion

This second study focused on the structural features of the 200
musical motifs we created. We had four main goals. The first
was to devise a series of computational measures providing
objective descriptions of the parameters manipulated in the
composition of the motifs. This led us to develop three mea-
sures of balance, four measures of contour, three measures of
symmetry, and eight measures of complexity. They can be
used for diverse purposes in conjunction with our stimulus
set or applied to other musical motifs.

The computational measures were designed to capture as-
pects of the same attribute, so they were bound to include a
certain degree of redundancy and multicollinearity. Our sec-
ond goal was thus to derive nonredundant composite mea-
sures for each of the four attributes using principal component
analyses (PCA). The results of the PCA for balance revealed
that the three measures loaded highly on a single component
(BC1), indicating that, in our Balance subset, the three param-
eters (distribution of elements/events, climax position, ten-
sion) work together to create different degrees of balance
and unbalance. The composite of the three measures, calcu-
lated as the component score, constitutes each of the musical
motifs’ Balance score. The PCA for contour revealed two
components underlying the computational measures (CC1
and CC2). The three measures of intervallic and melodic
abruptness loaded onto one component (CC1), and the mea-
sure of rhythmic abruptness loaded onto another (CC2), thus
mirroring the two parameters used to compose the motifs in
the Contour subset, and provide the musical motifs’ Contour
scores. The PCA for symmetry subsumed both computational
measures into a single component (SC1), in accordance with
our manipulation of a single aspect of symmetry: vertical mir-
ror structure. The composite of both measures, calculated as
the component score, is each motif’s Symmetry score. Finally,

Table 3 Linear mixed-effects models of complexity for the Complexity
subset

Model Component ß df t-value p-
value

d

MUSTK KC1 1.18 41.41 30.729 < .001 1.26

KC2 0.14 45.39 5.322 < .001 0.15

KC1*KC2 0.139 116.995 5.991 < .001 0.15

FLAC 0.999 40.391 39.41 < .001 0.94

EV4 1.106 41.179 37.81 < .001 1.16

IDyOM (STM) 1.146 40.828 39.71 < .001 1.27

IDyOM (BOTH) 1.074 40.691 37.25 < .001 1.09

Note: The models of perceived complexity compared here are the
MUSTK model, FLAC compression size, the Expectancy-Violation mod-
el with four predictors (EV4), and the Information Dynamics of Music
model (IDyOM) in the short-term (STM) and BOTH configurations. ß
refers to the estimated slope, df to the degrees of freedom, and d to the
effect size

Table 4 ANOVA mixed model likelihood ratio tests of comparisons
with the MUSTK model

Model df AIC BIC logLik χ2(9) p

MUSTK 15 4986.5 5069.7 −2478.2
FLAC 6 5526.3 5559.5 −2757.1 557.76 < .001

EV4 6 5058.6 5091.9 −2523.3 90.127 < .001

IDyOM (STM) 6 4829.3 4862.5 −2408.6 0 1

IDyOM (BOTH) 6 5214.0 5247.3 −2601.0 245.53 < .001

Note: The models of perceived complexity compared here are the
MUSTK model, FLAC compression size, the Expectancy-Violation mod-
el with four predictors (EV4), and the Information Dynamics of Music
model (IDyOM) in the short-term (STM) and BOTH configurations. The
table shows the degrees of freedom (df), the Akaike information criterion
(AIC), the Bayesian information criterion (BIC), the log likelihood
(logLik), and the p-value for each model comparison. The chi-squared
value (χ2 ) for each particular model involved 9 degrees of freedom for all
models compared
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the PCA for complexity revealed two components underlying
the computational measures (KC1 and KC2): The first
was related to the number of elements, and variety and
predictability of pitches, whereas the second was related
to the variety and predictability of durations, thus
reflecting the aspects underlying variations in the com-
plexity of the motifs in the Complexity subset, and con-
stitute the motifs’ Complexity scores.

Our third goal was to examine the extent to which the
composite measures, or combination thereof, explained par-
ticipants’ ratings in Study 1. The linear mixed-effects models
for each attribute showed that the composite measures were
strong predictors of perceived balance (BC1), contour (CC1
and CC2), symmetry (SC1), and complexity (KC1 and KC2).
The results also revealed an interaction between the Contour
components (CC1 and CC2), meaning that, while both indi-
vidually serve as predictors of perceived musical smoothness
or jaggedness, when one component (e.g., intervallic and me-
lodic abruptness) exerts a higher influence on participants’
ratings, the effect of the other (e.g., rhythmic abruptness) be-
comes smaller. There was also an interaction between the
Complexity components (KC1 and KC2). In this case, there
was a mutual enhancement: when one component (e.g., num-
ber and variety of events) exerts a stronger influence on par-
ticipants’ ratings, so does the other (e.g., number and variety
of durations), contributing to musical complexity in comple-
mentarily reinforcing ways.

A closer look at the relations between the design and the
assessments may help to understand the processes involved in
the perception of these attributes in music, enabling compar-
ison with other sensory modalities. The results suggest that
our balance measures indeed captured the tensional processes
and temporal discourse of the motifs, which in turn seem
largely responsible for the perception of musical balance.
Likewise, both pitch and rhythm correspondences between
the halves of the motif appear equally relevant for the percep-
tion of musical symmetry. A different pattern emerged for
perceived contour: The results suggest that an enhanced sa-
lience of either pitch (CC1) or rhythm (CC2) relations due to a
pronounced abruptness reduces the prominence of the other
dimension. In contrast, for complexity, the quantity and vari-
ety of elements together with pitch-related order or structure
(KC1), and rhythm-related order or structure (KC2) reinforce
each other in their impact on perceived musical complexity.
As the most salient dimension in Western tonal music, pitch
relations define harmony and structure rhythm, which recip-
rocally modulates pitch relations (Prince, 2011; Prince,
Thompson, & Schmuckler 2009).

Two inversely related factors mainly account for perceived
visual complexity: quantity and variety of elements, and order
or structure (e.g., Gartus & Leder, 2017; Nadal et al., 2010).
They also constitute the core of perceived complexity in mu-
sic, and their interrelations in the temporal and spatial

dimensions deserve close attention. The various measures of
entropy assessed order and structure in music, inevitably inte-
grating variety of elements and predictability. These factors
are interdependent, and the investigation of their relative con-
tributions would require controlling for one while manipulat-
ing the other within a common idiom.

Pitch-related entropies naturally correlated with quantity of
elements, the best individual predictor also in visual studies:
Maximal pitch-related entropies increase with the number of
elements (equivalent to event density, in our case)—although
this relationship saturates at a certain point, as event density is
restricted by the musical idiom: the variety of sounds is
constrained, as the notes are discrete and we established a
vocal pitch range. Therefore, even though there is no theoret-
ical boundary for maximal entropy, it is, in practice, limited by
the musical style. To discern the particular contributions of
pitch-related entropies, controlling for event density would
be required. In contrast, duration entropy (order and structure
in time) is always constrained by event density (number of
elements). The different contributions of pitch and rhythm to
perceivedmusical complexity also respond to the combination
of several factors: First, the number of different rhythmic fig-
ures is lower than that of pitches in this particular musical
idiom. Second, ratios are better recognized and remembered
than absolute values (Pressing, 1999; Trehub, 1985), and pat-
tern transformation techniques are standard compositional
techniques (e.g., augmentation, retrogradation), all of which
limit the number of combinations appraised as different.

Testing our computational models with other musical stim-
uli would either strengthen or question the validity of our
approach and throw light on the way humans perceive such
attributes in music. This was only possible for complexity,
because no comparable computational assessments of per-
ceived musical balance, contour, and symmetry, as defined
in the stimulus design, are available. The fourth goal of this
study was to compare the explanatory performance of our
MUSTK model with other approaches to perceived musical
complexity. The four extant models we used for comparison
proved to be good predictors of participants’ ratings. This
suggests that they all tap into the same phenomenon.
However, according to the model likelihood ratio tests and
under the AIC and BIC criteria, they do so to different
extents. Our model predicted participants’ ratings more
accurately than FLAC compression, EV4, and the BOTH
configuration of the IDyOM. The STM configuration,
which generates predictions after learning directly from
each specific stimulus, provided the best fit to partici-
pants’ complexity ratings, though not significantly better
than the MUSTK model developed here.

The better fit provided by our model might not be surpris-
ing, taking into account that it addresses precisely the design
features of the musical motifs in the Complexity subset.
Nevertheless, it is worth noting some differences between
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the parameters included in these models. The superiority over
the EV4model can be explained by the motifs’ common idiom
that might have lessened the effect of EV4’s first component
(tonal ambiguity), but also by a more comprehensive design
and better performance of our measures—e.g., EV4 considers
pitch-class instead of absolute pitch, which ignores the contri-
bution of pitch height across different octaves to perceived
complexity. Investigating whether this applies to other musi-
cal stimuli would shed light on the factors underlying per-
ceived musical complexity.

The comparisons with the FLAC and IDyOM models are
especially noteworthy. A higher predictive capacity over the
FLAC general-purpose audio compression algorithm may be
due to the encoding of high-level symbolic features that are
specific to the musical language in our model compared with
the raw audio input for FLAC (sampled at 44,100 Hz with a
bit depth of 16). Elucidating whether our model’s superiority
generalizes to other musical stimuli would shed some light on
the processing of musical complexity: If our model surpassed
FLAC’s prediction power with other music beyond the present
stimulus set, the perception of musical complexity would be
driven by the combination of irreducible, basic musical fea-
tures. If this were not the case, the implication would be that
musical complexity is holistically appraised using general-
purpose perceptual processes.

Regarding the IDyOM models, the fact that the simula-
tion of participants’musical background worsens the short-
term model may seem striking. However, it is perhaps not
surprising that the BOTHmodel does less well than the STM
and the MUSTK model, because the stimuli are stylistically
coherent, and complexity does not vary as a function of dis-
tance fromWestern tonal stylistic norms. Thismeans that the
BOTH configuration addresses the issue of context or pre-
vious experience not as a framework in which to discrimi-
nate degrees of complexity, but as a form of averaged refer-
ence from which to detect deviations. On the other hand, the
MUSTK model employs features crafted with knowledge of
the stimulus design and was fitted to the perceptual re-
sponses to the stimuli, whereas the IDyOMcomplexitymea-
sures were generated entirely without prior knowledge of
either the stimulus set itself or the perceptual complexity
ratings for these stimuli. However, the STM learns directly
from the stimulus, and thus the adaptation to the stimulus set
may be similar. But more importantly, the MUSTK model is
based on low-level musical parameters, less computational-
ly demanding than the STM, and thus more parsimonious.
Therefore, the lack of significant differences in predictive
power between these two models supports the validity of
our approach and suggests that the processing of musical
complexity relies on isolable basic features as those captured
by the MUSTK model. Further research with other stimuli
will elucidate whether the present results generalize to the
perceived complexity of any music.

General Discussion

Choosing among alternative options and courses of action is
one of the most basic functions of cognition. Understanding
cognition, therefore, requires understanding the processes in-
volved in the valuation and comparison of alternatives. There
are several reasons why music constitutes a rich domain for
studying general mechanisms of valuation: Music provides a
rich and virtually unlimited set of materials and is highly val-
ued among people. But it also affords an investigation of the
interaction between domain-specific and domain-general pro-
cesses in valuation. The overarching goal of the research pre-
sented in this paper was to stimulate research on modality-
general attributes and domain-general processes in the appre-
ciation of music. We set out (1) to create a set of musical
stimuli suitable for studying the role of modality-general attri-
butes in music, (2) to assess the stimuli behaviorally and com-
putationally, (3) to analyze how both kinds of assessments
relate to each other, the stimulus design features, and other
available measures, and (4) to make the MUST set and com-
putational measures in the form of a MATLAB toolbox freely
available to other researchers.

The design of the four subsets responds to a modality-
general characterization of balance, contour, symmetry, and
complexity: We distilled the essence of three sets of visual
stimuli (Wilson & Chatterjee, 2005, for balance; Bertamini
et al., 2016, for contour; and Jacobsen & Höfel, 2002, for
symmetry and complexity) and formulated analogous musical
definitions for each attribute. We restricted the design to a
common idiom that makes the motifs comparable to the em-
ulated visual stimuli and allows contrasting the target attri-
butes across different musical examples.

Our stimuli and computational measures contribute to
the investigation of perceived musical balance, contour,
and symmetry in music, and further explore perceived
musical complexity. Whereas the existing literature on
musical complexity is comparable to that in the visual
domain, a small number of studies address musical sym-
metry (e.g. , Balch, 1981; Bianchi et al ., 2017;
Krumhansl et al., 1987; Mongoven & Carbon, 2017),
while others investigate musical contour (e.g., Gerardi
& Gerken, 1995; Schmuckler, 2015; Thorpe, 1986;
Trehub et al., 1984). To the best of our knowledge,
our research pioneers the study of musical balance as
conceived here, and our modality-general characteriza-
tion of these four attributes within a coherent set and
toolbox is a unique contribution.

The MUST set combines ecological validity and experi-
mental control, a delicate and desirable balance between two
core virtues of any set of stimuli. The results demonstrated that
the set is sensitive to nonmusicians’ abilities to detect degrees
of musical balance, complexity, contour, and symmetry (cf.,
Petrović, et al., 2017), accurately captured by the
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computational measures: Participants’ consistent judgments
matched the stimulus design and were largely explained by
our composite models. Furthermore, the comparisons with
extant models of musical complexity support ours as an out-
standing approach. The coherence between design and assess-
ments strengthens the value of the set and the computational
measures as reliable open resources for research. First, its
virtues make the set highly useful in empirical aesthetics and
other fields, especially in its abridged form and when the in-
terest is musical–visual correspondence. Second, the measures
contribute new tools to music information research because
they may easily be applied to other stimuli. Ultimately, inves-
tigating the relations between the stimulus design, their behav-
ioral appraisal, and the computational measures may contrib-
ute to further understanding of musical and psychological
processes.

The MUST stimuli and computational measures may be
useful in multiple settings and fields, together or separately:
First, the subsets may be used together, addressing several
attributes or individually focusing on one of them, and the
motifs can be assessed in other ways. Indeed, the design of
other assessments is feasible and desirable, especially regard-
ing the less studied attributes. Second, while the measures
perfectly complement the stimuli, their general character and
reliable performance in predicting participants’ judgments
make them suitable for other purposes and musical stimuli
as well, even if small adaptations were needed. Monophonic
melodies would be particularly appropriate, especially if short,
for which no specific adjustment would be required. However,
testing themwith longer, more varied, and naturalistic musical
stimuli would be of great interest in assessing how the mea-
sures and fitted models generalize as models of music percep-
tion. To facilitate the use of the methods and materials pre-
sented here by other researchers, we have made the full and
abridged stimulus set, together with the open-source package
of functions as a toolbox for MATLAB, freely available for
use by the scientific community at osf.io/bfxz7. The detailed
description and formulation of the measures constitute
Appendix B, and the values for each stimulus in each of the
corresponding measures and components constitute Appendix
C of the Supplementary Materials.
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