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Expectation is crucial for our enjoyment of music, yet the underlying
generative mechanisms remain unclear. While sensory models derive predic-
tions based on local acoustic information in the auditory signal, cognitive
models assume abstract knowledge of music structure acquired over the
long term. To evaluate these two contrasting mechanisms, we compared
simulations from four computational models of musical expectancy against
subjective expectancy and pleasantness ratings of over 1000 chords sampled
from 739 US Billboard pop songs. Bayesian model comparison revealed that
listeners’ expectancy and pleasantness ratings were predicted by the indepen-
dent, non-overlapping, contributions of cognitive and sensory expectations.
Furthermore, cognitive expectations explained over twice the variance in lis-
teners’ perceived surprise compared to sensory expectations, suggesting a
larger relative importance of long-term representations of music structure
over short-term sensory–acoustic information in musical expectancy. Our
results thus emphasize the distinct, albeit complementary, roles of cognitive
and sensory expectations in shaping musical pleasure, and suggest that this
expectancy-driven mechanism depends on musical information represented
at different levels of abstraction along the neural hierarchy.

This article is part of the theme issue ‘Art, aesthetics and predictive
processing: theoretical and empirical perspectives’.
1. Introduction
Music has been an integral part of human culture since prehistoric times [1–3],
and most people find music highly rewarding [4,5]. Apart from extra-musical
factors such as episodic memory or contextual associations [6,7], an important
intra-musical factor by which music itself induces pleasure in the listener is via
the confirmation, violation and delay of listeners’ musical expectations [8–13].
Here, we consider the hypothesis that expectancy-driven musical pleasure
results from two independent sources of expectancy: sensory expectations arising
from acoustic information in the auditory signal itself, as well as cognitive expec-
tations derived from learned relations between musical elements abstracted
from the auditory signal. While sensory expectations form over relatively
short timescales, cognitive expectations are acquired after extended exposure
to multiple examples of a musical style.
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One influential neurocognitive model that embodies
this view is the predictive coding of music (PCM) model
[14–17]. In PCM, musical expectations generated from
higher-order brain regions (e.g. prefrontal cortex) are thought
to propagate downwards towards lower-level sensory
regions (e.g. the auditory cortex). The discrepancy between
expected and actual incoming signals in sensory regions
results in a prediction error or surprise. This error signal is
propagated upwards along the cortical hierarchy to refine
future expectations. The gain of the expectation is modulated
by a precision estimate, or the inverse of uncertainty.
Precision-weighted prediction error signals are thought to
constitute reward for the listener to continue learning
towards generating more accurate future expectations
[15,18]. In line with PCM, recent evidence has shown that
pleasantness ratings of chords and melodies were jointly pre-
dicted by their surprise and uncertainty in listeners [19,20].
These studies represented an advancement to previous
work examining the link between musical expectancy and
pleasure (e.g. [21–23]), as the additional consideration of
uncertainty meant that they could explain how musical sur-
prises could be both pleasant and unpleasant. However,
these studies only accounted for cognitive expectations,
since it was assumed that listeners formed expectations exclu-
sively based on the statistical relationships of chords and
pitches in melodies as symbolic entities extracted from the
music. The contribution of sensory expectations to musical
pleasure thus remained unclear.

(a) Sensory and cognitive contributions to musical
expectancy

Research on sensory and cognitive contributions to musical
expectancy has a rich history. Seminal work using the probe-
tone method [24–26] established the concept of tonal hierarchy,
showing that given a context of tones or chords, the perceived
importance of the ensuing tone was related to its proximity
with the key—or the tonal centre—of the context. This implies
that the structural function of a musical sound is not deter-
mined by its absolute frequencies but by its implied relation
derived from the context [27], which suggests cognitive contri-
butions to musical expectancy. Similar results were found in
subsequent priming studies, which observed a behavioural
facilitation when target tones and chords were harmonically
more related to the priming chord [28–34] or melody [35,36].
Studies in children [37], adults exposed to a novel musical
scale system [38] or style [39], and using cross-cultural designs
(see review in [27]) provided further support for a cognitive
influence by showing that the tonal hierarchy may be acquired
via internalization of regularities between musical elements in
a given musical style over extended exposure, in a process
known as statistical learning.

While the tonal hierarchy shows that acquired abstract
knowledge of music structure guides expectancy, the relative
prominence of chords or tones is intrinsically constrained by
their acoustic properties. For example, the tonic and the domi-
nant are, respectively, ranked top and second of the tonal
hierarchy of Western tonal music [26] but also share highly
overlapping harmonic spectra [40]. To overcome this, several
studies controlled for the number of shared tones in the prim-
ing context and target [31,33], manipulated the stimulus onset
asynchrony [41], or presented stimuli using piano and pure-
tone timbres [35]. Interestingly, a facilitation in processing
harmonically more-related over less-related targets was still
observed, except when the priming context was presented
very rapidly (75 ms per chord) and was previously unheard
by the subject [31]. Although these studies suggest the domi-
nant influence of cognitive over sensory information in
forming expectations during music-listening, the underlying
mechanisms could only be inferred from manipulations in
the study design.

In recent years, computational models of musical
expectancy have been devised to provide an algorithmic for-
malization of how musical expectations could be generated
[10,42]. Computational models of expectancy can be placed
along a sensory–cognitive continuum, depending on the
extent to which sensory or cognitive information is given pro-
minence when forming expectations [43]. As underlying
hypotheses and assumptions are formalized and made expli-
cit, the comparison of simulations from computational
models with behavioural data provides a direct assessment
of the plausibility of the biological or cognitive mechanisms
embodied by each model [10,44]. Such an approach has
been used to show that sensory expectations as simulated
by an auditory short-term memory model could explain
many of the priming effects previously taken to support cog-
nitive accounts—even when sensory influences have been
accounted for [40,45]. Other studies paint a more nuanced
picture, with the comparison of simulations from several
computational models against behavioural data generally
supporting the influence of cognitive over sensory mechan-
isms [34,43,46–49]. Furthermore, a recent comparison of
melodic expectations showed that low-level (although not
explicitly sensory) and cognitive information may explain
non-overlapping behavioural variance [48]. This is consistent
with the hierarchical representation of prediction errors in the
PCM model and is in line with priming studies showing cog-
nitive and sensory facilitation at different timescales [31,41].
However, the interpretation of these existing results is compli-
cated by their use of only weakly sensory or weakly cognitive
models applied to restricted stimulus domains. Therefore, it
remains to be clarified whether sensory and cognitive influ-
ences independently contribute to musical expectancy, or
whether they have an interactive effect, suggesting a
combined underlying mechanism [48].
(b) The current study
Here, we tested the ways in which cognitive and sensory infor-
mation contribute towards harmonic expectations and musical
pleasure in listeners encultured to Western tonal music. Our
approach was to compare ratings of listeners’ continuous
chord surprise (Experiment 1, §2a(i)) and pleasantness (Exper-
iment 2, §2a(ii)) ratings against simulations from cognitive and
sensory computational models of musical expectancy. Subjects
were presented with 30 isochronous chord progressions
sampled from commercially successful pop songs in the
McGill Billboard dataset [50], which contains over 80 000
chords from 745 pop songs listed on the US Billboard ‘Hot
1000 chart between 1958 and 1991. Apart from enabling a
direct investigation on the underlying generative mechanisms,
the parametrical quantification of expectancy with compu-
tational models also allowed us to present stimuli derived
from actual music. This is an alternative to the traditional
approach of using carefully constructed artificial stimuli to iso-
late sensory and cognitive influences, in which stimuli
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represent a small number of categories of expectation (e.g.
expected and unexpected, sometimes supplemented by an
intermediate category) and are often repeated many times
[19,51].

Whereas our previous work [19] showed that temporal
states of expectancy—cognitive uncertainty and surprise—
jointly modulated listeners’ pleasantness ratings, the current
study investigated how and to what extent cognitive and sen-
sory information shape musical expectancy and pleasure. We
further tested the role of musical training in cognitive and
sensory contributions to chord expectations by acquiring
data from musicians and non-musicians in Experiment 1.
With increased musical exposure and knowledge, we
expected increased cognitive relative to sensory influence
on chord surprise ratings in musicians compared to
non-musicians.

(c) Computational models of musical expectancy
We considered four representative computational models of
musical expectancy that span the sensory–cognitive conti-
nuum. The first two models can be regarded as purely
sensory models because they derive chord expectations
based on processing acoustic information. The third model
can be thought of as a hybrid sensory–cognitive model
because it assumes both sensory and (limited) cognitive con-
tributions in simulating expectancy from the auditory signal
input. The last model can be considered as a purely cognitive
model because it operates completely on the symbolic level
and presupposes the abstraction of chord representations
from the auditory signal by the listener.

(i) Spectral distance
The spectral distance (SD) model [52,53] computes expect-
ancy in terms of spectral similarity between two adjacent
chords. Each chord is modelled as a linear combination of
12 harmonic overtones, and each overtone is represented as
a one-hot vector encoding its pitch or pitch class on a log-fre-
quency scale. A weighting function is then applied to
discount perceptual salience at higher overtones, followed
by Gaussian smoothing to account for perceptual noise. The
12 overtone vectors are then summed to produce the spectral
vector of the chord. SD is obtained by taking the cosine dis-
tance of spectral vectors of two adjacent chords, with 1
being completely orthogonal and 0 being perfectly correlated.
Chords perceived by the listener as surprising would be
expected to show high SD.

(ii) Periodicity pitch
The periodicity pitch (PP) model [54] is a psychoacoustic
model that simulates expectancy based on neural encoding
in the peripheral auditory system. The auditory signal is
first transduced into simulated firing patterns of inner-hair
cells in the cochlea that encode PP information. Next, firing
patterns are transformed into so-called pitch images by band-
pass filtering and taking a windowed autocorrelation. To
simulate exponential decay in auditory short-term memory,
the pitch images are then filtered at two different timescales
to generate a global and a local pitch image. The global
pitch image has a longer integration time and represents
the contextual information held in echoic memory, while
the local pitch image has a shorter integration time and
reflects the perception of the immediate chord. The tonal
contextuality is then computed by evaluating the z-trans-
formed Pearson’s correlation between global and local pitch
images. This measure reflects the similarity between the
incoming chord and its preceding context within the
memory trace. For ease of comparison, we multiply tonal
contextuality by −1 to obtain a quantity referred to as tonal
dissimilarity. We would expect chords perceived as
surprising to show high tonal dissimilarity.

(iii) Tonal expectation
The tonal expectation (TE) model [43] extends the PP model
by hypothesizing that acoustic features present in the audi-
tory input are processed and represented at the sensory and
cognitive levels. Apart from representing PP information in
echoic memory as in the original model, two additional
representations are introduced. First, a chroma vector represen-
tation is derived by assigning PP representations into discrete
pitch classes to account for the perceptual phenomenon of
octave equivalence. Second, a tonal space representation is
obtained by mapping the PP representation onto the space
spanned by the tonal hierarchy. As the tonal hierarchy
assumes abstract knowledge of music structure acquired via
statistical learning in the listener, a cognitive contribution to
chord expectancy is modelled.

Similar to the PP model, information about the chord con-
text and the immediate chord is summarized by global and
local pitch images computed at the three levels of represen-
tation. Chord expectancy is derived by taking a weighted
sum of the tonal contextuality and the maximum value of
the global pitch images for each representation. The weights
are determined a priori using stepwise regression to best fit
reaction time differences between harmonically related and
unrelated targets from seven priming studies. Chords per-
ceived as surprising are expected to be processed with a
slower reaction time by this model.

(iv) Information dynamics of music
The information dynamics of music (IDyOM) model [55,56] is
a computational model of expectancy embodying two
hypotheses: first, that listeners acquire internal cognitive
representations of regularities in a musical style through stat-
istical learning of the music to which they are exposed;
second, that musical expectations reflect probabilistic predic-
tions for forthcoming musical events derived from these
internal representations. IDyOM prospectively generates
probability distributions for each event in a piece of music,
conditional on the preceding musical context (intended to
simulate online learning during stimulus presentation) and
the prior musical experience of the model (intended to
simulate the listener’s prior long-term musical exposure).

Two information-theoretic measures of expectancy are
distinguished by IDyOM. First, the surprise elicited by a
musical event is quantified by its information content (IC),
or negative log-probability. IC reflects the extent to which
the model did not expect an event given the particular con-
text in which it appeared. Chords with higher IC are
hypothesized to be rated as more surprising. Second, the
uncertainty about the event is quantified as the entropy of
the distribution. Maximum entropy occurs when all possible
continuations are equiprobable given the context. Note that
for our comparison between chord surprise ratings and
model simulations in Experiment 1, only the IC of each
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chord is considered from this model. Both IC and entropy are
used to predict chord pleasantness in Experiment 2. To simu-
late the long-term exposure of a listener to Western pop
music, we trained IDyOM on all chords from the McGill
Billboard dataset [50].
publishing.org/journal/rstb
Phil.Trans.R.Soc.B

379:20220420
2. Methods and materials
(a) Subjects
(i) Experiment 1
Twenty-five healthy adults (13 musicians and 12 non-musi-
cians) participated in Experiment 1. Musicians (mean age =
24.4 y, s.d. = 3.48) scored a mean of 40.5 (s.d. = 4.41) in the
musical training subscale of Goldsmiths Musical Sophisti-
cation Index (Gold-MSI) [57], while non-musicians (mean
age = 26.1 y, s.d. = 4.56) scored a mean of 12.5 (s.d. = 5.64).
These, respectively, corresponded to the 86th and 15th per-
centile scores from self-recruited participants for the online
‘How Musical are You’ BBC study [57]. The two groups
thus showed differences in musical training (Wilcoxon’s
rank sum: W = 156) but not in age (Welch’s t: t20.5 =−1.04).
Our sample size was justified based on power calculations.
Assuming a power of 0.8 and a two-sided significance level
of 0.05, the relationship between behavioural measures of
expectancy and simulations from multiple computational
models (including those not considered in the present
study) as reported in [34,47,52] yielded an estimated
minimum sample size of 25 subjects.

Inclusion criteria for musicians were musical training (in
addition to music lessons at school) at or before age 10, at
least seven continuous years of musical training and actively
practicing their instruments on average at least once a week
for the past three years. Inclusion criteria for non-musicians
were no musical training before age 7, no musical training
in the past 7 years and less than 10 years of continuous musi-
cal training in total. An exclusion criterion for both groups
was absolute-pitch, for which subjects were screened prior
to the experiment using the absolute-pitch test devised in
[58]. Additional data from one non-musician were not
analysed due to non-compliance with the experimental pro-
cedure. All subjects reported right-handedness and normal
hearing. Data from this experiment were collected specifically
for this study and have not been published before.

(ii) Experiment 2
We analysed data from 39 healthy adults with no restriction
on musical training (mean age = 24.1 y, s.d. = 3.80). Subjects
scored a mean of 23.4 (s.d. = 10.3) on the musical training
subscale of the Gold-MSI, which corresponded to the 40th
percentile score. One subject was excluded as they did not
comply with the experimental procedure. These data were
analysed in our previous study [19] that examined the role
of uncertainty and surprise in musical pleasure and brain
activity. As the joint role of uncertainty and surprise on musi-
cal pleasure was essentially unexplored prior to that study,
we aimed for a sample size that was comparable to previous
studies using IDyOM to investigate effects of uncertainty (e.g.
[49] with 30 subjects) or surprise (e.g. [34] with 40 subjects,
and [47] with 50 subjects) during music perception.

Our study was approved by the Ethical Committee of the
Medical Faculty at Leipzig University and written informed
consent was obtained from all subjects. This study was not
preregistered.

(b) Stimuli
Subjects were auditorily presented with 30 isochronous chord
progressions taken from commercially successful pop songs
listed in the McGill Billboard dataset [50]. These stimuli
were identical to those from our previous study that tested
the effects of expectancy on musical pleasure and brain
activity [19]. Each chord progression ranged between 30
and 38 chords inclusive (mean number of chords = 34.6,
s.d. = 2.17) and the duration of each chord was 2.4 s. To
mitigate confounding effects from interactions with other
dimensions (such as timing and language) and familiarity,
only the chord progression of the original song was retained
and transposed to C major. Each chord was computer-gener-
ated with a timbre synthesized from a marimba, jazz guitar
and an acoustic guitar. All timbres played all pitches in
each chord. Damping and reverb were adjusted to ensure
no spill-over to the next chord. To give momentum to the
stimuli, each chord progression was also accompanied by
one of three background rhythms that repeated once per
chord. The assignment of background rhythms to each
stimulus was counterbalanced across subjects.

(c) Computational model parameters
SD: Taking the optimized parameters as given in [53], we
used a weighting of i−0.75 for the ith harmonic overtone,
where i = 1,…,12, a pitch-class representation and a smooth-
ing parameter of 6.83. A MATLAB implementation can be
found at the following page: http://www.dynamictonality.
com/probe_tone_files.

PP: Although time constants 1.5 s for the global pitch
image and 0.1 s for the local pitch image were originally
used as they best fitted the probe-tone data of [26], following
the approach of [40], we explored other parameter combi-
nations. We tested six different model combinations with
global pitch image decay constants of 1.5 s (default), 2.5 s
and 4 s (to match the span of echoic memory [34,59]) and
local pitch image decay constants of 0.1 s (default) and 0.5 s.
Comparing the expected log pointwise predictive density
(ELPD) (see §2e) for the six model combinations, we selected
the model with global and pitch image constants of 4 s and
0.5 s in our experimental analyses as it showed the best
out-of-sample predictive accuracy (electronic supplementary
material, figure S1). MATLAB code for the model can be
accessed at: https://github.com/IPEM/IPEMToolbox.

TE: We used the default parameters of the model as opti-
mized for seven probe tone and priming studies. A MATLAB

implementation is available at https://atonal.ucdavis.edu/
resources/software/jlmt/.

IDyOM: IDyOM is a variable-order Markov model that
generates the conditional probability of a chord given pre-
vious chords in a progression by combining its n-gram
models of different orders (i.e. different values of n) using
the PPM* algorithm [60–62]. Given a chord progression
{e1, . . . , ei, . . . ,ej}, the n-gram probability of chord ei is
expressed as pðei j ei�(n�1) , . . . , ei�1Þ. There are two sub-
components to IDyOM: in the long-term model (LTM), the
conditional probability is estimated from all chord sub-
sequences in the training set, while in the short-term model
(STM), the conditional probability is estimated from all

http://www.dynamictonality.com/probe_tone_files
http://www.dynamictonality.com/probe_tone_files
https://github.com/IPEM/IPEMToolbox
https://atonal.ucdavis.edu/resources/software/jlmt/
https://atonal.ucdavis.edu/resources/software/jlmt/


royalsocietypublishing.org/journal/rstb
Phil.Trans.R.Soc.B

379:20220420

5

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

21
 D

ec
em

be
r 

20
23

 

previously observed sub-sequences in the current song. The
LTM and STM probabilities are then combined by taking
the geometric mean (which provides better prediction per-
formance than an arithmetic mean [55]). We applied 10-fold
cross-validation when training the model on the McGill Bill-
board dataset to prevent overfitting to specific songs (and so
that the presented stimuli were not part of the training data)
and selected a maximum n-gram order of 10 in the LTM and
unbounded in the STM. Although IDyOM could be extended
to incorporate surface features such as voicing, note duration
and pitch interval, we do not model these multiple view-
points here for parsimony and to ensure that the model
simulations are not influenced by any possible sensory–
acoustic information.

IDyOM simulates the surprise of a chord by quantifying
its IC, which is an information-theoretic measure of the
amount of information transferred when a signal is sampled.
The IC of a chord is given by its negative log-probability
conditional on the context of preceding chords, i.e.
IC(ei) ¼ � log2 pðei j ei�(n�1) , . . . , ei�1Þ. Chords that appear
rarely in a given context will have a high IC, and so we
expect that chords with higher IC will be perceived by the
listeners as more surprising.

On the other hand, IDyOM simulates the uncertainty of
chord by quantifying its entropy H, which is obtained by
summing the product between the conditional probability
of all possible chords in S in the training corpus and their
ICs, i.e.

H(ei) ¼ �
X
e[S

pðei ¼ ej ei�(n�1) , . . . , ei�1Þ log2 pðei

¼ ej ei�(n�1) , . . . , ei�1Þ:

Entropy therefore provides a measure for the average sur-
prise of a chord at that position in the progression, given its
preceding context. Previous work has shown that listeners
regard notes in melodies with higher entropy as more uncer-
tain [49]. Code for the IDyOM project can be found at:
https://github.com/mtpearce/idyom.

(d) Procedure
During stimulus presentation, subjects gave continuous ratings
of their perceived surprise (Experiment 1) or pleasantness
(Experiment 2) for each chord using a 10 cm mechanical
slider analogous to our previous experiment [19]. This
allowed us to acquire observations without restriction to a
particular point in the stimulus (see e.g. [63] on potential clo-
sure effects) and to present stimuli with a much longer
context (at least 30 chords in each progression compared to
approx. 10 chords in previous studies [40,43,47]) to match
actual music more closely.

Subjects were asked to hold the slider with their left hand
and to place it on their lap while controlling the slider knob
with their right thumb. At the start of each trial, subjects
moved the slider to the lowest position and stimulus presen-
tation began 2 s later. They were asked to rate how surprised
they were by each chord (Experiment 1) or how pleasant they
found each chord (Experiment 2), based on the chords they
had heard so far in the stimulus by moving the slider knob
to its appropriate position. A rating away from the body indi-
cated higher surprise or pleasure (with maxima indicating
‘very surprised’ or ‘very pleasant’) and closer to the body
lower (with minima indicating ‘not surprised’ or ‘not
pleasant’). They were prompted to use the entire length of
the slider and to give at least five extremal ratings throughout
the entire experiment. For each rating, the distance between
the slider knob and the minima was discretized linearly to
a value between 0 and 1023 (inclusive). This continuous
rating procedure allowed us to acquire observations without
restriction to a particular chord within the progression (which
could lead to potential closure effects [63] or preparatory arte-
facts [51]), as well as to present stimuli with a much longer
context compared to previous studies (at least 30 chords in
each progression compared to approximately 10 chords in
priming studies). After each stimulus presentation, subjects
rated their overall valence and arousal to the stimulus each
within a 3 s time window using a 1–6 scale on the keyboard.
The next trial then ensued as before.

The presentation of the 30 chord progressions (with 10
assigned to each of the three background rhythms) was
pseudo-randomized. The experiment was conducted in a
soundproof cabin and stimuli were delivered using supra-
aural headphones (Beyerdynamic DT 770 PRO) at a comfor-
table volume using Psychtoolbox 3 [64] in Octave 4.0.0 [65].
The slider interfaced with the computer using an Arduino
Micro sampling at 20 Hz. Prior to the experiment, subjects
practised on three trials with a stimulus set different from
the actual stimuli. After the experiment, they were asked if
the song and artist of our chord stimuli could be identified.
No relevant artists or songs were named.
(e) Statistical analyses
We first preprocessed the behavioural data by applying a
five-sample symmetric median filter to the slider responses
for each subject to remove small signal fluctuations. The
mode of the response was then sampled for each chord in
the stimuli in the time window between 1 s after its onset
and start of the subsequent chord. This time window was
chosen to account for the delayed reaction in moving the
slider when hearing a new chord. Ratings for the first
chord of each stimulus were discarded as each trial began
with the subject resetting the slider. We then mean-averaged
each chord rating across subjects within musicians and non-
musicians in Experiment 1, and across all subjects in Exper-
iment 2. This resulted in 1009 × 2 = 2018 chord surprise
ratings in Experiment 1 and 1009 chord pleasantness ratings
in Experiment 2. Stationarity was assessed with the Augmen-
ted Dickey Fuller test [66] and by examining autocorrelation
and partial autocorrelation functions, which suggested that
differencing was not required.

We then modelled the relationship between compu-
tational model simulations and behavioural chord surprise
and pleasantness ratings with Bayesian multilevel linear
models. All variables were first standardized to reduce colli-
nearity and so that effect sizes were on a comparable scale.

In Experiment 1, we first fitted a null model as baseline.
This null model comprised a varying intercept by song, and
varying slopes (by song) for musicianship (binary-coded),
valence and arousal. Varying intercepts and slopes account
for differential effects across the stimuli and thus improve
parameter estimation by partial pooling of information [67].
We further imposed an AR(1) covariance structure on the
chord order of each stimulus to account for temporal autocor-
relations in the slider ratings. Although the ‘maximal
approach’ [68] also suggests the inclusion of random effects

https://github.com/mtpearce/idyom
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grouped by subject (i.e. not averaging across subjects in each
group), we did not do so here as the data required differen-
cing due to non-stationarity and the resulting model fit was
poor, with residuals becoming severely heteroscedastic, and
thus violated the assumption of linear regression.

Next, for each computational model, we added its simu-
lation and its interaction with musicianship as additional
varying slopes to the null model. This allowed us to
separately model the relationship between computational
model simulations and surprise ratings by musicians and
non-musicians.

To test for the additive contribution of IDyOM and PP, we
added varying slopes for IC, IC x musicianship, tonal dissim-
ilarity, and tonal dissimilarity x musicianship to the null
model. To test for the supra-additive contribution of
IDyOM and PP, we further included varying slopes for IC x
tonal dissimilarity and IC x tonal dissimilarity x musician-
ship to the additive model.

In Experiment 2, all models comprised a varying intercept
by song, and varying slopes (by song) for valence, arousal,
dissonance, spectral centroid and spectral complexity.
Please note that the latter three predictors were also included
in the model of our original study to control for acoustic
differences between each chord, and they are not the same
as the sensory expectancy derived from acoustic information
as given by PP. To predict chord pleasantness with expect-
ancy simulations by IDyOM as in our original work, we
further included IC, entropy and IC x entropy as varying
slopes. Likewise, for PP, we included a varying slope for
tonal dissimilarity. To test additive effects between simu-
lations by PP and IDyOM, we included varying slopes for
tonal dissimilarity, IC, entropy and IC x entropy. To test for
supra-additive effects, we further included varying slopes
for tonal dissimilarity x IC x entropy, tonal dissimilarity x IC
and tonal dissimilarity x entropy from the additive model.

For all models, we used a Gaussian likelihood and weakly
informative priors for regularization as previously suggested
[67]: Normal(0,1) for parameter estimates, Half-Cauchy(0,1)
for scale parameters, and LKJ(2) for the covariance matrix.
Inference on the linear relationship between simulation and
behaviour was made by examining the parameter estimate
of the posterior distribution. We also compared each Bayesian
multilevel model using the ELPD derived from Pareto-
smoothed importance sampling leave-one-out cross-vali-
dation (PSIS-LOO) [69] using the loo package (version 2.2.0;
see https://cran.rproject.org/web/packages/loo/). This
measure integrates over the posterior distribution of each
model to estimate its out-of-sample predictive accuracy, so
that models with a better fit to held-out data will have
higher ELPD values. More precisely, for observations
{y1, . . . , yN}, posterior samples {u1, . . . , uS} and truncated
Pareto-smoothed importance weights ws

n on held-out data n
and posterior draw s, the estimated ELPD is given by:

dELPD ¼
XN
n¼1

log
PS

s¼1 w
s
n pðynjuSÞPS

s¼1 ws
n

 !
:

The computation of ELPD allows us to use Bayesian stacking
to find the optimal weight of each computational model that
jointly maximizes the ELPD of the combined predictive
distribution to maximize predictive accuracy.

The joint posterior distribution of model parameters was
sampled using adaptive Hamiltonian Monte Carlo in RStan
2.18.2 (Stan Development Team RStan; see https://cran.rpro-
ject.org/web/packages/rstan/) using brms 2.9.0 [70] in R
3.5.3 [71]) with four Markov chains (2500 iterations for
warm-up, 2500 iterations for sampling) resulting in a total
of 10000 samples. Convergence of the Markov chains was
examined by visual inspection of parameter trace plots and
R-hat values, with no evidence of non-convergence. Model
fit was further assessed by comparing simulated and actual
responses through posterior predictive checks.
3. Results
(a) Experiment 1: Simulating chord surprise ratings

with sensory and cognitive computational models
(i) Comparing chord expectancy simulations across computational
models

We first compared the simulated chord surprise of our
stimuli—chord progressions derived from commercially suc-
cessful pop songs—across the four computational models of
musical expectancy. Figure 1 shows the simulated expectancy
as given by each model against actual behavioural ratings for
one stimulus, as well as their pairwise relationships across all
stimuli. We note that although simulations given by the two
sensory models—PP and SD—were similar, with a Pearson
correlation of 0.43, the remaining pairwise correlations were
low and thus indicated a weak relationship between the pre-
dictions of the different models. The highly left-skewed
density plot for the IDyOM model moreover suggests that
our stimuli were dominated by chords with low IC except
for a few chords with high IC. By contrast, density plots for
PP, SD and the TE model reveal that the majority of chords
were predicted to evoke an average level of sensory surprise.

(ii) Relating chord surprise ratings with computational model
simulations

Next, we built Bayesian multilevel regression models to
model listeners’ chord surprise ratings. As baseline, we esti-
mated a null model that included a varying intercept by
song, a varying slope (by song) for musicianship and varying
slopes for valence and arousal ratings. This allowed us to esti-
mate the mean surprise rating given by musicians and non-
musicians across all stimuli, after controlling for effects of
valence and arousal and idiosyncrasies of each chord pro-
gression. On average, musicians tended to give lower chord
surprise ratings than non-musicians (difference: β = –0.280,
95%-credible interval (CrI) = [–0.453, –0.106]). Increased arou-
sal was also indicative of higher surprise (β = 0.177, 95%
CrI = [0.025, 0.324]), but the effect of valence (β = 0.029) was
inconclusive given the inclusion of zero in the 95%-credible
interval ([–0.113, 0.174]).

To model the linear relationship between behavioural
surprise ratings and computational models’ expectancy simu-
lations, we added predictions from each computational
model to the null model, yielding four additional regression
models (i.e. one per computational model). We found a
clear positive relationship between chord surprise ratings
and expectancy simulations by IDyOM and PP, as shown in
figure 2. For IDyOM, a one standard deviation-increase in
chord IC was related to a 0.530 standard deviation-increase
in chord surprise ratings in musicians (95%CrI = [0.469,

https://cran.rproject.org/web/packages/loo/
https://cran.rproject.org/web/packages/rstan/
https://cran.rproject.org/web/packages/rstan/
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0.592]) and a 0.316 standard deviation-increase in non-musi-
cians (95%CrI = [0.257, 0.375]), and the difference between
musicians and non-musicians was substantial (β = 0.214,
95%CrI = [0.158, 0.272]). For PP, the standardized effect
sizes were likewise higher in musicians compared to non-
musicians (β = 0.215, 95%CrI = [0.127, 0.302], and β = 0.182,
95%CrI = [0.098, 0.265], respectively), although evidence for
this difference was marginal (β = 0.034, 95%CrI = [–0.370,
0.104]). By contrast, no meaningful associations were found
between expectancy simulations by SD and surprise ratings
by musicians and non-musicians (β = 0.012, 95%CrI = [–0.094,
0.122] and β = 0.026, 95%CrI = [–0.077, 0.135], respectively).
Furthermore, contrary to our expectation, a substantial
negative association was detected between expectancy simu-
lations by TE and ratings by non-musicians (β = –0.136, 95%
CrI = [–0.231, –0.037]), although this relationship was
not evidenced in musicians (β = –0.005, 95%CrI = [–0.108,
0.101]). The relationship between surprise ratings and
simulations by SD and TE remained unchanged even
after varying slopes for valence and arousal were
removed from the models (electronic supplementary
material, figure S2), suggesting that the lack of a
meaningful association was not due to valence or arousal
confounds.
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(iii) Assessing predictive accuracy of computational model
simulations

Apart from examining the strength of the relationship
between subjective ratings and model simulations of surprise,
an alternative approach is to evaluate each computational
model’s ability to generalize and accurately simulate surprise
ratings from chords in a progression that it had not encoun-
tered before. To this end, we computed the predictive
accuracy of each model using Pareto-smoothed importance-
sampling leave-one-out cross-validation (PSIS-LOO), and
compared their relative predictive accuracy in terms of differ-
ences in expected log pointwise predictive density (dELPD).

As shown in figure 3, among the four computational
model simulations and the null model, the model incorporat-
ing chord IC by IDyOM delivered the highest expected
out-of-sample performance and exceeded other models by a
considerable margin. Notably, the difference in predictive
accuracy between IDyOM and the null model (dELPD =
406.5, distance standard error (dSE) = 28.2) was over four
times greater than that between PP in second place and the
null model (dELPD = 89.4, dSE = 14.9). Including expectancy
simulations by SD and TE to the null model also improved
predictive accuracy, although gains were more modest
(dELPD = 30.2, dSE = 9.1, and dELPD = 20.1, dSE = 7.1,
respectively). This suggests that chord expectancy simu-
lations by all four computational models can—each to a
different extent—improve predictive performance compared
to simply modelling the average surprise rating in musicians
and non-musicians.

Next, we used Bayesian stacking to identify the relative con-
tribution of each computational model that would maximize
predictive accuracy from a weighted-average of their predic-
tions. Interestingly, most of the weight (90.9%) was assigned
to the null model incorporating simulations by IDyOM only,
and all remaining weight (9.1%) was assigned to the null
model incorporating simulations by PP only. This suggests
that a better predictive performance could be attained by com-
bining expectancy simulations from both IDyOM and PP—with
a larger contribution from the former—rather than relying on
either model alone. Furthermore, although including simu-
lations by SD or TE to the null model improved performance,
the fact that they received zero stacking weights suggests that
the models were slightly overfit. This interpretation is consistent
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with the observation above that associations between chord
surprise ratings and expectancy simulations by SD and TE
were mostly weak or contrary to expectation.
(iv) Information content and tonal dissimilarity independently
explain chord surprise ratings

The results thus far offer considerable support for IDyOM
and PP as computational models that accurately simulate lis-
teners’ chord surprise ratings. However, it remained unclear
whether IC as provided by IDyOM and tonal dissimilarity
as given by PP explain unique variance. To this end, we
built two new models: first, a null model with both infor-
mation content (IDyOM) and tonal dissimilarity (PP)
included to test for additive effects; second, another that
further included their interaction to test for supra-additive
effects.

As shown in figure 4, the standardized effect sizes and
uncertainty estimates for IC and tonal dissimilarity remained
virtually unchanged regardless of the presence of the other vari-
able. As before, the positive association between chord surprise
ratings and IC was stronger for musicians compared to
non-musicians (additive model: musicians β = 0.519, 95%
CrI = [0.459, 0.582], non-musicians β = 0.305, 95%CrI = [0.248,
0.364], difference β= 0.214, 95%CrI = [0.160, 0.270]; supra-addi-
tive model: musicians β = 0.539, 95%CrI = [0.476, 0.604], non-
musicians β= 0.320, 95%CrI = [0.260, 0.381], difference β =
0.219, 95%CrI = [0.164, 0.276]). Likewise, we did not detect a
meaningful difference in the positive association between
surprise and tonal dissimilarity (additive model: musicians
β= 0.188, 95%CrI = [0.126, 0.251], non-musicians β= 0.170,
95%CrI = [0.111, 0.231], difference β= 0.019, 95%CrI = [–0.039,
0.076]; supra-additive model: musicians β = 0.189, 95%
CrI = [0.127, 0.250], non-musicians β = 0.171, 95%CrI = [0.113,
0.228], difference β= 0.018, 95%CrI = [–0.040, 0.075]). Notably,
the amount of variance explained by IC was approximately
three times that of tonal dissimilarity in musicians, and twice
that in non-musicians. Furthermore, there was no evidence
for a supra-additive effect of IC and tonal dissimilarity
(musicians β= 0.018, 95%CrI = [–0.049, 0.085], non-musicians
β= 0.030, 95%CrI = [–0.035, 0.093]).

Similar conclusions are reached from a model comparisons
perspective (figure 3). The highest relative predictive accuracy
was attainedby the supra-additivemodel, although the improve-
ment in performancewith the additive model was marginal and
within two-standard errors (dELPD= 9.2, dSE = 5.2). This
suggests that the two models gave very similar predictions,
and implies that the interaction effects between IC and tonal dis-
similarity were likely redundant. We nevertheless observed
substantial gains in predictive accuracy in the additive model
compared to models incorporating only one of IC or tonal dis-
similarity (dELPD= 83.1, dSE = 13.3, and dELPD= 400.2,
dSE = 28.4, respectively). Taken together, these results strongly
support the proposition that simulations by IDyOM and PP
each explain distinct, non-overlapping behavioural variance.
This suggests an independent contribution of cognitive and
sensory information towards listeners’ expectations of chords.

(b) Experiment 2: Predicting listeners’ pleasantness
ratings with chord expectancy simulations from
sensory and cognitive computational models

In our previous work [19], we showed that chord expectancy
simulations from IDyOM—quantified in terms of IC and
entropy—could reliably predict listeners’ pleasantness ratings
to the same chord progression stimuli we presented in Exper-
iment 1. Although this provided evidence supporting the role
of expectancy in shaping musical pleasure, it is limited as
only cognitive expectations were assumed. Given our result
from Experiment 1 that listeners make use of both sensory
and cognitive information in forming chord expectancy judg-
ments, we would also expect sensory expectations to
contribute towards listeners’ pleasantness ratings.

(i) Sensory and cognitive expectations independently predict
chord pleasantness ratings

To test the role of sensory expectations in musical pleasure, we
fitted four Bayesian multilevel models. The first model



IDyOM

(a)

(b)

(+ PP)

(× PP)

PP

(+ IDyOM)

(× IDyOM)

posterior estimates
0.2

5

0

2

–2

0

2

–2

10 15 20 25 30 35

0.4 0.6 0.2 0.4 0.6
posterior estimates

musicians non-musicians
su

rp
ri

se
 r

at
in

gs
 (
z-

sc
or

e)

chord number

Figure 4. Independent sensory and cognitive contributions to chord surprise. (a) Posterior estimates (mean and 95%-credible interval) of information content (as
simulated by IDyOM) and tonal dissimilarity (as simulated by PP) on predicting chord surprise ratings when considered separately, additively and supra-additively
across musicians and non-musicians. That each effect remained stable when considered individually or together indicates that the two models each explained unique
behavioural variation. (b) Comparing observed and simulated chord surprise ratings in the additive model. Solid lines indicate the mean predicted response of each
model to a chord progression taken from ‘Ob-La-Di-Ob-La-Da’ by The Beatles. Darker shaded regions show the 95%-credible interval of the mean. Lighter shaded
regions show the 95%-credible interval of predicted responses. Open circles indicate actual mean behavioural response averaged within the two groups. Error bars
depict standard error of the mean. Please see figure 5c for the chord names of this stimulus. (Online version in colour.)

royalsocietypublishing.org/journal/rstb
Phil.Trans.R.Soc.B

379:20220420

10

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

21
 D

ec
em

be
r 

20
23

 

predicted listeners’ pleasantness ratings of each chord based on
the joint effect of IC and entropy from IDyOM, as in our orig-
inal work. The second made predictions based on tonal
dissimilarity as given by PP. The third was modified from
the first by additionally including tonal dissimilarity as a pre-
dictor to model additive contributions of cognitive and
sensory expectations. The fourth further included the inter-
action of IC, entropy and tonal dissimilarity to test for
supra-additive effects.

We first examined the out-of-sample predictive accuracy
of the four models using cross-validation, as before. As
shown in figure 5, the highest performance was achieved
by the supra-additive model, closely followed by the addi-
tive model. However, that the expected gain was less than
the standard error of the estimate (dELPD = 6.3, dSE = 6.7)
again indicates overfitting in the supra-additive model.
Nevertheless, substantial improvements in predictive accu-
racy were observed for the additive model relative to
models based on simulations by IDyOM or PP only
(dELPD = 39.5, dSE = 9.8, and dELPD = 163.9, dSE = 25.8,
respectively). This indicates that we can best predict
listeners’ pleasantness ratings of chords unseen by the
model when both sensory and cognitive expectations are
considered.

Figure 5a also illustrates the fact that the standardized
effect sizes of expectancy were almost identical in all four
models. For the supra-additive, additive and IDyOM only
models, the effect of IC (β = –0.317, 95%CrI = [–0.415, –0.216],
β = –0.314, 95%CrI = [–0.412, –0.212], β = –0.319 and 95%
CrI = [–0.416, –0.221], respectively), entropy (β = –0.140, 95%
CrI = [–0.195, –0.086], β = –0.137, 95%CrI = [–0.191, –0.085]
and β = –0.139, 95%CrI = [–0.189, –0.089], respectively) and
their joint effects on pleasure (β = –0.106, 95%CrI = [–0.164,
–0.049], β = –0.104, 95%CrI = [–0.161, –0.050] and β = –0.118,
95%CrI = [–0.174, –0.064], respectively) were highly similar
and differed by an amount that was well within their 95%
credible intervals. Likewise, for the supra-additive, additive
and PP only models, the effect of chord tonal dissimilarity
varied by at most 0.011 standard deviations (β = 0.184, 95%
CrI = [0.134, 0.237], β = 0.188, 95%CrI = [0.139, 0.238] and β =
0.173, 95%CrI = [0.110, 0.239], respectively). That the effect
sizes remained almost unchanged in the supra-additive, addi-
tive and IDyOM- or PP-only models suggests that cognitive
and sensory information play complementary roles in predict-
ing chord pleasantness. Furthermore, considering that the
supra-additive effect of IC, entropy and tonal dissimilarity
was essentially zero (β = 0.001, 95%CrI = [–0.051, 0.051]),
these again indicate that expectancy simulations by IDyOM
and PP each additively explain a unique part of listeners’
chord pleasantness ratings. It is therefore likely that sensory
and cognitive expectations both shape musical pleasure—yet
independently.
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(ii) Contrary effects of cognitive and sensory surprise
on pleasantness ratings

Finally, it is interesting that sensory and cognitive surprise
could have opposing effects on musical pleasure—depending
on the level of cognitive uncertainty. As seen in figure 5a,
assuming that the entropy of a chord remained fixed at the
average in the additive model, increased chord tonal dissim-
ilarity was related to an increase in pleasantness ratings (β =
0.188]), whereas increased chord IC was related to a decrease
in pleasantness (β = – 0.314). Nevertheless, the effect seemed
to be larger for IC than tonal dissimilarity when comparing
the magnitude of their effect sizes.
4. Discussion
Our study aimed to examine sensory and cognitive influences
on harmonic expectations and aesthetic preference. Listeners
gave continuous chord-wise behavioural ratings to chord pro-
gressions derived from commercially successful pop songs. We
compared simulations from computational models of musical
expectancy to ratings of surprise (Experiment 1) and pleasant-
ness (Experiment 2). Four representative computational
models along a sensory–cognitive continuumwere considered:
SD, PP, TE and IDyOM. We found that only PP and IDyOM
could accurately predict chord surprise in musicians and
non-musicians (with IDyOM explaining two to three times
more variance than PP), and that they explained behavioural
variance in surprise and pleasantness ratings in an indepen-
dent and additive manner. These results support the view
that sensory–acoustic information and acquired stylistic rep-
resentations of music structure play complementary roles in
modulating listeners’ expectations—although with a larger
contribution from the latter—which in turn, shape their enjoy-
ment of music.

(a) Evidence of sensory contributions to musical
expectancy

Although the four computational models have been pre-
viously shown to model musical expectancy accurately, we
did not find adequate evidence relating listeners’ chord sur-
prise ratings and simulations from SD and TE. There are
two plausible reasons for this. First, there are key differences
between our continuous rating paradigm and the probe tone
and priming studies for which SD and TE were validated. In
this study, subjects gave surprise ratings for every chord as
the stimulus was presented, whereas behavioural judgments
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in probe tone and priming studies were given only after
stimulus presentation. This means that chord surprise ratings
in the current study depended on a musical context that con-
tinuously varied as the stimulus progressed, whereas the
context was fixed in length and often repeated in these
studies on which SD and TE were validated. Second, our
chord progression stimuli comprised chords sounded with
a synthetic timbre combining a mix of marimba, jazz guitar
and acoustic guitar, as well as a repeated drum sequence in
the background. This is very different from the piano [31],
violin [53], pure tone [35] timbres used in the probe tone
and priming studies for which the model parameters were
optimized. Furthermore, while TE has a higher-level com-
ponent (the tonal space) that reflects similarity of tonal
implications, it is still much less strongly cognitive than
IDyOM as it lacks a concrete representation of chords
depending on its preceding harmonic context. These
arguments could explain both why SD and TE failed to gen-
eralize and the surprise ratings of non-final events in pop
music chord progressions [10], or cadences in Mozart piano
sonatas [34]. Computational models embodying sensory
mechanisms may be particularly sensitive to such differences
because they derive expectations from acoustic information in
the input stimuli. Therefore, rather than arguing that listeners
do not use mechanisms embodied by TE or SD in forming
musical expectations, we take a more cautious stance and
only suggest that these models were unable to generalize
beyond their original stimulus setup and context to those
used in the current experiment.

Nevertheless, we were able to accurately predict listeners’
chord surprise ratings with PP, which indicates a significant
sensory contribution to musical expectancy. This corroborates
results from [40], which demonstrated that PP could replicate
findings from 14 out of 18 existing behavioural and neurophy-
siological studies investigating harmonic expectations.
Notably, that paper considered different parameter combi-
nations of local and global pitch images to ensure that the
replications were not dependent on parameter choice. In the
current study, we took the same approach and considered
six different parameter combinations for PP (see §2). We
found that compared to the null model, incorporating simu-
lations by PP substantially improved the predictive accuracy
of out-of-sample chord surprise ratings for all parameter com-
binations (electronic supplementary material, figure S1). This
not only highlights the generalizability of the model, but
also provides robust evidence supporting the sensory influ-
ence of musical expectations. The results were also consistent
with [51], in which PP was the only sensory model that had
any predictive power on the neurophysiological response
(P3a amplitude), but were inconsistent with [34], in which
none of the sensory models had any predictive power. How-
ever, their null-findings could reflect the strong cognitive
implications of cadential contexts, which render any sensory
effects negligible by contrast.

(b) Role of statistical learning in forming cognitive
expectations

Our finding that IDyOM can accurately simulate chord sur-
prise corroborates previous results with the same model
[34,47,56]. It also provides further support for statistical learn-
ing as a plausible mechanism for internalizing regularities of
a musical style, which are subsequently used to generate
expectations. Harmonic expectancy as predicted by the
tonal hierarchy is thought to be acquired through repeated
and extended exposure to samples of Western tonal music
and stored in long-term memory [27,39,56]. IDyOM extends
this concept from zeroth-order to higher-order statistical
regularities, allowing learning of more sophisticated stylistic
regularities to be simulated.

Furthermore, simulations by IDyOM accounted for a larger
portion of variance in chord surprise ratings compared to PP.
This observation extends previous work in melodies [48] and
provides further support for a larger contribution of cognitive
over sensory information in forming musical expectations
[31,35,43,46]. Given their increased musical training, the sub-
stantially larger difference in variance explained by IDyOM
and PP by musicians compared to non-musicians further
suggests that cognitive information is prioritized over sensory
information when it is available. This interpretation could
explain the facilitation of cognitive over sensory priming for
rapidly presented chords when the stimuli had been pre-
viously presented at a slower tempo in [31]. We speculate
that an expectancy mechanism that is applicable to a variety
of contexts and is less reliant on sensory features would be
favoured from a predictive coding point of view, as the ability
to generalize increases the likelihood of minimizing long-term
prediction errors [14–16].

One might suggest that the larger relative contribution by
IDyOM could simply be due to a longer context integration
window compared to the other three models. Based on a con-
trol analysis, we argue that this is not the case: We additionally
trained a bigram variant of IDyOM that considered only a
single chord as its context. This context length is comparable
to the integration duration of our sensory models. We found
that this bigrammodel still showed the best out-of-sample pre-
dictive accuracy and substantial improvement compared to PP
(electronic supplementary material, figure S3), which indicates
that a larger contribution of cognitive information was not
driven by context length per se.

(c) Sensory and cognitive information independently
shape musical expectancy

Our finding that PP and IDyOM, which respectively embody
sensory and cognitive mechanisms, can jointly improve
predictive accuracy and explain independent variance in
listeners’ chord surprise ratings strongly supports the
proposition that musical expectancy is a function of both
cognitive and sensory information. This result replicates pre-
vious work on melodies [46,48] and harmonic priming [43]
but extends these findings to a comparison of strongly cogni-
tive and strongly sensory models. This finding is also
paralleled in language, where the intonation and pitch of
speech [72–75] facilitate the inference of syntax. Our view is
furthermore in line with the modularity hypothesis of
music perception, which argues that music is processed in a
distributed, parallel fashion [76,77] and is consistent with
the PCM model, which posits that prediction errors are
computed and propagated along all levels of the cortical
hierarchy [14–17].

How might listeners combine cognitive and sensory
information in generating predictions? Two possibilities
have been proposed [48]. First, a single system learns and
generates expectations based on both sources of information
simultaneously. Second, two systems generate expectations
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based on sensory and cognitive information separately,
which are then combined in a weighted fashion. Our data
speak in favour of the latter, as we showed that the variance
explained by IDyOM and PP was independent, non-over-
lapping and additive. This means that cognitive and
sensory knowledge could be represented along two orthog-
onal dimensions without the need to represent the
covariation between them. An auditory-specific system
could generate expectations based on low-level sensory–
acoustic features, while mechanisms such as statistical learn-
ing [78,79] or syntax processing [80] could compute
expectancy as the auditory input is transformed into abstract
representations such as chords.
Phil.Trans.R.Soc.B
379:20220420
(d) Role of sensory expectations in musical pleasure
A key contribution of the current work is showing that listen-
ers not only use sensory and cognitive information to form
musical expectations, but that they also independently
shape musical pleasure. This is in line with Huron’s ITPRA
framework of expectancy-driven musical pleasure [13,81],
which postulates an immediate reaction response that is
non-conscious and reflex-like, and a slow appraisal response
that is cognitive and complex. It is moreover consistent with
models of musical aesthetic judgment that divide the aes-
thetic experience in terms of an immediate sensory ‘core
liking’ and a later ‘conscious liking’ response [82]. In terms
of predictive coding, sensory ‘core liking’ would correspond
to lower levels in the processing hierarchy, whereas the ‘con-
scious liking’ response would correspond to higher levels in
the hierarchy [14,15]. PP could capture core liking, whereas
IDyOM could be capturing conscious liking, particularly in
musicians. Our finding that cognitive and sensory surprise
could have opposite effects on listeners’ chord pleasantness
ratings in the current study further suggests that the two sys-
tems could work in concert in shaping musical pleasure.
Interestingly, one study found that listeners gave similar pre-
ference ratings to musical stimuli presented in 750 ms or up
to 1 min [83]. This suggests that aesthetic judgments were
made primarily based on acoustic features before any musical
relationships (such as chord progressions) could be inte-
grated, and those judgments may have been updated and
reinforced over time. However, it is important to distinguish
between pleasure as modulated by static sensory effects such
as timbre and consonance [84,85] (as postulated in [83]), from
pleasure deriving from sensory expectations that require inte-
gration of acoustic features over time (which we study here).

The role of sensory features in shaping expectancy and
pleasure as shown in the present work also highlights how
music perception, and consequently the affective responses
elicited by music, are inherently constrained by the structure
of the human sensory system. It echoes the parallel between
observing 1/f power-law distributions in rhythm and pitch
in music across all human societies [3] and the increased sen-
sitivity of sensory neurons towards signals that exhibit a 1/f
structure [2], which also affects musical pleasure [86]. Such
biological constraints could explain the recent finding that
humans across multiple cultures show a preference for
synchronicity in rhythm, but cultural-specific preferences
towards isochronicity [87]. Whether cross-cultural consist-
ency in the role of sensory influences on musical
expectation persists in the face of cultural variability in
cognitive expectations remains to be seen.
(e) Limitations and future work
There are certain limitations in the current study. First, the
conclusions we derived depend on our established link
between chord ratings and simulations from computational
models of musical expectancy. However, the extent to
which each model could reflect human behaviour remains
limited. For example, although we used PP and IDyOM to
show the independent contribution of sensory surprise com-
pared with cognitive surprise and uncertainty on chord
pleasantness, we were not able to test the role of sensory
uncertainty because PP does not have an explicit mechanism
that models the uncertainty of an expectation. Furthermore,
despite IDyOM’s ability to accurately simulate listeners’
chord surprise ratings, it is unlikely that they form chord
expectations in the exact manner that is hypothesized by
the model. As a variable-order Markov model, IDyOM
assumes that the musical context is parsed serially and thus
does not explicitly model dependencies between non-local
musical elements. This is in contrast to the view that
listeners parse music hierarchically with a representation
beyond regular complexity and over multiple timescales
[30,77,88,89]. It is also contrary to empirical evidence
suggesting that listeners are sensitive to violations in
long-range dependencies in music structure [90,91].
Future work could consider hierarchical models of musical
expectancy following a model comparison approach of the
current study. Although to our knowledge a working
computational implementation is yet to appear, a
promising candidate is the Generative Syntax of Music
model [92].

It is also important to acknowledge that the chord pro-
gression stimuli in the current study were derived from
commercially successful pop songs in the Western tonal tra-
dition. Although this provides a high degree of ecological
validity, it implies that only a subset of possible chord pro-
gression combinations has been presented, and the extent to
which a chord is surprising or pleasant is only relative to
other chords found in this musical style. Previous studies
have shown that the same chord in a progression could
evoke different expectancy and preference ratings depending
on whether the stimuli were composed in the style of
common-practice or rock music [45,93]. These results high-
light the role of stylistic context in shaping perception and
consequent emotional response during music listening, and
therefore suggest the need to demonstrate that the current
findings generalize to other musical styles. Evidence suggests
that statistical learning of music structure could be implicit
[94], and rapid [38], and also observed in other musical
styles [95,96].

Another interesting question that remains is how repeated
listening integrates with an expectancy-driven mechanism of
musical pleasure. Listening to the same musical stimuli
repeatedly has been related to both increase [97,98] and
decrease [98,99] in liking, and has been shown to attenuate
a neurophysiological marker that is evoked from harmoni-
cally surprising chords in a progression [100]. One
hypothesis from the current experiment is that sensory sur-
prise remains unchanged after repeated listening over long
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timescales (e.g. once a week), but is attenuated after immedi-
ate repetition due to adaptation effects. Uncovering how and
over what timescale stimulus repetition shapes cognitive and
sensory expectations would be a crucial next step.

Finally, while the current study demonstrated the indepen-
dent contribution of cognitive and sensory expectations in
shaping musical pleasure, future work needs to clarify the
precise mechanisms relating expectancy, pleasure and the aes-
thetic experience [101]. From a PCM perspective, music
perception is an act of ‘active inference’ as listeners deploy
attention towards resolving hypotheses for musical events in
the upcoming musical passage [14,15]. In line with the Learn-
ing Progress Hypothesis [102], music could confer reward
value by continuously providing opportunities to learn and
improve listeners’ internal model for future predictions [15].
While plausible, empirical evidence remains to be demon-
strated, and it is still unclear how a learning account fits into
models of music engagement, which argue for transitions
between attentive and mind-wandering states during music-
listening [103]. Resolving these questions would prove fruitful
towards understanding our timeless appeal for complex
structured auditory sequences also known as music.
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