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SUMMARY

Listening to music often evokes intense emotions
[1, 2]. Recent research suggests that musical plea-
sure comes from positive reward prediction errors,
which arise when what is heard proves to be better
than expected [3]. Central to this view is the engage-
ment of the nucleus accumbens—a brain region that
processes reward expectations—to pleasurable
music and surprising musical events [4–8]. However,
expectancy violations along multiple musical dimen-
sions (e.g., harmony and melody) have failed to
implicate the nucleus accumbens [9–11], and it is un-
known how music reward value is assigned [12].
Whether changes in musical expectancy elicit plea-
sure has thus remained elusive [11]. Here, we
demonstrate that pleasure varies nonlinearly as a
function of the listener’s uncertainty when antici-
pating a musical event, and the surprise it evokes
when it deviates from expectations. Taking Western
tonal harmony as a model of musical syntax, we
used a machine-learning model [13] to mathemati-
cally quantify the uncertainty and surprise of
80,000 chords in US Billboard pop songs. Behavior-
ally, we found that chords elicited high pleasure rat-
ings when they deviated substantially from what
the listener had expected (low uncertainty, high
surprise) or, conversely, when they conformed to ex-
pectations in an uninformative context (high uncer-
tainty, low surprise). Neurally, we found using fMRI
that activity in the amygdala, hippocampus, and
auditory cortex reflected this interaction, while the
nucleus accumbens only reflected uncertainty.
These findings challenge current neurocognitive
models of music-evoked pleasure and highlight
the synergistic interplay between prospective and
retrospective states of expectation in the musical
experience.

RESULTS

Humans use structured sound sequences known asmusic to ex-

press and evoke emotions [1]. Manipulating the listener’s expec-

tations is a key mechanism through which music elicits pleasure

[1, 2, 14–16]. A fundamental concept and characteristic feature

of Western music is tonal harmony, which describes the syntac-

tic regularities of how simultaneous pitches are combined into

chords, and how chords are related to other chords in a progres-

sion [17]. In this study, we directly addressed whether musical

pleasure depended on the expectancy of individual chords in a

progression (Experiment 1), and how that was reflected in human

brain activity (Experiment 2).

Quantifying Uncertainty and Surprise with Information
Theory
As music unfolds in time, the listener continuously forms expec-

tations on upcoming temporal and acoustic features [3, 13, 18].

This implies the presence of two temporally dissociable states

through which the expectancy of a chord can evoke pleasure:

the uncertainty when anticipating what the next chord could be

before it occurs, and the surprise elicited when the actual chord

deviates from expectations [16, 19]. In contrast, the existing liter-

ature has almost exclusively focused on surprising musical

events [19, 20] and found inconclusive effects on musical plea-

sure [6, 11].

To mathematically quantify uncertainty and surprise, we em-

ployed an unsupervised statistical-learning model [13] that

learned the statistical regularities of over 80,000 chord progres-

sions from a corpus of 745 pop songs listed in the US Billboard

‘‘Hot 100’’ chart between 1958 and 1991 [21]. Our model uses

these learned statistical regularities to simulate a listener’s pre-

diction for novel chord sequences using Shannon’s entropy

and information content (Figure 1; STAR Methods). Entropy re-

flects how uncertain a listener is when anticipating an upcoming
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Figure 1. Quantifying Uncertainty and Surprise of a Chord

(A) An unsupervised statistical-learning model was trained on a corpus of 745 USBillboard ‘‘Hot 100’’ pop songs to derive the uncertainty (red) and surprise (blue)

of chords (here, ‘‘Knowing Me, Knowing You’’ by ABBA; refer to Audio S1). Uncertainty is the lack of a clear expectation when anticipating an event before it is

heard, while surprise occurswhenwhat is actually heard deviates from expectations. Uncertainty of chord ei is quantified by its entropy, or expected negative log-

probability, taken across the set of all chords S in the corpus and conditional on the previous context of chords fe1; .; ei�1g in the progression. Surprise of chord
ei is quantified by its information content, and is the negative log-probability of the actual chord conditional on the context. Gray bars indicate points of high

uncertainty but low surprise, and low uncertainty but high surprise. Subjects (n = 79) were asked to either rate the pleasantness of each chord (2.4 s) from 30 pop

song chord progressions behaviorally or listen attentively and focus on how they fitted together in the context while undergoing fMRI scanning.

(B and C) Scatterplot and marginal densities of the uncertainty and surprise for all chords in the McGill Billboard corpus [21] (circles, n = 80,943) and in our chord

stimuli (triangles, n = 1,039; Table S1).
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chord given only the portion of the song heard so far. Information

content, or surprisal, reflects how surprised the listener is once

actually hearing the chord. These two established information-

theoretic measures have been extensively applied to natural

language processing [22], but only recently to harmony [23] in

music. Our data-driven approach is superior to traditional de-

signs for three reasons. First, we quantify uncertainty and sur-

prise as continuous variables as opposed to comparing a small

number of discrete categories (e.g., violation/no violation) prede-

fined by the experimenter [6, 9, 23–27]. Second, our chord stimuli

are taken directly from the corpus to ensure conformity to stylis-

tic conventions, as opposed to artificial chord progressions used

in prior studies (e.g., [9, 25, 26]). Third, instead of examining plea-

sure elicited by a musical piece overall (e.g., [4, 5, 7]), we inves-

tigate how expectancy differences on a chord-to-chord level

affect musical pleasure.

Experiment 1: Joint Effects of Uncertainty and Surprise
on Musical Pleasure
In Experiment 1, healthy adults (n = 39) listened to 1,039 chords

in 30 chord progressions (Table S1) selected from the 745 pop

songs and rated the pleasantness of each chord using a me-

chanical slider. We only kept the chord progressions from the

original songs (and removed the melody and rhythm) to ensure

that our isochronous chord stimuli were not confounded by
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effects of other musical dimensions and familiarity (songs were

confirmed to be unidentifiable by our subjects). We used a linear

mixed model to analyze the extent to which uncertainty and sur-

prise, and their interaction, predicted pleasantness of chords

taken from the commercially successful pop songs. To account

for temporal autocorrelations in the slider ratings, we used a

first-order autoregressive covariance structure tomodel the rela-

tionship between successive chords in each stimulus. To disam-

biguate probabilistic processing of expectations from sensory

processing, we controlled for low-level acoustic features (i.e.,

sensory dissonance, spectral centroid, and spectral complexity)

in themodel (see Table S3 for correlations with chord uncertainty

and surprise).

We found that the pleasure rating of a chord was significantly

predicted by main effects of uncertainty and surprise, as well as

their interaction (Figure 2; Table 1; see Table S2 for correlation of

random effects). In other words, pleasantness depended on joint

effects of the precision of the listener’s predictions, and the

probability of the chord given the tonal harmonic context. Since

the generation of an expectation precedes its deviation, we inter-

pret this interaction as the modulatory effect of uncertainty on

the effect of surprise on musical pleasure. When the uncertainty

of the harmonic context was low (e.g., toward the end of a

musical section), chords with higher surprise (i.e., those that

were less probable) were rated as more pleasant than those



Figure 2. Uncertainty and Surprise Jointly Shape the Pleasure Rat-

ing of a Chord

(A) Standardized pleasure ratings to a chord progression taken from ‘‘Knowing

Me, Knowing You’’ by ABBA (Audio S1). Diamonds indicate mean pleasant-

ness ratings for each chord. Filled circles indicate fitted values from a linear

mixed model with chord uncertainty, surprise, and their interaction as
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with lower surprise. Conversely, when uncertainty was high (e.g.,

in chord progressions atypical of the listener’s musical experi-

ence), subjects rated chords that were less surprising as more

pleasant (Figure 2B).

In fact, the regression surface (Figure 2C) resembled a sad-

dle, where the multiplicative effect of uncertainty and surprise

along the two diagonals predicted pleasantness in a parabolic

(U/inverted-U) manner. This is reminiscent of Berlyne’s [31]

influential model in empirical aesthetics, which postulated an

inverted-U relationship between pleasure and variables such

as exposure and complexity. Critically, however, our findings

paint a more complicated and multifaceted picture of musical

pleasure. Our findings imply that isolated effects of individual

variables alone cannot fully explain the musical experience,

as it is likely to be a nonlinear function of multiple interacting

factors.

Furthermore, consistent with prior work [32–36], the low-level

acoustic features also showed significant effects on pleasure

(but were controlled for in the model). The magnitude of stan-

dardized beta estimates in our model (Table 1) indicated that

when the uncertainty of the chord was at its mean, the effect

of surprise was 30% larger than sensory dissonance, and this

marginal effect became twice as large when chord uncertainty

was increased to 1.5 SD above the mean.

Experiment 2: Neural Basis of Uncertainty and Surprise
in Music-Evoked Pleasure
To directly assess the underlying brain regions whose activity

correlated with uncertainty and surprise, another group of sub-

jects (n = 40) listened to the same isochronous chord stimuli

and was instructed to pay attention to how the chords fitted

together in the progression while undergoing fMRI scanning in

Experiment 2. As before, we confirmed that our stimuli were un-

familiar to the subjects. Despite the sluggishness of the blood-

oxygen-level-dependent (BOLD) response, the long duration of

each chord (2.4 s) meant that metabolic changes could still be

measured on a chord-to-chord level. We also used multiband

echo-planar imaging (EPI) [37, 38] to allow for a sub-second tem-

poral resolution while maintaining good spatial coverage. We

focused our analysis on brain regions previously shown to be

implicated in music-evoked emotions across multiple studies

[1]: the bilateral amygdala and adjacent anterior hippocampus,

bilateral auditory cortex, right nucleus accumbens, left caudate

nucleus, and the pre-supplementary motor area. Given that

musical pleasure depends on joint effects of uncertainty and sur-

prise, we hypothesized that the underlying brain regions would

also show the same interaction.
predictors. Error bars indicate 95% confidence intervals (95% CI). Low-level

acoustic parameters were also included as covariates to control for sensory

confounds.

(B) Contour plot demonstrating how pleasantness ratings jointly depend on

uncertainty and surprise. When the tonal harmonic context does not allow for a

prediction with high precision (i.e., when uncertainty is high), the pleasantness

of a surprising chord is low. However, when the uncertainty is low, surprising

chords are highly pleasurable.

(C) Data from (B) replotted in 3D. Although reminiscent of the characteristic

inverted-U response from empirical aesthetics, the regression surface is in fact

a saddle for which pleasantness varies nonlinearly across different levels of

uncertainty and surprise.
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Table 1. Parameter Estimates of the Linear Mixed Model in Experiment 1

Fixed-Effect Predictor Standardized b 95% CI Deviance p

Intercept 0.0219 [�0.0740, 0.118] 0.200 0.655

Uncertainty �0.143 [�0.186, �0.0989] 40.2 2.33 3 10�10***

Surprise �0.327 [�0.418, �0.236] 29.2 6.57 3 10�8***

Uncertainty 3 surprise �0.124 [�0.183, �0.0644] 13.4 0.000246***

Sensory dissonance �0.251 [�0.345, �0.158] 19.3 1.41 3 10�5***

Spectral centroid 0.0719 [0.0244, 0.119] 8.77 0.00306**

Spectral complexity 0.224 [0.147, 0.300] 23.0 1.65 3 10�6***

Overall pleasantness of sequence 0.171 [0.032, 0.309] 5.28 0.0215*

Overall arousal of sequence �0.0321 [�0.160, 0.0956] 0.242 0.623

Subjects (n = 39) continuously rated the pleasantness of 1,039 chords in 30 chord sequences using a mechanical slider. The pleasantness of a chord

depended on not only the amount of surprise evoked, but also the uncertainty in anticipating the chord before it was actually heard. Low-level acoustic

effects were also introduced as covariates (see Table S3 for correlations with chord uncertainty and surprise) to disambiguate probabilistic processing

from low-level sensory processing. Deviance here denotes twice the difference in log-likelihood between the full model and a restricted model with the

effect omitted. Significance of individual fixed effects was determined using the likelihood-ratio test after a full-null model comparison [28, 29]. Marginal

and conditional R2 values for the model were estimated according to [30]. See Table S2 for correlation of random effects. Marginal R2 = 0.476; con-

ditional R2 = 0.654; *p < 0.05, **p < 0.01, ***p < 0.001.
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Consistent with our behavioral findings, we found in Experi-

ment 2 (Figure 3; see Table S4 for parameter estimates) that

the interaction between uncertainty and surprise significantly

modulated the BOLD response in the bilateral amygdala and hip-

pocampus (left: b = �0.116, corrected 95% CI = [�0.201,

�0.0445], sign test: s = 11, corrected p = 0.0450; right: b =

�0.140, corrected 95% CI = [�0.238, �0.0410], one-sample

t test: t(39) = �4.02, corrected p = 0.00181; see also Figure S1).

This is in line with prior studies implicating the amygdala in sur-

prises in tonal harmony and changes in musical tension [26,

27], as well as the hippocampus in encoding the uncertainty of

sequences [39, 40], and forming memory associations during

music listening [5].

Furthermore, this interaction modulated activity in the bilateral

auditory cortex (left: b = �0.182, corrected 95% CI = [�0.288,

�0.0766], t(39) = �4.90, corrected p = 0.000120; right: b =

�0.128, corrected 95% CI = [�0.220, �0.0355], t(39) = �3.93,

corrected p = 0.00234), with stronger effects in the left compared

to the right (Figure S2). In line with our observed interaction, pitch

deviants in melodies [41] and timing deviants in rhythm [42]

evoke reduced auditory mismatch responses for stimuli with

increased uncertainty (although pleasantness was not investi-

gated in those studies; see [16] for a discussion). The established

role of the auditory cortex in processing sound, as well as the

amygdala and hippocampus in processing emotions, suggests

that the pleasure evoked by expectations in music rests on a

close link between perceptual analysis and affective evaluation

[1, 3, 43].

Remarkably, neither a significant interaction between uncer-

tainty and surprise nor a main effect of surprise was detected

in the nucleus accumbens or caudate (all corrected p > 0.993).

We instead detected a positive main effect of uncertainty in

the right nucleus accumbens (b = 0.242, corrected 95% CI =

[0.0720, 0.412], t(39) = 4.04, corrected p = 0.00170) and left

caudate (b = 0.281, corrected 95% CI = [0.0661, 0.496],

t(39) = 3.71, corrected p = 0.00447). This means striatal activity

was increased when the tonal harmonic context was less infor-

mative in revealing what the ensuing chord could be and
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decreased when more informative. In a post hoc analysis, we

found comparable results in the contralateral nucleus accum-

bens and caudate with no evidence of laterality (Figure S3).

Our data therefore suggest that striatal activity encodes the un-

certainty of an expectation, irrespective of the magnitude of sur-

prise. Finally, the pre-supplementary motor area likewise only

showed a significant positive modulation to uncertainty (b =

0.358, corrected 95%CI = [0.145, 0.570], t(39) = 4.78, corrected

p = 0.000176).

DISCUSSION

Our results contribute direct evidence in support of an expec-

tancy mechanism in evoking musical pleasure [2, 14–16, 18,

44]. We showed that surprise, a retrospective response, alone

cannot fully explain the link between expectations in music and

pleasure. Our data demonstrate that uncertainty, a prospec-

tive state of expectation, is another crucial dimension needed

to describe this relationship. Pleasantness ratings to isochro-

nous chord progressions taken from commercially successful

Western pop music indicated high pleasure in two situations:

when a chord with high surprise had been predicted with low

uncertainty, or conversely, when a chord with low surprise

had been predicted with high uncertainty. This interaction ef-

fect was reflected by metabolic changes in the amygdala,

anterior hippocampus, and auditory cortex, but not the nu-

cleus accumbens. Uncertainty and surprise are in fact key

components of an influential predictive-coding model of

neuronal message-passing across the cortical hierarchy [16,

20, 45]. In this model, music perception is construed as an

active process where the brain continuously updates its

generative model of the environment to minimize variational

free-energy [16, 20]. Music may therefore elicit pleasure by

encouraging the listener to continuously generate and resolve

expectations as the piece unfolds in time [16, 20]. The impor-

tance of the temporal dimension in evoking pleasure sets mu-

sic apart from the static visual objects that are traditionally

studied in empirical aesthetics [46, 47].



Figure 3. Neural Basis of Uncertainty and Surprise in Music-Evoked Pleasure

(A) Model-based fMRI revealed that BOLD activity in the bilateral amygdala and neighboring anterior hippocampus (Amyg/Hipp), as well as the bilateral auditory

cortex (AC), is significantly modulated by the interaction of chord uncertainty and surprise.

(B) The right nucleus accumbens (NAcc), left caudate (CN), and pre-supplementary area (pre-SMA) instead only showed significant positive modulations to chord

uncertainty. See also Figures S1–S3 and Table S4. Boxplots show parameter estimates for the effect of uncertainty, surprise, and their interaction in each region

of interest (n = 40; filled circles, data points; solid line, median; diamond, mean; notches, 95% CI of the median; hinges, IQR; whiskers, 1.5*IQR; statistical in-

ferences were made using one-sample t tests (two-tailed) or sign tests (for non-normal data) and Bonferroni-corrected for multiple comparisons (n.s., pR 0.05,

*p < 0.05, **p < 0.01, ***p < 0.001).
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Unlike prior studies [4, 7, 8, 48], which appealed to the estab-

lished role of the nucleus accumbens in reward expectation [49,

50] as evidence supporting an expectancy mechanism of

musical pleasure, we directly addressed how predictability in

our stimuli modulated pleasantness. These studies also left un-

explained which musical dimensions constituted an expected

musical reward, and how reward value is assigned to musical

events [12]. In contrast, our results indicate that musical pleasure

comes from manipulating both the uncertainty of the listener’s

expectations before hearing an event and the surprise that fol-

lows when such expectations are not met. Here, these events

are chords represented on the symbolic level and objectively

quantified using information theory. These chord expectations

are likely generated, at least partly, in the inferior frontal gyrus,

a region shown to process expectation deviations in musical

structure [9, 18, 51], and passed top-down to the auditory cortex

[16, 20, 44]. Since the uncertainty and surprise of a chord were

derived independently from its acoustic characteristics and

solely on its conditional probability of occurrence, the same

chord will have a different level of uncertainty and surprise de-

pending on the combination of chords prior in the progression.

Combined with the control of low-level acoustic regressors, we

can rule out that our results were driven by sensory-acoustic

features.

Activity in the nucleus accumbens and caudate did not show

significantmodulation to the effect of chord surprise and its inter-

action with uncertainty. Given the central role of the nucleus ac-

cumbens in reward prediction, this might be seen as at odds with

our behavioral finding that pleasantness is predicted by the joint

effect of uncertainty and surprise. Instead, we found that uncer-

tainty positively modulated striatal activity. Our results suggest

that the striatum performs a facilitatory, although important,

role in generating musical pleasure —that of modulating incen-

tive salience, or the motivation or ‘‘wanting’’ of subsequent infor-

mation that resolves uncertainty [44, 49]. In addition to reward

expectation, the nucleus accumbens is argued to play a signifi-

cant role in integrating cognitive and affective information to

direct attention and modify actions toward motivationally rele-

vant stimuli through dopaminergic pathways [50]. In line with

this and consistent with our findings, dopamine is assumed to

encode the precision (the inverse of uncertainty) of prediction er-

rors in the free-energy principle [16, 20]. Indeed, causal studies

on musical pleasure [48, 52] do not claim that striatal dopami-

nergic neurons induce pleasurable emotions per se, but highlight

their necessity in regulating affective responses to music. Taken

together, we suggest that a role of the nucleus accumbens in

musical pleasure is to modulate attention deployment, depend-

ing on uncertainty, in the amygdala, hippocampus, and auditory

cortex. In line with this, the nucleus accumbens has shown

increased functional connectivity with the amygdala, hippocam-

pus, auditory cortex, and the inferior frontal cortex for music that

was more pleasant [4, 6].

Our study has certain limitations. First, our auditory stimuli

consisted of computer-generated isochronous chord progres-

sions taken from original pop songs. Although this allowed

us to isolate effects of harmonic expectancy by controlling

for confounds such as rhythm, melody, familiarity, dynamics,

and instrumentation, the expectancy of these other dimen-

sions and the dimensions themselves are also likely to
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influence pleasure [2, 8, 15, 53, 54]. Second, the parametric

values of uncertainty and surprise derived from our computa-

tional model are constrained by the corpus from which the

statistical regularities are computed. In other words, a highly

surprising chord predicted with low uncertainty here is only

relative to other chords present in the McGill Billboard corpus

of commercially successful pop songs [21]. Third, listeners’

experiences shape their internal model of the statistical regu-

larities of chords in a progression [13]. This means that factors

such as culture, genre, and style affect how surprising a chord

is, and with how much precision it can be expected [13].

Whether our results extend to other musical styles (see, e.g.,

[55] for a discussion on atonal music), and the extent to which

enculturation, expertise, and individual differences shape our

preferences and emotional responses to music thus remain

open questions.

In summary, we show with the help of an unsupervised statis-

tical-learning model that musical pleasure depends on the dy-

namic interplay between prospective and retrospective states

of expectation. We demonstrate that this joint effect is reflected

by metabolic changes in the amygdala, hippocampus, and audi-

tory cortex, and is likely mediated through dopaminergic incen-

tive salience signals in the nucleus accumbens—which instead

showed a positive modulation to uncertainty. Our fundamental

ability to predict [16, 20] is therefore an important mechanism

through which abstract sound sequences acquire affective

meaning and transform into a universal cultural phenomenon

that we call ‘‘music’’ [15].
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

Brain-masks of regions involved in music-evoked emotions [1] https://doi.org/10.1038/nrn3666

McGill Billboard Corpus [21] https://ddmal.music.mcgill.ca/research/The_McGill_

Billboard_Project_(Chord_Analysis_Dataset)/

Software and Algorithms

Statistical Parametric Mapping 12 (version 7219) Wellcome Centre for

Human Neuroimaging

https://www.fil.ion.ucl.ac.uk/spm/software/spm12/

Information Dynamics Of Music (IDyOM) model [56] https://code.soundsoftware.ac.uk/projects/idyom-

project

MATLAB 2017b MathWorks https://www.mathworks.com

R 3.5.1 RStudio https://rstudio.com/

glmmTMB (fix_confint_ar1 branch) [57] https://github.com/glmmTMB/glmmTMB

MarsBar 0.44 [58] http://marsbar.sourceforge.net/
LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Stefan

Koelsch (stefan.koelsch@uib.no). This study did not generate new unique reagents.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

A total of 83 healthy human adults took part in the study. Data from one male subject in Experiment 1 was excluded due to non-

compliance with the experimental procedure. Functional MRI data from two subjects (1 female, 1 male) in Experiment 2 were

excluded due to data-handling errors, and one further female subject was excluded as her overall music reward score (see below)

was over 3 standard deviations below the population mean. Subjects took part in either the behavioral or fMRI experiment, but not

both to ensure that the stimuli were novel to the subjects.

For Experiment 1, data were analyzed from 39 subjects with diverse levels of musical training (21 females, age: M = 24.1 y, SD =

3.80, general musical sophistication: M = 71.5, SD = 16 (corresponding to the 31st percentile of 147,633 self-selected subjects in the

‘Howmusical are you?’ test on the BBC website) from the Goldsmiths Musical Sophistication Index (Gold-MSI) [59], musical training

subscale of the Gold-MSI: M = 23.4, SD = 10.3, range = 7–41 (corresponding to the 1st and 86th percentile), overall music reward: M =

48.6, SD = 8.53 (population M = 49.98 and SD = 10.01 based on a sample of 857 young-adult subjects) from the Barcelona Music

Reward Questionnaire (BMRQ) [60]).

For Experiment 2, data were analyzed from 40 subjects also with diverse levels of musical training (20 females, age: M = 25.2 y,

SD = 4.16, general musical sophistication: M = 72.2, SD = 19.9 (corresponding to the 32nd percentile), musical training:M = 23.6, SD =

11.5, range = 7– 48 (corresponding to the 1st and 100th percentile), overall music reward: M = 47.9, SD = 10.3).

No significant differences in age (Mann-Whitney U = 888, p = 0.290), general musical sophistication (Welch’s t test t(74.38) = 0.175,

p = 0.861), musical training (Mann-Whitney U = 779, p = 0.996), or overall music reward (Mann-Whitney U = 817, p = 0.720) were

observed between subjects from the behavioral experiment (Experiment 1) and fMRI experiment (Experiment 2). No sex-specific an-

alyses were conducted as we were interested in effects general to the population.

All subjects were self-reported right-handed, with normal hearing, had normal or corrected-to-normal vision, and reported no

known history of psychological or neurological disorders. Written informed consent was obtained from each subject prior to the

experiment, and the study was approved by the Ethical Committee of the Medical Faculty at Leipzig University.

METHOD DETAILS

Information Dynamics Of Music model
Weused the Information DynamicsOfMusic (IDyOM)model [13, 56] to derive the surprise and uncertainty of every chord in theMcGill

Billboard Corpus [21]. This unsupervised statistical-learning model computes the Shannon information content and entropy [61] of a

chord by prospectively generating a probability distribution for each chord in a song (or more generally, symbols in a sequence)

conditioned on its previous context and the prior experience of the model.
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At the core of IDyOM is the PPM algorithm, a variable-order Markov model introduced by Cleary andWitten [62] and subsequently

updated by Moffat [63] and Bunton [64]. The PPM algorithm reads a sequence one symbol at a time, and generates a probability

distribution for the symbol by blending together predictions from n-gram models of different orders. An n-gram model of order

n–1 is aMarkovmodel that generates the probability of a symbol by conditioning on the previous context of n–1 symbols. Thus, given

the set of all chords S and a chord progression fe1; .; ei ; .; eNg, the n-gram probability of chord ei is given by pðei j ei�ðn�1Þ ; .;

ei�1Þ. The information content of chord ei is defined as the negative logarithm of its conditional probability, i.e.,

IðeiÞ = � log2p
�
ei

��ei�ðn�1Þ;.; ei�1

�

while the entropy of chord ei is the expected information content of chord ei. This is obtained bymultiplying the conditional probability

of all possible chords in S by their information contents then summing together, giving

HðeiÞ = �
X

e˛S

p
�
ei = e

��ei�ðn�1Þ;.; ei�1

�
log2p

�
ei = e

��ei�ðn�1Þ;.; ei�1

�

Previous work has demonstrated the superiority of IDyOM over fixed order n-gram models in modeling listeners’ probabilistic ex-

pectations of musical events [19, 56].

IDyOM incorporates both a short-termmodel and a long-termmodel. The short-termmodel is trained incrementally on the current

progression, thereby learning statistical regularities specific to the current stimulus. The long-term model is trained on all stimuli in a

representative corpus of musical compositions, simulating the listener’s prior musical exposure; here we used the McGill Billboard

pop music corpus as it reflects a musical style that is popular and widely accessed by listeners of Western tonal music, and contains

the most common chord progressions in popmusic. We also applied 10-fold cross-validation to avoid overfitting to individual songs.

IDyOMcombines the short- and long-termmodels using a geometric weightedmean [65], where eachmodel is inversely weighted by

the entropy of its predictions. This model configuration, termed ‘BOTH’ in [66], has proved to be useful both for modeling musical

style [67] and for modeling music perception (e.g., [19, 68–71]). Consequently, IDyOM captures both stylistic regularities (from the

training corpus) and local regularities (from the portion of the song heard so far) to improve its ability to generate successful

predictions.

Although previous applications of IDyOM have mostly been limited to the melodic domain [19, 56, 68–71], there is emergent inter-

est in applying themodel to harmonies [23]. Inmelodic applications, an important aspect of IDyOM is the use of viewpoints to embody

different psychological and music-theoretic principles (e.g., relative pitch, tonality). Comparable viewpoint systems have yet to be

established in the harmonic domain (although see [72] for initial work in this direction). We therefore used IDyOM in a single-viewpoint

configuration, where the symbolic alphabet consisted of chord symbols present in the training corpus and included scale degree,

chord type, and inversions.

Stimuli
Stimuli consisted of 30 unique auditory chord progressions (Table S1) selected from 745 songs listed on the US Billboard ‘Hot 100’

chart between 1958 and 1991 in the McGill Billboard Corpus [21], resulting in a total of 1039 chords. The duration of each chord was

2.4 s, and each progression contained 30-38 chords (M = 34.6). These parameters were chosen to optimize signal-to-noise ratio of

the data given the long rise time (�6 s until peak after stimulus onset) and sluggishness of the BOLD response in fMRI. Each chord

progression was also transposed to Cmajor to further reduce the possibility of familiarity effects. No significant correlations between

the uncertainty and surprise of chords were detected in the stimulus set (r = �0.0218, p = 0.482; Figure 1C; Table S3).

Chord sequences were chosen by first generating all possible (494,807) chord progressions containing 30-38 chords for every

song in the corpus, and imposing the criteria that 1) each progression must begin on the tonic root position and end on a perfect

or plagal cadence (as in most Western tonal compositions), 2) each progression must contain at least one chord that belongs to

each quadrant of the product [high/low informational content]3 [high/low entropy] (where high and low respectively denote the upper

and lower 40th percentile of chords in the corpus), and occurs at least five chords after onset and before the end of each progression,

3) each progression must contain at least unit variance in entropy and log(information content) (to adjust for skewness in the distri-

bution) in each progression, and that 4) each sub-sequence of at least five chords must only repeat after a gap of at least two chords

and not repeat more than three times (including the first presentation) consecutively. Note that the quadrant boundaries are con-

strained by the set of chords in the corpus, and may thus be conservative within the broader spectrum of musical styles beyond

pop music. We then selected exactly one progression from the remaining songs that minimized the ordinal relationship between in-

formation content and 1-lagged entropy (i.e., the entropy of the subsequent chord) using Kendall’s tau. This final step was carried out

for another study with a different research question.

All chords were initially generated asMIDI files using theMIDI-Toolbox [73] inMATLABR2013b (MathWorks, Natick, MA, USA) and

rendered as wav files (44100 Hz sampling rate) with a synthetic timbre composed of a jazz guitar, an acoustic guitar, and a marimba

using Pro Tools (Avid Technology, Burlington, MA, USA). All instruments played the full chords together in every stimulus. Three sepa-

rate background rhythms with a synthetic drum-kit timbre were made using GarageBand for iOS (Apple, Cupertino, CA, USA), and

superposed on the sound waves in MATLAB. Each rhythm spanned the duration of each chord, was in quadruple time (regardless of

the time signature of the original song), and was repeated throughout each stimulus. These background rhythms were introduced to

enhance the momentum of the stimuli given the relatively slow tempo of the chord progressions. Reverberation and damping were
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adjusted to ensure that the waveform of each chord and rhythm did not spill over to the subsequent chord. The auditory stimuli were

then normalized in loudness using ReplayGain in Audacity (https://www.audacityteam.org/).

Procedure for Experiment 1
Subjects gave pleasantness ratings to chords in auditory chord sequences using a custom-built 10 cm analog mechanical slider in a

soundproof cabin. The slider was held with the left hand and placed on the lap perpendicular to the body, while the right thumb was

used tomove the slider pot. Moving the pot away from the body indicated a higher rating, and vice versa. The highest rating was ‘sehr

angenehm’ (very pleasant), and the lowest was ‘nicht angenehm’ (not pleasant). Each trial began with the subject resetting the slider

to the lowest rating as the first chord was identical for all stimuli (ratings from the first chord were excluded from the analysis), and the

stimulus was presented 2 s afterward. Subjects rated the pleasantness of each chord in the auditory sequence by moving the slider

pot to its corresponding position, and were explicitly told to give at most one rating for every chord. They were encouraged to use the

full range of the slider, and to select extreme ratings at least 5 times throughout the entire experiment as in prior work [74]. Once the

chord progression was over, subjects were given two 3 s time-windows to rate the overall pleasantness and arousal of the progres-

sion (order pseudo-randomized) on a 1-6 scale using the top number keys on a computer keyboard. Subjects were then prompted to

begin the next trial as before.

The 30 auditory isochronous chord progressions were presented in a pseudo-random order, with the three background rhythms

evenly assigned to the stimuli and counterbalanced across participants. The experiment was delivered using PsychToolbox 3 [75] in

Octave 4.0.0 [76], and stimuli were presented using supra-aural headphones (Beyerdynamic DT 770 PRO) at a comfortable volume.

The slider was connected to an Arduino Micro microcontroller that acted as a digital-analog converter with a 20 Hz sampling rate.

Subjects practised on three trials (with a different set of stimuli) prior to the experiment to ensure they understood the task. At the

end of the experiment, subjects were asked whether the chord progressions in the stimuli were familiar to them, and if possible,

to name the possible artist or song. No subjects mentioned the relevant artist or song featured in our stimuli, except for one subject

who suggested the possibility of a chord progression by The Beatles without actually identifying the song.

Procedure for Experiment 2
The fMRI experiment was divided into five runs, and the procedure was similar to the behavior experiment. Each trial began with the

instruction asking subjects to close their eyes, then the presentation of an auditory chord progression ensued after a 10 s pause.

Subjects’ task was to listen attentively to the chord progressions and to pay attention to how each chord fits in with the previous

chords in the progression. A 1 s-sine wave tone (C5 = 523.25 Hz) then informed subjects to open their eyes 1 s after the end of stim-

ulation. Following a 1 s pause, subjects were given two 3 s time-windows to rate overall pleasantness and arousal of the stimulus

using a 1-6 scale (order randomized to minimize motor preparation) on an MR-compatible button box in each hand. They were

then instructed to close their eyes again and the next trial began.

In each run, six auditory sequences (two of each rhythm, counterbalanced across subjects) were pseudo-randomly selected from

the 30 stimuli and presented without replacement. The experiment was delivered using PsychToolbox 3 in Octave 4.0.0, and stimuli

were presented using noise-isolating earphones (Sensimetrics S14) at a comfortable volume. Foam pads were placed around the

head to minimize movement, and the scanner was stopped for a pause of approximately 60 s at the end of each run. Subjects prac-

ticed on three trials (with a different set of stimuli) outside the scanner prior to the experiment to ensure they understood the task. At

the end of the experiment, subjects were askedwhether the chord progressions in the stimuli were familiar to them, and if possible, to

name the possible artist or song. No subjects mentioned the relevant artist or song featured in our stimuli.

fMRI data acquisition for Experiment 2
Brain imaging data were acquired on a 3T Magnetom Skyra scanner (Siemens Healthcare, Erlangen, Germany) with a 32-channel

head coil and a multiband EPI sequence [37, 38] (TR = 500 ms, TE = 24 ms, flip-angle = 45�, FoV = 204 mm, in-plane matrix =

68 3 68, slice thickness = 3.2 mm, inter-slice gap = 0.32 mm, phase-encoding = A/P, multiband acceleration factor = 4, 7/8 par-

tial-Fourier sampling, pre-scan normalization enabled, 1241 volumes per run, 5 runs in total). Slices were oriented along the axial

plane parallel to the AC-PC line and covered thewhole neocortex (with partial coverage of the cerebellum and brainstem). Six dummy

scans were acquired and discarded by the scanner for steady-state magnetisation at the start of each run.

QUANTIFICATION AND STATISTICAL ANALYSIS

Behavioral data analysis for Experiment 1
To obtain pleasure ratings for all chords, the pleasantness time series for every chord progression was first smoothed using amoving

median filter with a fifth-order symmetric window to reduce analog noise. The mode of the smoothed signal was then sampled in a

time window from one second after each chord onset until its end to account for delays in moving the slider. The first chord of each

progression was discarded since each trial began by resetting the slider.

Stationarity of each uncertainty and surprise sequence (derived using IDyOM) was examined using the Augmented Dickey-Fuller

(ADF) test and Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test, and suggested that no differencing was required.

We then fitted a linear mixed model using the package glmmTMB [57] in R 3.5.1 using RStudio (RStudio, Boston, MA, USA). The

response variable was the pleasantness rating of each chord (averaged across subjects), and the predictors of interest were chord
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uncertainty, surprise, as well as the interaction between the two variables. This interaction is given by the element-wise product of

uncertainty and surprise. As previouswork suggested that sensory dissonance, spectral complexity, and spectral centroid also affect

pleasure ratings inmusic [32–35, 77], we extracted themean value of these low-level acoustic features for every chord using Essentia

2.1 [78] and entered them as covariates in the model. We also added overall pleasantness and overall arousal ratings of each excerpt

as covariates. Furthermore, stimulus-specific random effects were included for the intercept, surprise, interaction between

uncertainty and surprise, sensory dissonance, and spectral complexity. These were selected following the suggestion of Barr and

colleagues [79], where all fixed effects predictors were initially also entered as random effects, and then dropped as random effects

until the model converged. A first-order autoregressive covariance structure was also used to model the autocorrelation between

each subsequent chord rating in a given stimulus. All predictors and the response variable were moreover standardized before

entering into the model. Parameters were estimated using maximum likelihood for model comparison. Model residuals were visually

inspected for homoscedasticity and normality. Subject-specific random effects were not included as the model residuals became

severely heteroscedastic.

We further fitted a null model for a full null model comparison to guard against inflated Type I errors [28, 29]. This null model was

formed by dropping from the full model our predictors of interest (i.e., uncertainty, surprise, and their interaction), and the random

effect of surprise (due to convergence issues). After establishing the overall significance of the full model over the null model (likeli-

hood-ratio test: c2(8) = 225, p < 2.203 10�16) using a significance threshold of p < 0.05, the significance of each fixed effect in the full

model (Table 1) was tested against reduced models (where effect is dropped) using the likelihood ratio test. Here, we report Wald

95%-confidence intervals.

fMRI data preprocessing for Experiment 2
Functional MRI images were analyzed using SPM12 (Wellcome Centre for Human Neuroimaging, London, UK) version 7219 in

MATLAB 2017b. After conversion to Nifti format, acquired images were despiked using 3dDespike in AFNI [80], then motion-cor-

rected, co-registered to subjects’ T1-weighted structural image, normalized to MNI space and resampled to the native voxel reso-

lution [81], before smoothing with a 6 3 6 3 6.4-mm (corresponding to twice the voxel size) FWHM Gaussian kernel. Slice-timing

correction was not applied given the fast repetition time of the acquisition sequence.

fMRI data analysis for Experiment 2
Weanalyzed ourmodel-based fMRI [82] data using a two-stagemixed effectsmodel [83]. A linearmodel was first fitted on the subject

level with one boxcar function modeling the stimulation of each chord progression, and standardized parametric modulators coding

uncertainty, surprise, interaction between uncertainty and surprise, sensory dissonance, spectral centroid, and spectral complexity

of each chord, as well as valence and arousal ratings for each progression. These regressors were convolved with the canonical hae-

modynamic response function and its temporal derivative. Each parametric modulator was separately orthogonalised with respect to

the task-regressor to correctly assign signal variance to the main stimulus regressor [84]. Six rigid-body transformation regressors

were further introduced as covariates to reduce motion-induced artifacts. Effects of temporal autocorrelation were modeled with a

FAST-autoregressivemodel, and a high-pass filter with a 128 s cut-off was applied to remove low-frequency scanner drifts. Individual

means and variances were then pooled into a group-level model for population inferences. As we aimed to identify the neural cor-

relates of chord uncertainty and surprise in brain regions previously implicated in music-evoked emotions, we took all seven signif-

icant clusters from a meta-analysis on anatomical regions implicated in music-evoked emotions [1]. These consisted of the bilateral

amygdala and a restricted portion of the anterior hippocampal formation adjacent to the amygdala (including the hippocampal-amyg-

daloid transition area, hippocampus proper, and the subiculum), right ventral striatum (including the nucleus accumbens), left

caudate nucleus, bilateral auditory cortex, and the pre-supplementary motor area.

Population inferences (Figure 3; Table S4) were made on the mean parameter estimates obtained with MarsBar version 0.44 [58]

using two-tailed one-sample and paired t tests (as suggested in [85]). If data deviated from normality according to the Shapiro-Wilk

test, sign tests or Wilcoxon signed-rank tests were instead conducted with 95% bootstrap confidence intervals of the median on

10000 permutations. P values and confidence intervals were Bonferroni-corrected according to the number of regions tested in a

given analysis.

DATA AND CODE AVAILABILITY

Data supporting findings of this study are available from the Lead Contact upon request. Code for the IDyOM model is available at

Sound Software: https://code.soundsoftware.ac.uk/projects/idyom-project. The McGill Billboard corpus dataset is available at

DDMAL: https://ddmal.music.mcgill.ca/research/The_McGill_Billboard_Project_(Chord_Analysis_Dataset)/
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