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Abstract Memory, on multiple timescales, is critical to our ability to discover the structure of our

surroundings, and efficiently interact with the environment. We combined behavioural manipulation

and modelling to investigate the dynamics of memory formation for rarely reoccurring acoustic

patterns. In a series of experiments, participants detected the emergence of regularly repeating

patterns within rapid tone-pip sequences. Unbeknownst to them, a few patterns reoccurred every

~3 min. All sequences consisted of the same 20 frequencies and were distinguishable only by the

order of tone-pips. Despite this, reoccurring patterns were associated with a rapidly growing

detection-time advantage over novel patterns. This effect was implicit, robust to interference, and

persisted for 7 weeks. The results implicate an interplay between short (a few seconds) and long-

term (over many minutes) integration in memory formation and demonstrate the remarkable

sensitivity of the human auditory system to sporadically reoccurring structure within the acoustic

environment.

Introduction
Memory is a crucial component of sensory perception, on multiple processing levels (Bale et al.,

2017; Muckli and Petro, 2017). In the auditory modality, the ability to identify essentially any sound

source, from footsteps to musical melody, requires the capacity to hold consecutive events in mem-

ory so as to link past and incoming information into a coherent emerging representation

(Koelsch et al., 2019; McDermott et al., 2013; Winkler et al., 2009). Whilst traditional models of

sensory memory (e.g. Cowan, 1998) argued that such sensory traces are characterized by short

retention times and computational encapsulation, a large body of work has since revealed that

observers can retain detailed sensory information implicitly, over long periods (Arciuli and Simpson,

2012; Chun, 2000; Jiang et al., 2005; Kim et al., 2009; Vogt and Magnussen, 2007; Winkler and

Cowan, 2005). A compelling instance was demonstrated by Agus et al., 2010; (see also Agus and

Pressnitzer, 2013; Kang et al., 2017 who showed that naive listeners readily remembered certain

spectro-temporal features of random noise bursts, such that reoccurring snippets were recognized

weeks after initial exposure.

Here, we focus on long-term memory formation for arbitrary frequency patterns within rapidly

unfolding sequences of discrete sounds. We ask whether naı̈ve listeners can become sensitized to

sparsely reoccurring tone sequences and investigate the conditions under which such memories are

formed. To formalize the underlying psychological mechanisms, we simulate human performance

with a probabilistic model of sequential memory (Harrison et al., 2020; Pearce, 2018).

The experimental design (Figure 1) capitalizes on a paradigm developed by Barascud et al.,

2016 for measuring listeners’ sensitivity to complex acoustic patterns. Using fast sequences of short

tones, they showed that listeners can rapidly detect the transition to a regularly repeating pattern
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(REG) from a sequence of random tones (RAN). Sequences were novel and too rapid to allow for

conscious tracking, but on most trials, participants were able to respond soon after the onset of the

second cycle of regularity, implicating an efficient memory for the immediate sequence context.

Here, we ask how this memory is affected if the tone pattern was already experienced in the past.

Reaction times in Barascud et al., 2016 were consistent with those obtained from an ideal-

observer model based on prediction by partial matching (PPM; Pearce, 2005; Pearce, 2018). Shown

to be an effective model of human auditory sequence learning on multiple time scales (Agres et al.,

2018; Di Liberto et al., 2020; Harrison and Pearce, 2018; Pearce, 2018; Pearce and Wiggins,

2006), this model proposes that listeners acquire an internal representation of the sound input by

keeping track of multiple-order Markovian transition probabilities. This context is then used to evalu-

ate the (un)expectedness of ensuing sounds by deriving a measure of surprisal (information content

– IC; negative log probability). RAN and REG sequences differ in unexpectedness (high for RAN, low

for REG). The transition from a random to a regular pattern (RANREG stimulus) can therefore be

detected as a salient drop in information content in the model output (Figure 1) which reflects

increasing compatibility between the incoming sounds and the stored context. The pattern of behav-

ioural reaction times as well as brain response latencies recorded from naive, passively listening par-

ticipants (Barascud et al., 2016; Southwell et al., 2017; Southwell and Chait, 2018) suggest that

listeners indeed identify the emergence of regularity by detecting the associated drop in information

content and that such tracking of instantaneous expectedness constitutes an automatic, inherent

aspect of auditory sequence processing.

We used a combination of behavioural manipulation and modelling to examine the durations

over which these memory representations are maintained by introducing rare pattern reoccurrences.

One might expect that detection of regularities benefits not only from immediate sequence context,

but also from traces accumulated over a longer period. Participants listened to RAN and RANREG

sequences (as shown in Figure 1, see stimulus examples: ’Sound - RAN’, and ’Sound - RANREG’),

and were instructed to press a keyboard button as soon as possible when a transition to REG was

detected. New sequences were generated on each trial, but unbeknownst to participants, a few dif-

ferent regular patterns reoccurred very sparsely (every ~3 min) across trials (RANREGr).

eLife digest Patterns of sound – such as the noise of footsteps approaching or a person

speaking – often provide valuable information. To recognize these patterns, our memory must hold

each part of the sound sequence long enough to perceive how they fit together. This ability is

necessary in many situations: from discriminating between random noises in the woods to

understanding language and appreciating music. Memory traces left by each sound are crucial for

discovering new patterns and recognizing patterns we have previously encountered. However, it

remained unclear whether sounds that reoccur sporadically can stick in our memory, and under what

conditions this happens.

To answer this question, Bianco et al. conducted a series of experiments where human volunteers

listened to rapid sequences of 20 random tones interspersed with repeated patterns. Participants

were asked to press a button as soon as they detected a repeating pattern. Most of the patterns

were new but some reoccurred every three minutes or so unbeknownst to the listener.

Bianco et al. found that participants became progressively faster at recognizing a repeated

pattern each time it reoccurred, gradually forming an enduring memory which lasted at least seven

weeks after the initial training. The volunteers did not recognize these retained patterns in other

tests suggesting they were unaware of these memories. This suggests that as well as remembering

meaningful sounds, like the melody of a song, people can also unknowingly memorize the complex

pattern of arbitrary sounds, including ones they rarely encounter.

These findings provide new insights into how humans discover and recognize sound patterns

which could help treat diseases associated with impaired memory and hearing. More studies are

needed to understand what exactly happens in the brain as these memories of sound patterns are

created, and whether this also happens for other senses and in other species.
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We hypothesized that, if the stored representation of a pattern strengthens through repetition,

the information content associated with a transition to a familiar regularity will dip earlier than that

associated with a novel regular pattern (Figure 1, yellow line in the cartoon model), reaching the

putative detection threshold more quickly. Behaviourally, this should be revealed as faster reaction

times to reoccurring patterns (‘RT advantage’ in Figure 1). The size of this effect may provide a win-

dow into the latent variables associated with the retention of sensory information in memory.

Figure 1. Example stimuli. Sequences were generated anew on each trial from a pool of 20 tone-pips of 50 ms

duration each. RAN sequences were generated by randomly sampling from the full pool with replacement;

RANREG sequences contained a transition from a random (RAN) to a regularly repeating cycles of 20 tone-pips

(REG, cycles are marked with dashed lines). Therefore, the transition was manifested as a change in pattern only,

whilst maintaining the same long-term first-order statistics. The transition (randomized between 3 and 4 s post

onset) is indicated by a red line; the red dashed line marks the ‘effective’ transition – the point at which the

pattern starts repeating and hence becomes statistically detectable. Participants were instructed to respond to

such transitions (50% of trials) as soon as possible. STEP stimuli, containing a step change in frequency, (and their

‘no change’ control, CONT) were also included in the stimulus set for the purpose of estimating simple reaction

time. Three (six in Exp. 4 and Exp. S1 in Appendix 1) particular regular patterns (REGr) were presented identically

across three trials within a block (RANREGr). Reoccurrences were spaced ~3 min apart. Different REGr were used

for each participant. A schematic representation of outputs from the observer model is provided to illustrate how

pattern reoccurrence might affect reaction time. For each tone in a sequence, the model outputs information

content (IC) as a measure of its unexpectedness, given the preceding context. After the transition from a RAN to

REG pattern, the IC drops over a few consecutive tones, reflecting the discovery of the REG. The brain is

hypothesized to be sensitive to this change in IC, and once sufficient evidence has been accumulated, the

emergent regularity ‘pops out’ perceptually. Therefore, RTs to onset of regularities can be used to quantify the

amount of sensory information (number of tone-pips), required to detect the increasing predictability within the

unfolding sequence. The black solid lines indicate the crossing of this putative evidence threshold (when the

information content becomes clearly distinguishable from the RAN baseline). For novel patterns (blue line), this

typically occurs within the second cycle. For reoccurring patterns (yellow line), IC is expected to show an earlier

drop, and therefore lead to faster RT (‘RT advantage’).
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Several properties render this paradigm attractive. First, all sequences consist of the same 20 fre-

quency ‘building blocks’. This simplifies parametrization and modelling of the task, while retaining

sufficient pattern complexity (there are more than a trillion permutations of 20 frequencies). Second,

these 20 frequencies are isochronous and occur with equal probability and roughly equal temporal

density in all conditions: stimuli are thus matched in terms of long-term spectrum, average statistics

and time patterning. The only difference between RAN and REG patterns and, importantly, between

REG and REGr patterns, is the specific arrangement of these tone-pips over time. To distinguish a

familiar regularity from a novel one, the specific tone-pip permutation must be remembered (we

confirm this explicitly in Experiment 1B). Third, the task does not require listeners to memorize

sounds explicitly: the emergence of the regularity readily pops out perceptually (see stimulus exam-

ples in supplementary materials). The task thus taps the process by which we automatically glean

acoustic information from an ongoing sound-stream. Lastly, the sporadic presentation of REGr pre-

vents them from becoming apparent to the listener, thereby allowing us to focus on putative implicit

processes which underlie memory formation.

Across the experiments presented here, we ask whether human listeners form implicit long-term

memories of sparsely reoccurring regular patterns (yes), whether this memory is robust to interfer-

ence (yes), and whether it can be formed through passive exposure (partially). Through a combina-

tion of behavioural manipulation and modelling, we also demonstrate the interplay between short (a

few seconds) and long (over many minutes) integration in the process of long-term memory forma-

tion. Overall, the results highlight the remarkable attunement of the auditory system to exceedingly

sparse repeating patterns within the unfolding acoustic environment.

Results
Participants listened to RAN, RANREG, RANREGr, CONT and STEP sequences as illustrated in Fig-

ure 1 and were instructed to monitor for transitions. For each participant, different regularities were

designated as reoccurring patterns (REGr). Critically, the RAN portion of RANREGr trials remained

novel. Stimuli were presented in blocks of approximately 8 min each. Within each block, each REGr

reoccurred three times (about 5% of the trials within a block) and was flanked by many novel pat-

terns (RAN and RANREG).

The reaction time (RT) to STEP was subtracted from the RT to RANREG and RANREGr to esti-

mate a lower bound measure of the time required to detect the emergence of regularity. RT values

reported below are all baselined RTs (the raw RTs from which the RT to the STEP condition was

subtracted).

Compared with RTs to the emergence of novel regularities (RANREG), we expected progressively

faster RTs as regularities reoccur across the experiment (RANREGr), indicating that their representa-

tions have become retrievable from memory. We assess overall memory formation of REGr based on

RTs averaged over all three reoccurrences within each block. However, we focus on RTs in each

intra-block presentation to assess persistence of memory effects across experimental manipulations.

Experiment 1A: implicit long-lasting memory for three reoccurring
patterns
Figure 2A-D plots the mean and individual results of the regularity detection task performed in

three sessions: five blocks on day 1, one block after 24 hr (‘24 hr’) and one block after 7 weeks, (‘7

w’). Participants were highly accurate in detecting regularities (Figure 2A): d’ plateaued at near ceil-

ing performance after the first block. No difference was observed between hit rates for RANREG

and RANREGr [no main effect of condition: F(1, 19) = .39, p = 0.539, hp
2 = .02; no main effect of

block: F(5, 90) = 0.46, p = 0.804, hp
2 = .02; no interaction between condition and block: F(5,

90) = 1.10, p = 0.367, hp
2 = .06].

Despite the ceiling effects associated with pattern detection (mean hit rate = 97.3%), faster RTs

in RANREGr than in RANREG (‘RT advantage’) were observed in all participants by the end of the

first session (block 5; Figure 2D), indicating a clear implicit memory for the reoccurring patterns. A

repeated measures ANOVA on RTs with condition (RANREG and RANREGr) and block as factors

yielded a main effect of condition [F(1, 18) = 34.09, p < 0.001, hp
2 = .65], main effect of block [F

(5, 90) = 9.24, p < 0.001, hp
2 = .3] and an interaction between condition and block [F(5,90) = 6.88,

p < 0.001, hp
2 = .28]. Specifically, in the first block of the first session, performance did not differ
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Figure 2. Experiment 1A (N = 19), 1B (N = 20): implicit long-lasting memory for three reoccurring patterns and specificity to sequential structure. (A–D)

Exp. 1A (three reoccurring targets). (A) Sensitivity to emergence of regularity (d’) across blocks during the first session, as well as after 24 hr and after 7

weeks. Error bars indicate 1 s.e.m. (B) RT to the transition from random to regular pattern in RANREG and RANREGr conditions, across blocks. Error

bars indicate 1 s.e.m. ‘Figure 2—figure supplement 1 plots the RT advantage for each intra-block presentation. (C) Correlations between RT

advantage at the end of the first day – block 5 – and after 24 hr (upper plot) and after 7 weeks (lower plot). Each data point represents an individual.

Note N = 14 in the 7W data due to attrition. (D) The relationship between RTs for the RANREG and RANREGr conditions. Each data point represents

an individual participant. Dots below the diagonal reveal faster detection of RANREGr compared with RANREG. These implicit memory effects were

not linked to explicit memory. See Figure 2—figure supplement 2 for explicit recognition estimates. (E–G) Exp. 1B (time reversal): (E) Sensitivity to

emergence of regularity (d’) across blocks. (F) RT to the transition from random to regular pattern in RANREG and RANREGr conditions, across blocks.

The block containing time-reversed REGr is shaded in yellow. The RT advantage dropped when REGr were time reversed, and restored in block 5.

Figure 2—figure supplement 3 plots the RT advantage for each intra-block presentation. (G) The relationship between RTs to the RANREG and

RANREGr conditions in block 5.

Figure 2 continued on next page
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between RANREG and RANREGr [t(18) = 0.794, p = 1]. By the end of the second block (after 6 REGr

reoccurrences), a significant difference (~140 ms; 2.8 tones) between RTs was observed [REG –

REGr: t(18) = 3.964, p = 0.006]. This difference grew over the following blocks (all ps < 0.001), pla-

teauing after block 3 (233 ± 0.17 ms; 4.7 tones). The RT advantage on the third block did not differ

from the fourth [t(18) = �0.907, p = 1] nor from the fifth block [t(18) = �0.0003, p = 1]). In Experi-

ment S1 (Appendix 1—figure 1), we demonstrate that similar effects are obtained when doubling

the number of REGr patterns to be memorised (six different patterns per participant). In Experi-

ments S2A and S2B (Appendix 1—figure 2), we further demonstrate that the memory trace is not

abolished by introducing ‘interrupting blocks’ (in which REGr were not presented) between ‘stan-

dard blocks’ (in which REGr patterns reoccurred every ~3 min).

Critically, implicit memory for reoccurring regularities persisted after 24 hr and after 7 weeks: the

RT difference between novel and reoccurring sequences remained constant between the last block

of day 1 (block 5) and after 24 hr [t(18) = 0.139, p = 0.891], as well as between 24 hr and 7 weeks

later [t(13) = �0.668, p = 0.515]. An inspection of intra-block reoccurrences (Figure 2—figure sup-

plement 1) revealed that the RT advantage for REGr was similar between the third (last) intra-block

presentation of day 1 and the first intra-block presentation after 24 hr [t(18) = 0.123, p = 0.903]; sim-

ilarly, in the session conducted after 7 weeks, the RT advantage measured after the first intra-block

presentation did not differ from the third (last) presentation in the session conducted after 24 hr [t

(13) = 0 .958, p = 0.356; (Figure 2—figure supplement 1)]. This suggests that the effect observed

after 24 hr and 7 weeks reflects the presence of a lasting memory trace of reoccurring regularities

rather than rapid within-block re-learning.

Further, we examined the correlation of individual participants’ RT advantage across the three

sessions (Figure 2C). A robust correlation was found between the end of the first day (block 5) and

the measurement taken after 24 hr (spearman’s rho = 0.635, p = 0.004) – participants who exhibited

a larger RT advantage at the end of the first day were also those showing a larger advantage 24 hr

later. A similar correlation was found with performance after 7 weeks (spearman’s rho = 0.740,

p = 0.003). This confirms strong reliability of individual effects.

The memory effects are not driven by explicit recognition of
reoccurring patterns
Explicit memory for reoccurring regularities was examined at the end of each session by means of a

familiarity task. Only regular sequences were presented: REGr (one presentation of each pattern)

were intermixed with previously unheard REG patterns. Participants were instructed to indicate

which patterns sounded ‘familiar’. Classification was evaluated using the MCC score (see Materials

and methods) which ranges between 1 (perfect classification) to �1 (total misclassification). Whilst

low overall, the mean MCC on each testing session indicated above chance performance [day 1:

mean = 0.231; t(18) = 4.214, p < 0.001; 24 hr: mean = 0.44, t(18) = 7.044, p < 0.001; 7 w:

mean = 0.360, t(13) = 5.204, p < 0.001] (see Figure 2—figure supplement 2). An improvement in

MCC scores was observed between day 1 and 24 hr later [t(18) = �3.635, p = 0.004], suggesting

potential consolidation. There was no change in MCC scores between the 24 hr session and 7 weeks

later [t(13) = 0.348, p = 1].

Importantly, MCC scores did not correlate with the RT advantage: MCC on day 1 did not corre-

late with the RT advantage observed in block 5 (spearman’s Rho = 0.307; p = 0.201; a similar result

was also obtained when pooling across participants from Exp. 1A and Exp. S1 (which used 6 REGr

patterns, see Appendix 1) (Spearman’s Rho = 0.114; p = 0.493; N = 38). Though a weak correlation

between RT advantage and MCC was measured after 24 hr (uncorrected; Spearman’s Rho = 0.459,

p=0.048, N = 19), it disappeared after 7 weeks (Spearman’s Rho = �0.024, p = 0.934, N = 14).

Figure 2 continued

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Experiment 1A. RT advantage for each intra-block presentation.

Figure supplement 2. Experiment 1A. Explicit recognition estimates.

Figure supplement 3. Experiment 1B. RT advantage for each intra-block presentation.
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Therefore, implicit memory for reoccurring patterns, observed in nearly all participants, is not linked

to explicit awareness of reoccurrence.

Experiment 1B: Implicit memory is specific to sequential structure
To confirm that the RT advantage effects are driven by memory of sequential structure, we tested

whether implicit memory for reoccurring patterns is tolerant to time reversal of the originally learned

patterns (Figure 2E–G). Participants performed the regularity detection task as in Exp. 1A over six

experimental blocks. The first four were identical to those in Exp. 1A. In the fifth block, REGr

sequences were replaced by time-reversed versions. In block 6, the original REGr were introduced

again. Participants were naive to the experimental manipulation. It was expected that, if implicit

memory is specific to the sequential structure of regularity, the RT advantage should disappear in

the time-reversed block (see also Kang et al., 2017).

Blocks 1–4 revealed the same effects as in Exp. 1A (Figure 2F) [main effect of condition: F(1, 19)

= 71.96, p < 0.001, hp
2 = .79; main effect of block: F(3, 5) = 9.90, p < 0.001, hp

2 = .34; interaction con-

dition by block: F(3, 57) = 5.67, p < 0.001, hp
2 = .23]. Specifically, in the first block RTs in the RAN-

REGr condition were similar to those in RANREG [t(19) = 0.725, p = 1], but became progressively

faster (114 ms; 2.27 tones) in the second block [t(19) = 3.56, p = .01], and across the remaining

blocks (all ps < 0.001) (203 ms; 4.1 tones in the 4th block).

Importantly, this RT advantage was abolished in the time-reversed block, but restored in the sub-

sequent block containing the originally learned REGr: a repeated measures ANOVA with condition

(RANREG and RANREGr) and the last two blocks as factors yielded a main effect of condition (F

(1, 19) = 25.57, p < 0.001, hp
2 = .57), a main effect of block (F(1, 19) = 18.09, p < 0.001, hp

2 = .49),

and an interaction condition by block (F(1, 19) = 40.03, p < 0.001, hp
2 = .68), demonstrating the sig-

nificantly greater RT advantage (RANREG novel – RANREGr) in the last than in the time-reversed

block [t(19) = 6.33, p < 0.001]. The RT advantage for REGr in the third intra-block presentation of

block 4 (Figure 2—figure supplement 3) was greater than in the first intra-block presentation of the

time-reversed block [t(19) = �2.261, p = 0.035], but similar to the first intra-block presentation of

the last block reintroducing the original REGr [t(19) = 0.788, p = 0.440].

These results constrain the nature of the observed memory effect to sequential information.

Experiment 2: Limited formation of memory traces of non-adjacent
patterns
We tested whether adjacent repetition of patterns (as is inherently the case for REG sequences) is

required for implicit memory to be formed (Figure 3).

Over four blocks, listeners were exposed to RAN, RANREG and RANREGr trials as in previous

experiments. We also introduced a new condition, PATinRAN (Figure 3A), which consisted of two

identical non-adjacent 20-tone patterns (PAT) embedded within a random sequence of tone-pips.

The second appearance always occurred at the end of the sequence. The first appearance was

embedded partway through the sequence at an average distance of 1.7 s (range 0.5–2.9 s). To

understand whether memories of non-adjacent patterns (PAT) can be formed during listening, three

different PAT reoccurred three times within block (PATinRANr; the random parts of the sequences

as well as the separation between the two PAT patterns remained random on each trial).

Both non-adjacent (PATinRAN, PATinRANr) and adjacent (RANREG, RANREGr) trials included

two repetitions of each pattern with the only difference being that they were contiguous in the latter

and separated by random tones in the former. Participants were instructed to respond if they

detected two identical, not necessarily contiguous, 20-tone patterns within a trial; 50% of the trials

consisted of fully random patterns. In order to make sure that participants paid equal attention to

the (harder) PATinRAN sequences, accuracy was emphasized over response speed.

In the last block (block 5; ‘test’ block), we tested whether, following a comparable amount

of exposure through block 1 to 4, PATinRANr and RANREGr patterns were similarly remembered.

To equate difficulty of pattern detection in this block, PATinRANr sequences were replaced by ver-

sions where the two cycles were set adjacent. We refer to these conditions as RANREGr*. Partici-

pants were instructed to respond as quickly as possible. We compared the magnitude of the RT

advantage associated with RANREGr* to that associated with RANREGr.
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Figure 3B shows the detection performance during the exposure blocks (1 to 4). Despite having

practised the PATinRAN condition, detection performance was overall worse, and substantially more

variable in PATinRAN (mean over blocks 1–4: 47.36 ± 16.5%) relative to RANREG (88.47 ± 11.6%),

and improved less across blocks [main effect of condition: F(1, 29) = 419.01, p < 0.001, hp
2 = .94;

main effect of block: F(3, 87) = 9.24, p < 0.001, hp
2 = .24; interaction of condition per block: F(3,

87) = 4.83, p = 0.004, hp
2 = .14]. Thus, whilst a pattern is highly detectable when contiguously

repeated, performance drops substantially when the repetition is not adjacent, presumably due to

limits on short-term memory.

Focusing on the 4th block (Figure 3C): a repeated measures ANOVA with the factors reoccur-

rence (novel/reoccurring patterns) and adjacency (adjacent/non-adjacent patterns) yielded a signifi-

cant main effect of adjacency [F(1, 29) = 205.99, p < 0.001, hp
2 = .88]. As expected, whilst

participants were very apt at detecting RANREG patterns, performance on PATinRAN was

Figure 3. Experiment 2 (N = 30): Limited formation of memory traces of non-adjacent patterns. (A) In blocks 1 to 4, listeners were exposed to RAN,

RANREG, RANREGr, PATinRAN and PATinRANr trials. An example spectrogram for a PATinRAN stimulus is provided. The non-adjacent repetitions of

the 20-tones pattern (PAT) are indicated by dashed rectangles. In block 5 (‘test’ block) PATinRANr sequences were replaced by versions where the two

cycles were set adjacent at the end of the trial (RANREGr*). (B) Accuracy (block 1 to 4): hit rates are computed separately for adjacent (RANREG and

RANREGr) and non-adjacent (PATinRAN and PATinRANr) trials. (C) Hit rates in block 4, separately for novel and reoccurring adjacent and non-adjacent

conditions. ‘*’ indicates a significant difference between conditions. (D) RT (measured relative to the onset of the second cycle; see red line in A) across

blocks 1 to 4 for RANREG, RANREGr, PATinRAN and PATinRANr. Error bars indicate 1 s.e.m. Note that since RT here is computed relative to the onset

of the REG repetition, to compare RANREG RT with those reported in figures aboveadd 1 s. (E) Test block: RT advantage for RANREGr (yellow) and

RANREGr* (green) in each intra-block presentation. Error bars indicate 1 s.e.m. To determine the presence of a memory trace to REGr* we specifically

focus on the first intra-block presentation. ‘*’ indicates a significant RT advantage, ‘ns’ indicates an RT advantage not significantly different from 0.
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substantially more variable and lower overall. Interestingly a main effect of reoccurrence [F(1,

29) = 21.74, p < 0.001, hp
2 = .43], was also observed, with no interaction between the two factors [F

(1, 29) = 3.95, p = 0.056, hp
2 = .12]. Therefore, detection data showed an increase in accuracy for

reoccurring patterns in both adjacent and non-adjacent conditions. The emergence of this effect for

RANREGr, despite its absence in Exp. 1A, is presumably driven by the below ceiling performance

observed here (mean hit rate = 93% relative to 97.5% in Exp. 1A) – likely a consequence of the extra

behavioural strain introduced by the PATinRAN stimuli. Critically, the finding of increased hit rates

for PATinRANr (a mean increase of 15%) demonstrates that, through repeated exposure, listeners

formed a memory trace for the non-adjacent patterns.

RT results across block 1 to 4 are shown in Figure 3D. To allow for a comparison across condi-

tions, RTs here are measured relative to the onset of the second regularity cycle (indicated with a

red line in Figure 3A). Since participants were encouraged to prioritise accuracy over speed in these

blocks, the RT data in blocks 1–4 were not statistically analysed. However, an RT advantage (reach-

ing 131 ms, 2.63 tones in block 4) is clearly visible for RANREGr relative to RANREG stimuli.

Test block: as a critical test for the formation of memory traces, we assessed the presence of an

RT advantage in the 1st intra-block presentation of RANREGr and RANREGr* (Figure 3E). The RT

advantage was significantly different from zero in RANREGr [one-sample t-test: t(29) = 3.724,

p = 0.001], but not in the RANREGr* condition [one-sample t-test: t(29) = .419, p = 0.678]. A paired

t-test further confirmed a greater RT advantage in the RANREGr than in the RANREGr* condition [t

(29) = 3.169, p = 0.003]. This indicates that, as a group, participants did not demonstrate an immedi-

ate RT advantage to RANREGr* patterns. As seen in Figure 3E, an RT advantage in RANREGr*

emerged following the second intra-block presentation. This effect may be associated with learning

within the test block. A repeated measures ANOVA on RT advantage in the test block with the fac-

tors condition (REGr / REGr*) and intra-block presentation (1st / 2nd / 3rd) revealed a main effect of

condition [F(1, 29) = 9.09, p = 0.005, hp
2 = .24] but no main effect of intra-block presentation [F(2,

58) = 0.67, p = 0.515, hp
2 = .02], or interaction [F(2, 58) = 1.27, p = 0.287, hp

2 = .04], consistent with

an overall smaller RT advantage to RANREGr*.

As an exploratory analysis, we tested whether higher detection accuracy for non-adjacent pat-

terns (hit rates for PATinRANr / PATinRAN in block four) predicted a greater RT advantage when the

patterns were set adjacently in the test block (REGr*). We observed a significant moderate correla-

tion between the detection accuracy of PATinRANr in block four and the RT advantage in the 1st

intra-block presentation of REGr* (spearman’s rho = 0.429, p = 0.018) such that those participants

who exhibited a higher detection accuracy for PATinRANr in block 4, also demonstrated a higher RT

advantage for REGr* in the test block. This correlation with RT advantage was specific to PATi-

nRANr, in that it did not extend to PATinRAN (spearman’s rho = 0.017 p = 0.927) and held when

the effect of detection accuracy for PATinRAN was accounted for (spearman’s rho = 0.465,

p = 0.011). The specificity to PATinRANr suggests that the link is not simply related to some prop-

erty of short-term memory (in which case we would have expected a correlation with PATinRAN as

well), but it is specific to the memory advantage for PATinRANr stimuli which developed over the

first four blocks.

Overall, these results suggest the presence of measurable (though small) memory traces for reoc-

curring, non-adjacent patterns (PATinRANr). However, it is clear that the formation of robust implicit

memory traces for sound sequences depends on short-term memory (and hence benefits from

immediate repetition of patterns) such that introducing a gap of even 2 s results in substantially

weakened storage in memory.

Modelling
We constructed a ‘memory constrained’ computational model, based on ‘prediction by partial

matching’ (PPM; see Materials and methods) to provide a formal simulation of the psychological

mechanisms underlying the process of memory trace formation, as observed in Experiments 1A (Fig-

ure 2), 2 (Figure 3) and S2A (Appendix 1—figure 2K). These experiments reflect critical manipula-

tions of the effect of long- and short-term memory decay. Although the existence of memory decay

in humans is in general well established, ways of incorporating memory decay into probabilistic

computational models of sequences processing is very much an active topic of research. Our PPM

model implemented a single set of values (Table 1) that fully accounted for the dynamics of memory

formation observed across experiments. As a benchmark, we also report the results for an equivalent
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unconstrained model (i.e. with perfect memory), as employed in previous research using the same

paradigm (Barascud et al., 2016).

The following cognitive hypotheses were instantiated:

1. Listeners learn sequence transition probabilities throughout the experiment. This approach is
similar to other models of statistical learning (Bröker et al., 2018; Harrison et al., 2011;
Meyniel et al., 2016; Takahasi et al., 2010) except the present model extends beyond first-
order transition probabilities. Learning of sequence statistics is accomplished through parti-
tioning the unfolding stimulus into sub-sequences of increasing order (n-grams) that are
thereon stored in memory, such that the more a listener is exposed to a given n-gram, the
stronger its salience (‘weight’). Here, we allow n to range between 1 and 5, corresponding to
Markovian transition probabilities of orders 0 to 4.

2. The listener uses these n-gram statistics to quantify the predictability (IC, where high IC corre-
sponds to low probability and low IC corresponds to high probability) of incoming tones based
on the preceding portion of the sequence and other information stored in memory as a gener-
ative probabilistic model (represented by PPM, see Materials and methods).

3. Sudden changes in IC are indicative of potential changes in the environment. In the present
case, a sudden drop in IC reflects the onset of repetitive structure in the stimulus correspond-
ing to a transition from RAN to REG. Once the model is sufficiently confident that a reliable
drop has occurred, it registers a ‘change detected’ response analogous to the participant’s
button press.

4. The memory weight of a given n-gram observation decays over time, with this decay profile
reflecting the dynamics of human auditory memory. In particular, we adopt the memory-
weighting scheme recently presented in Harrison et al., 2020, and implement the following
decay profile for the memory salience of an n-gram observation: a) an initial short and high-
fidelity steady-state phase, representing an echoic memory buffer; b) a fast exponential-decay
phase, representing short-term memory; c) a slow exponential-decay phase, representing lon-
ger-term memory (see Figure 4A, Table 1 for more details). The model also adds noise to the
memory retrieval stage, simulating inaccuracies in human memory retrieval.

Overall, the memory constrained model shows close qualitative correspondence to the pattern of

RTs observed in Experiments 1 and 2, and specifically to the dynamics of the emergence of the RT

advantage.

Figure 5A shows model outputs for experiment 1A using an unconstrained (left) and constrained

(right) PPM model. The imposed memory constraints are able to reproduce the slow dynamics of

REGr memory formation: like the human participants, the constrained PPM model experiences a

moderate facilitation effect that grows over successive presentations of identical regular patterns.

Figure 4B illustrates this effect in more detail, plotting average information content profiles for

RANREGr trials in block five as compared to RANREGr trials in block 1.

It is important to note that the steady long-term decay, which is a key feature of the memory con-

strained model predicts that the performance facilitation should disappear after 24 hr, and certainly

Table 1. Parameters for the memory-decay PPM model as manually optimized for Experiments 1A,

2, and S2A.

Parameter Value

Buffer capacity 15 items

Buffer weight 1

Short-term memory weight* 1

Short-term memory duration* 15 s

Long-term memory weight* 0.02

Long-term memory half life 500 s

Long-term memory asymptote 0

Noise 1.3

Order bound 4

*The combination of STM weight, STM duration and LTM weight yields a STM half-life of 3.06 s.
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after 7 weeks. After such time periods, the memory traces for the reoccurring patterns should decay

to zero, and the corresponding facilitation effect should disappear. Remarkably, the participants

exhibited unaltered performance facilitation. This suggests that the memory traces of these reoccur-

ring patterns are somehow ‘fixed’ at a certain point during testing. One way of simulating this effect

would be to change the asymptote of the exponential memory decay, such that the memory trace

asymptotically approaches a small but non-zero value as time tends to infinity. However, we found

that incorporating such an asymptote caused the performance facilitation for RANREGr trials to

increase constantly from block to block, in contrast to the slow plateau shown in the behavioural

data. It seems likely, therefore, that there remains a non-trivial ‘fixing’ effect that may reflect consoli-

dation processes, not accounted for by the current model (to our knowledge there is no other statis-

tical learning model that accounts both for learning dynamics and long-term fixed effects).

Experiment 2 investigated the effect of pattern adjacency on pattern detection and memory for-

mation. We trained unconstrained and constrained models on blocks 1–4, and report their perfor-

mance for the ‘test’ block (block 5). As expected, the unconstrained PPM model is unaffected by

adjacency (Figure 5B left). The memory-decay PPM model (Figure 5B right) fully reproduces the

behavioural data (Figure 3E).

Overall, the modelling successfully replicated the slow dynamics of memory formation exhibited

by human listeners demonstrating that memory constrained transition-probability learning is a plausi-

ble computational underpinning of sequential pattern acquisition.

Experiment 3: Memories of a set of reoccurring regularities are not
overwritten by subsequent memorization of another set
Does memorization of a new set of REGr interfere with the representation of a previously memorized

set? Participants performed the same transition detection task as in Exp. 1A. They were exposed to

a set of three reoccurring patterns (REGr1) in the first three blocks, followed by three blocks in which

Figure 4. Memory constrained PPM model. (A) Memory decay profile for the constrained PPM model. The curve

describes the weight of a given n-gram observation in memory as a function of the number of consequent tones

that have been presented, assuming a constant presentation rate of 20 Hz. The two dotted lines indicate

transitions between the different phases of memory decay: the first, between the memory buffer and short-term

memory, and the second, between short-term memory and long-term memory. The inset shows the transition

from the memory buffer (of 15 tones capacity) to the fast exponential-decay phase. See Table 1 for model

parameters. (B) Information content as a function of tone number for RANREGr trials in blocks 1 and 5 of Exp. 1A.

Mean Information content is computed from the memory-decay PPM model, expressed in bits, and averaged over

all trials. The shaded ribbons correspond to 1 STDEV. Trials are aligned such that a tone number of 0 corresponds

to the first REG tone after the transition. The transition between RAN and REG phases becomes clearest after

about 24 tones; however, the model detects the transition faster in block five than in block 1, because it partially

recognises the REGr cycle from its previous occurrences, yielding a lower information content that is more clearly

distinguishable from the RAN baseline and therefore requires less evidence accumulation time (=faster detection).

However, it is obvious from the large error bars that the effects are subtle.
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another set of patterns (REGr2) reoccurred. Blocks 7 and 8 then re-tested memory for the reoccur-

ring regularities of set 1 and set 2, respectively. After 24 hr, memory for the two sets was tested

again.

Clear implicit memory for the first set of targets (REGr1), as indicated by an RT advantage, was

observed after the 3rd block (Figure 6B) [main effect of condition: F(1, 28) = 41.01, p < 0.001, hp
2

= .59; main effect of block: F(3, 84) = 15.69, p < 0.001, hp
2 = .36; condition by block interaction: F(3,

84) = 6.83, p < 0.001, hp
2 = .20]. As expected, after three blocks of exposure the RT advantage in

Figure 5. Model simulations for Experiments 1A and 2 for the unconstrained (left) vs. constrained (right) PPM

model. Overall, we demonstrate a qualitative similarity between the formal simulation of constrained memory and

observed human responses. (A) Exp. 1A: the estimated RTs to the transition from random to regular patterns in

RANREG and RANREGr conditions across five consecutive blocks. For RANREG trials, the REG patterns are novel

for each trial and the unconstrained PPM model detects transitions after one complete cycle plus eight tones

(about 1.4 s; Note that the model change point detection algorithm was configured with a strict threshold in order

to achieve an appropriate Type I error rate , see Materials and methods). For RANREGr trials after the first block,

the regular patterns are already familiar from previous trials. The unconstrained PPM model remembers these

previous patterns perfectly and hence demonstrates an immediate drop in RT. In contrast, the constrained model

readily captures human performance, whereby the RT advantage for RANREGr trials slowly grows over successive

presentations of the REGr patterns. (B) Exp. 2: RT advantage in RANREGr and RANREGr* conditions for each

intra-block presentation within the test block. Data are presented in the same way as in Figure 3E. The

unconstrained model reveals an equal RT advantage in both conditions. In contrast, as exhibited by the human

listeners, the constrained memory model does not learn the reoccurring non-adjacent patterns across blocks 1 to

4, as shown by the null RT advantage in the first intra-block presentation in the RANREGr* condition. Error bars

indicate 1 s.e.m.
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the RANREGr1 condition (163 ms – 3.3 tones) was similar to that observed in Exp. 1A above. Criti-

cally, this RT advantage for RANREGr1 was not perturbed after the presentation of the second set

of regularities (REGr2) [RT advantage in block three vs. block 7: t(28) = .877, p = 0.387]. It also lasted

after 24 hr [RT advantage in block seven vs. after 24 hr: t(28) = �0.553, p = 0.584], and was similar

to the 24 hr RT advantage observed in Exp. 1A [no main effect of experiment: F(1, 50) = .33,

p = 0.567, hp
2 = .01]. These results indicate that, once formed, memory traces are neither overwritten

nor weakened by ‘interfering’ new sets of reoccurring patterns.

In blocks 4–6 presenting the second set of reoccurring regularities (REGr2) also showed an RT

advantage, as demonstrated by the emerging separation between the RT to novel and reoccurring

regularities. A repeated measures ANOVA on the RT advantage with ‘experimental stage’ (blocks 1–

3, blocks 4–6) and block number (1st, 2nd or 3rd) showed a main effect of block number [F

(2, 56) = 20.13, p < 0.001, hp
2 = 0.42; consistent with a growing RT advantage across blocks], and

stage [F(1, 28) = 15.70, p < 0.001, hp
2 = 0.36] with no interactions. The main effect of stage suggests

an overall larger RT advantage for the first set (REGr1). The noisier RT pattern observed in blocks 4–

6 may be indicative of an order / fatigue effect. Importantly, at the end of day 1 the RT advantage

for the two sets of reoccurring regularities did not differ (block seven vs. block 8: t(28) = 1.721,

p = 0.096]. The RT advantage for the second set was maintained when tested after 24 hr (RT advan-

tage of last block of day one vs. after 24 hr: t(28) = �0.277, p = 0.784), and did not differ from that

of the first set [RT advantage after 24 hr for RANREGr1 vs. RANREGr2 t(28) = 1.848, p = 0.075].

Experiment 4: Implicit memory is robust to pattern phase shifts
In all the previous experiments reoccurring regularities were always presented at the same phase of

the REG cycle. Here we asked whether the resulting memory trace was anchored to this fixed

boundary – that is, whether listeners remembered the pattern as a specific ‘chunk’ (Dehaene et al.,

2015; Thiessen, 2017). If so, the RT advantage should reduce when REGr are phase shifted.

Listeners were presented with six reoccurring regularities (REGr) over three blocks. In block 4,

identical REGr were presented but each presentation was with a shifted onset relative to the origi-

nally presented pattern (see Figure 7A, and Materials and methods).

Figure 6. Experiment 3 (N = 29): memories of a set of reoccurring regularities are not overwritten by subsequent

memorization of another set. Participants were exposed to a set of three reoccurring patterns in the first three

blocks (REGr1, yellow shading), followed by three blocks in which another set of patterns was reoccurring (REGr2,

grey shading). The final blocks (7 and 8) tested memory for set 1 and 2, respectively. After 24 hr, memory for the

two sets was tested again. (A) d’ across all blocks on day 1 and after 24 hr. Error bars indicate 1 s.e.m. (B) RT to the

transition from random to regular pattern across blocks for RANREG, RANREGr1 and RANREGr2 on day 1 and

after 24 hr. Error bars indicate 1 s.e.m. Figure 6—figure supplement 1A plots the RT advantage for each intra-

block presentation. Figure 6—figure supplement 1B shows the RT data with N = 19.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Experiment 3.
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Figure 7C shows the progressive emergence of the RT advantage associated with the memoriza-

tion of the reoccurring patterns [main effect of condition: F(1, 19) = 21.12, p < 0.001, hp
2 = .53; main

effect of block: F(3, 57) = 18.52, p < 0.001, hp
2 = .49; condition by block interaction: F(3, 57) = 10.64,

p < 0.001, hp
2 = .36]. Specifically, whilst in the first block performance did not differ between RAN-

REG and RANREGr [t(19) = �0.876, p = 1], a faster RT to the RANREGr condition developed across

ensuing blocks. This effect continued into block 4, where phase-shifting was introduced (Figure 7C

bottom plot). The RT advantage for phase-shifted RANREGr (167 ms – 3.35 tones) in block 4 was

greater than the RT advantage in block 3 (100 ms; 2 tones) [block three vs. block 4: t(19) = �13.111,

p < 0.001] in the majority of participants (Figure 7D), demonstrating a strengthening (rather than

disappearing) memory effect. The immediate robustness to phase shifting was confirmed by compar-

ing the RT advantage in the first intra-block presentation in block 4, to that in the third (last) intra-

block presentation in block 3 (Figure 7—figure supplement 1). No significant difference was

observed [t(19) = 1.069, p = 0.298], supporting the conclusion that the RT advantage persisted

despite phase shifting.

Further tests confirmed that the RT advantage for REGr in block 4 was similar across small and

large phase shifts: a repeated measures ANOVA with factor phase shift (small / large, namely 1–5

Figure 7. Experiment 4 (N = 20): Implicit memory is robust to pattern phase shifts. (A) In this experiment, six different reoccurring regularities (REGr)

per participant were presented. In block 4 (yellow shading in C), these patterns were replaced by versions with shifted onset relative to the originally

learned REGr. Two examples of phase shifted REGr and their original REGr version are depicted. The solid red line indicates the transition between

RAN and REG (the onset of the regular pattern); the dashed red line denotes one cycle (20 tones) (B) d’ across all blocks. Error bars indicate 1 s.e.m. (C)

RT to the transition from RAN to REG pattern across blocks for RANREG and RANREGr. The bottom plot represents the RT advantage observed in

blocks 3 and 4. Error bars indicate 1 s.e.m. Figure 7—figure supplement 1 plots the RT advantage for each intra-block presentation. (D) The individual

RT advantage in block three compared with block 4. Each circle represents an individual participant. (E) Plotted is the relationship between RTs to

RANREG and RANREGr in block 4. Each circle represents a unique REGr pattern (six per participant), plotted against the mean RT to RANREG for that

participant.

The online version of this article includes the following figure supplement(s) for figure 7:

Figure supplement 1. RT advantage for each intra-block presentation.
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and 16–19 vs. 6–15 tones from the original onset) yielded no significant effect of phase shift on the

RT advantage [F(1, 19) = 0.74, p = 0.400].

These results suggest that sequences are not represented as a fixed chunk of sequential items

which is retrieved as a single unit, but more likely as a collection of sequential predictions that are

flexibly retrieved from memory according to the available sensory information.

As a further probe into the nature of the representation of the pattern in memory, in Experiment

S3 (Appendix 1—figure 3) we investigated listeners’ tolerance to small frequency transpositions.

We reveal a transfer of the RT advantage to the transposed pattern, suggesting that the formed

representation is not of an exact echoic nature. It is possible that tolerance to frequency transposi-

tion reflects a ‘fuzzy’ spectral representation, although we note that the spacing in the present pool

– 12% – is generally larger than the just noticeable difference (JND) for frequency typically exhibited

by non-musically trained listeners (Tervaniemi et al., 2005). Alternatively, the tolerance to transposi-

tion may suggest that instead of the specific frequency pattern, the auditory system maintains a

representation of the contour, or inter-tone interval within the pattern.

Experiment 5: Implicit memory can form when sounds are behaviourally
irrelevant, but does not immediately transfer to behaviour
We asked whether memories for reoccurring patterns are formed when sequences are not behav-

iourally relevant. Naı̈ve participants were exposed to three blocks of the same kind as in Exp. 1A,

but instructed to detect the STEP changes only, and ignore the other sounds. In the fourth block

(‘test’ block), they were instructed to also detect the RANREG transitions.

We analysed the performance in the test block of the pre-exposed group in comparison to the

performance of a non pre-exposed ‘control’ group, formed by pooling block one data from several

other experiments (Pooled data-block1, N = 147, see Materials and methods). Sensitivity to transi-

tions in the test block (Figure 8A) was high overall (mean d’ = 2.77 ± .73), but lower than in the first

block of the control group [independent sample t(163) = �2.028, p = 0.044]. This is likely because,

in order to keep them naive, participants did not receive training on RANREG detection.

In the test block (Figure 8B), the mean RT to RANREGr was significantly faster than that to novel

RANREG [t(17) = 3.1, p = 0.006], consistent with the presence of an RT advantage. The RT

Figure 8. Experiment 5 (N = 18): implicit memory can form when sounds are behaviourally irrelevant, but does not immediately transfer to behaviour.

During three initial blocks, participants were asked to respond only to the STEP trials and ignore the other sounds. In the following test block, they

were instructed to also detect the RANREG transitions. (A) Sensitivity to emergence of regularity (d’) in the test block. Error bars indicate 1 s.e.m. (B)

The relationship between RTs to the RANREG and RANREGr conditions in the test block. Each data point represents an individual participant. Dots

below the diagonal indicate faster detection of RANREGr compared with RANREG. (C) RT advantage in the pre-exposed and the control group

(participants without previous exposure; see Materials and methods). Error bars indicate 1 s.e.m. ‘*’ indicates a significant difference. (D) Bootstrap

resampling-based distributions of the RT advantage for the 1st, 2nd and 3rd intra-block presentation from the control group. The mean of the

distribution is indicated by blue dashed lines. Red dots indicate the data from the present experiment (pre-exposed group). One-tailed p-values are

reported with each graph.
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advantage in the pre-exposed group (~157 ms, 3.14 tones) was substantially greater than in the con-

trol group (~30 ms, 0.6 tones) [independent sample t(163) = 3.023, p = 0.003], indicating a beneficial

effect of pre-exposure.

As a critical test for the presence of a memory trace after pre-exposure, we examined RT in each

intra-block presentation of REGr. If memories for reoccurring patterns are formed during pre-expo-

sure, an RT advantage should be exhibited immediately - at the first presentation of REGr in the test

block. One sample t-tests demonstrated that an RT advantage was absent at the first and second

intra-block presentations [t(16) = 0.377, p = 0.711; t(17) = 1.691, p = 0.109], but emerged at

the third presentation of REGr [t(17) = 3.954, p = 0.001]. We also compared the RT advantage,

across intra-block presentations, between the pre-exposed and control groups. A bootstrap

approach (see Materials and methods) was used to generate a distribution of performance over sub-

sets of 20 participants drawn from the control group and to compare with the actually observed per-

formance in the pre-exposed group (Figure 8D). The plots in Figure 8D show distributions of the RT

Figure 9. Individual variability in implicit memory. (A) Cumulative distribution function (left) and distribution (right) of RTs to RANREG and RANREGr

pooled from block 3 of several experiments (see Materials and methods). A two sample Kolmogorov-Smirnov test confirmed a significant difference in

cumulative probability (D = 0.232, p < 0.001) (B) The relationship between RTs to the RANREG and RANREGr conditions in block 3. Each circle

represents an individual participant. (C) Distribution of RT advantages across 558 different REGr patterns as measured after three blocks (9

presentations of REGr). Values > 0 indicate faster RTs to REGr relative to novel REG. (D) Distributions of the RT advantage in each block. To estimate

the distribution of the RT advantage across the population (of young, healthy participants) we pooled data from several experiments (see

Materials and methods) in which participants performed the standard regularity detection task. Pooled data-block1 reflects the distribution of RT

advantage after one block (3 presentations of REGr), Pooled data-block2 reflects the distribution of the RT advantage after two blocks (6 presentations

of REGr), etc. The distributions are computed via a bootstrapping process whereby on each iteration (1000 overall), data from 20 participants are

chosen randomly (with replacement), to obtain an average RT advantage. The mean of each distribution is indicated by blue dashed lines. Overall these

distributions demonstrate a robust emergence of an RT advantage after the first block.
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advantage for the 1st, 2nd and 3rd REGr presentation in the control group. The mean RT advantage

of the ‘pre-exposed’ group is shown by the red dots. This analysis revealed that the RT advantage to

the 1st presentation did not differ from the control group. However, a difference emerged after the

2nd presentation. This suggests that, by the 2nd appearance of REGr in the ‘test’ block, the pas-

sively pre-exposed group exhibited substantially faster responses than non pre-exposed partici-

pants. The difference between the passively pre-exposed group and the control group grew further

by the 3rd presentation.

Overall, these results demonstrate that implicit memory was not present at the onset of the test

block (as evidenced by the lack of an RT advantage); however, learning occurred more rapidly in the

pre-exposed listeners such that by the end of the test block, they exhibited a substantially higher RT

advantage than that shown by the control group.

Explicit memory was poor (mean MCC = 0.064) and did not correlate with the RT advantage mea-

sured in the test block [Spearman’s Rho = 0.235; p = 0.347].

Across-experiment analysis reveals that most patterns are remembered
and most participants exhibit implicit memory
We quantified the robustness of the memory effect for reoccurring patterns across the different

experiments reported here. Figure 9A shows the distribution of RTs for RANREG vs. RANREGr

pooled from block three data, (i.e. after nine presentations of each REGr; approx. 25 min of listen-

ing) where most data from different experiments were available (the pilot experiment, Experiment

1A, 1B, 3, 4, S1, and S3). In Figure 9B each dot represents the mean RT for RANREG vs. RANREGr

of an individual participant (N = 147). 88.4% of participants exhibited an RT advantage, which we

interpret as revealing implicit memory for REGr.

We also tested the generality, across patterns, of the observed memory effect. It is important to

note that all REGr were similar in the sense that all are composed from the same set of tones and

only differed in the specific permutation of their order. Figure 9C plots a distribution of the RT

advantage per unique REGr (558 overall). Though the data are inherently noisy (RT is quantified as

an average over only three presentations in block 3), RT advantage appears to be normally distrib-

uted with 75.6% of patterns exhibiting a memory effect. This demonstrates that the observed effects

are not driven by particularly ‘memorable’ REGr sequences. The same analysis run over block five

data (not shown; N unique REGr = 165) showed that 84.4% of REGr were associated with an RT

advantage after 15 reoccurrences. Figure 9D plots the distributions of group RT advantage per

block, based on performance observed across all of the experiments reported (see Materials and

methods). A gradual build-up of RT advantage is seen across blocks reaching a mean of 5.5 tones by

the end of block 5.

Overall the results demonstrate that the memory effect generalizes to most (healthy, young) lis-

teners and is not driven by particular memorable stimuli.

Discussion
We used rapid sequences of discrete sounds (Barascud et al., 2016; Southwell et al., 2017;

Zhao et al., 2019) specifically structured to allow for detailed behavioural and model-based investi-

gation of memory formation. All sequences were generated from a fixed set of 20 frequencies, with

the only difference being the order in which these were presented. Participants performed a regular-

ity detection task and were oblivious to rare reoccurrences of certain patterns throughout the ses-

sion. However, reaction times to new vs. previously encountered regularities demonstrated that

following limited exposure to reoccurring patterns listeners retained sequential information in long-

term memory. Statistics of pattern learning across experiments revealed that most patterns were

remembered, and most participants exhibited a memory effect, although the size of this effect var-

ied across individuals. Memory was implicit, resistant to interference, and preserved over remarkably

long durations (over 7 weeks). Importantly, we also demonstrate that local pattern repetition was

critical for long-term memory formation. This finding highlights a key role for immediate reinforce-

ment and implicates an interplay between rapid and slow memory decay in supporting the formation

of enduring memories of arbitrary sound sequences.

Overall the results reveal the brain’s remarkable capacity to implicitly preserve arbitrary sequen-

tial information in long-term memory.
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Relationship to ‘noise memory’
The general behavioural pattern revealed here is reminiscent of the ‘noise memory’ effect first shown

by Agus et al., 2010 (see also Agus and Pressnitzer, 2013; Andrillon et al., 2015; Gold et al.,

2014; Keller and Sekuler, 2015; Luo et al., 2013). In that study naı̈ve listeners readily remembered

reoccurring white-noise snippets presented amongst novel noise bursts. The learning was unsuper-

vised, rapid, implicit and lasted upwards of 2 weeks.

Inspections of the nature of this memory revealed that it was robust to time reversal and even to

scrambling into bins as small as 10–20 ms, indicating that the remembered features reflect local

spectro-temporal idiosyncrasies within the reoccurring noise snippet (Agus et al., 2010;

Viswanathan et al., 2016). The apparent dependence of this memory on certain local features of

the noise signal may also explain the high inter-sample variability often seen with this paradigm (e.

g., the distinction between ‘memorable’ and ‘not memorable’ patterns; Agus et al., 2010;

Viswanathan et al., 2016; Kang et al., 2017).

In contrast, here we focus on fast memory formation for sequences of discrete tones, distinguish-

able only by their specific order, and presented in a surrounding context of highly similar patterns

(all sequences consisted of the same 20 ‘building blocks’). We showed that the vast majority of pat-

terns were learned, revealing high sensitivity to reoccurring arbitrary frequency patterns despite the

exceedingly rare reoccurrence rate (every ~3 min; 5% of trials; in contrast to the much more frequent

reoccurrence, <~15 s in Agus et al., 2010 and Kang et al., 2017).

An important question for future work will be to determine whether these effects draw on similar

or distinct neural systems (discussed further below).

Memory for auditory sequences
Signals based on tone-pip patterns have long been used to understand the effect of auditory mem-

ory on listeners’ perception of sound sequences (e.g. Watson et al., 1975; Atienza and Cantero,

2001; Näätänen et al., 1993; Schröger et al., 1992; Tervaniemi et al., 2001; Moldwin et al.,

2017). However, these paradigms are predominantly based on extensive exposure (in the order of

hundreds of consecutive repetitions) to a single pattern.

Of particular relevance is a large body of work, broadly referred to as ‘statistical learning’, which

has demonstrated the brain’s capacity to discover repeating structure in random stimulus sequences

(Conway and Christiansen, 2005; Frost et al., 2019; Kim et al., 2009; Saffran et al., 1999;

Saffran and Kirkham, 2018). The classic paradigm (Saffran et al., 1996; Santolin and Saffran,

2018) involves a small set of syllables arranged into short ‘words’ (e.g., three syllables each). A few

minutes’ exposure to such structured streams leads to learning of the statistical structure of the

unfolding sequence such that subjects can distinguish the repeatedly occurring ‘words’ from a ran-

dom arrangement of syllables.

Our results can be interpreted as reflecting similar implicit learning processes. However, in con-

trast to the demonstrations above which usually involved one or a small number of stimuli that are

repeated many times, we show that a very sparse presentation of long patterns, which are inter-

mixed with many highly similar sequences, is sufficient for robust memories to be formed.

Note that to focus on implicit memory formation, we placed our listeners in rather extreme condi-

tions, both in terms of presentation rate of reoccurring targets and their complexity. It is possible

that relaxing these constraints would result in stronger (but perhaps more explicit) memories.

We showed that listeners can learn at least six concurrently presented REGr patterns (Exp. 4 and

Exp. S1 in Appendix 1). Important questions for future work involve understanding the capacity lim-

its on this memory and the factors which might affect subsequent forgetting.

Overall, we demonstrate that the brain is tuned to retain repeated structure in our acoustic envi-

ronments, even when such reoccurrences are exceedingly infrequent and the signals are highly

similar.

Preserving as much information as possible from the unfolding sensory input is important for an

organism because the relevance of any single event is not always immediately apparent, but is rather

inferred post-hoc, e.g., through repetition (“I’ve heard this exact pattern twice within 3 min, there-

fore it might reflect an individual sound source rather than random noise in the forest"; e.g.,

McDermott et al., 2011; Woods and McDermott, 2018). Our results hint at the heuristics utilized

by the brain in determining how representations of statistical structure in the sensory environment
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are converted from transient to stable forms of memories (Leimer et al., 2018; Li and van Rossum,

2020).

Reaction time as a measure of memory formation
We used reaction time (RT) as a proxy for memory formation. RT allowed us to determine how much

information was required for listeners to detect repeating (REG) structure and to compare these

measures with formal models of sequence processing. We hypothesized that reoccurrence would

increase the weight of sequence components in memory resulting in faster detection of regularity.

RT thus provided a sensitive means for tracking the formation and maintenance of such memories

over time.

We observed that the RT to REGr steadily shortened with increasing number of reoccurrences,

allowing us to measure the dynamics of memory trace establishment. The ‘RT advantage’, defined

as the difference in RT between novel and reoccurring REG patterns, grew rapidly over the first

three blocks (9 reoccurrences) and then stabilized, though evidence from Figure 9D suggests a con-

tinuous slow growth throughout the experimental session. The absence of correlation between the

familiarity test and the RT advantage suggests a dissociation between implicit memory and explicit

recall abilities.

Time scales of memory for sequences
The basic behavioural task required participants to detect the transitions from RAN to REG – namely

the emergence of repeating structure. As such it fundamentally relied on auditory short-term mem-

ory: in order to detect REG patterns, the listener must compare incoming tones to those that

occurred at least a cycle ago. The effect of reoccurrence suggested that listeners also draw on much

longer-term memory whereby information about previously encountered sounds is retained over

minutes between successive REGr presentations.

Due to practical issues related to providing breaks, all of the reported experiments were subject

to fixed presentation parameters: the experimental session was divided into blocks of roughly 8 min

and REGr were presented three times per block. We therefore only have a relatively coarse estimate

of the properties of the long-term memory store. Lengthening of inter-reoccurrence intervals was

probed by introducing interrupting blocks where only novel patterns were presented (see Exp.

S2A-B in Appendix 1). Memory was largely maintained over ~10 min intervals indicating a very slow

long-term decay. In conjunction, the results of Exp. 2 suggested that the short-term memory store is

critical for long-term memory formation. Participants were markedly impaired at detecting pattern

repetition when the two cycles were separated by a brief series of random tones (about 2 s). Those

conditions were also associated with substantially reduced long-term memories for the reoccurring

patterns, indicating that immediate reinforcement is critical for the formation of lasting memory

traces. These observations point to an integral interplay between a short (few seconds) and much

longer (at least a few minutes) integration in the process of formation of robust, implicit memories

for reoccurring arbitrary sound sequences.

The persistence of a stable RT advantage 24 hr and 7 weeks after initial exposure demonstrates

the establishment of a long-term memory representation, possibly through a process of consolida-

tion involving long-lasting synaptic changes (Phan et al., 2017; Redondo and Morris, 2011). It may

also be tempting to interpret the resistance to interruption, observed in early stages of memory for-

mation (Exp. 3, Exp. S2 in Appendix 1), as a hint that a form of consolidation might have occurred

already after a few initial presentations.

In animal models, repetitive exposure to sound tokens (though, notably at a much higher rate

than that used here) has been shown to evoke a process of long-lasting adaptation manifested as

sparser firing and increased response specificity. These effects, persisting for hours to days after the

initial stimulation, have been observed in primary and secondary auditory areas in song birds ( Caudal

Medial Nidopallium; Cazala et al., 2019; Honda and Okanoya, 1999; Lu and Vicario, 2014;

Menyhart et al., 2015; Takahasi et al., 2010; Chew et al., 1996; Soyman and Vicario, 2019) and

in secondary auditory cortex in ferrets (Lu et al., 2018). The hypothesis that similar processes might

back the behavioural effects we report is appealing.

Agus et al. proposed that mechanisms based on spike-timing-dependent plasticity (STDP;

Markram et al., 1997; Masquelier et al., 2008; Masquelier et al., 2009) may be possible neural
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underpinnings for rapid noise memory formation: repeatedly presented, but relatively temporally

confined, spectro-temporal ‘constellations’ within the noise snippets may evoke coincident firing

among auditory afferents leading to rapidly emerging selectivity for this feature in subsequent pre-

sentations of the same noise burst. Kang et al., 2017 suggested that including a degree of temporal

integration can also account for similar effects observed with temporal patterns (Kang et al., 2017;

Karmarkar and Buonomano, 2007; Lim et al., 2017; see also Bi and Poo, 2001). As will be dis-

cussed below, the behavioural pattern observed here is consistent with sequential information being

stored as short sub-sequences (n-grams), that is without retaining the full 20-item sequence. There-

fore, a form of STDP, incorporating an integration time of several hundred milliseconds, may under-

pin the representation of n-grams and implement their increased weight through reoccurance, thus

supporting memory for discrete tone sequences.

On a systems level, accumulating evidence suggests that an interaction between auditory cortex

and the hippocampus may play a role in memory formation. Previous work has implicated the hippo-

campus in sensitivity to sensory patterns across rapid time scales (Aly et al., 2013;

Stachenfeld et al., 2017; Yonelinas, 2013) and specifically in the process of discovering RAN-REG

transitions (Barascud et al., 2016). There is also some evidence that hints at its possible role in sup-

porting long-term memory for acoustic patterns (Kumar et al., 2014).

What is being remembered?
The RT advantage to REGr reflects an implicit memory of sequential structure (Exp. 1B). But what,

specifically, is remembered? Clearly participants did not perfectly memorize the full pattern, in that

this would have been associated with much faster RTs (e.g. as exhibited by the observer with uncon-

strained memory, Figure 5A). Instead, by the end of block 3, the distribution of RT to REGr shifted

leftwards by about four tones, without otherwise changing (Figure 9A). Modelling suggests that this

performance is consistent with a statistical-learning effect whereby the participants retained imper-

fect memory of patterns presented earlier in the experiment. These memories are not strong enough

to prompt immediate recognition of a pattern heard in a past trial, but they are sufficiently strong to

speed the recognition of that pattern once it begins repeating in the new trial.

Similar to other models of statistical learning (Bröker et al., 2018; Harrison et al., 2011;

Meyniel et al., 2016), our memory-constrained PPM model explicitly assumes that listeners repre-

sent the unfolding sequences in the form of n-gram sub-sequences of variable length, from which

transition probabilities are computed. Previous computational, behavioural and neuroimaging

studies Bianco et al., 2020; Conklin and Witten, 1995; Di Liberto et al., 2020; Egermann et al.,

2013; Pearce et al., 2010; Pearce and Wiggins, 2004; Pearce and Wiggins, 2006 demonstrated

that PPM successfully generalizes to prediction of musical sequences and effectively accounts for

psychophysiological responses to melodies. In particular, PPM provided a good match to brain

response latencies evoked by transitions between RAN and REG patterns (Barascud et al., 2016;

Southwell and Chait, 2018), suggesting that listeners may rely on similar memory representations

as those proposed by the model. Here, the memory constrained version of PPM was able to success-

fully simulate human performance - concretizing how the interplay between short- and long-term

decay might give rise to the progressive emergence of a memory trace across presentations.

Whether listeners do indeed represent auditory patterns in this way is a matter of ongoing debate

(e.g. Thiessen, 2017). Additional support for an n-gram-like representation is provided in Exp. 4,

which demonstrated that the REGr RT advantage is robust to pattern phase shifts. This finding indi-

cates that REG patterns are not encoded in memory as rigid chunks of sequential items

(Perruchet and Pacton, 2006; Thiessen, 2017), but are instead represented as a transition rule

which allows for flexible retrieval. Whilst further empirical evidence is essential to determine the

nature of the memory representation, the insight into single-trial level dynamics derived from the

present modelling (Figure 4) may be useful for constraining the search for the physiological under-

pinnings of these phenomena. Furthermore, the model can readily be applied to statistical learning

in other modalities (reviewed by Frost et al., 2019) and even in other species, including songbirds

such as finches, known to be capable of statistical learning (Menyhart et al., 2015; Takahasi et al.,

2010).

A related question pertains to the generalizability of the present model to natural sounds beyond

quantized sequences, such as those used here. In order to relate listeners’ performance to a measure

of statistical information within unfolding signals, simplifying assumptions are necessary. This
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includes the presence of a prior stage of category formation which converts a continuous sound into

discrete units that form the model’s ‘alphabet’. Accumulating evidence is indeed revealing that unsu-

pervised segmentation of unfolding sounds into basic elements, perhaps using envelope-based

cues, may be an inherent feature of listening (Ding et al., 2017; Doelling et al., 2014; Hickok and

Poeppel, 2007; Poeppel, 2003).

Does sequence memory require attention?
The short-term memory mechanisms which allow listeners to discover the emergence of repeating

structure (RANREG) in rapid tone sequences have been demonstrated to operate automatically,

even when listeners’ attention is directed away from sound: brain activity recorded from naı̈ve, dis-

tracted listeners reveals robust responses to RAN-REG transitions with latencies consistent with

those expected from an ideal observer (Barascud et al., 2016; Southwell et al., 2017;

Southwell and Chait, 2018).

In contrast, in Exp. 5, we demonstrated that longer term memory trace formation appears to

require attentive processing in that there was no evidence for an immediate RT advantage when lis-

teners moved from the exposure blocks, in which patterns were behaviourally irrelevant, to the

active detection (‘test’) block. This suggests that the formation of lasting memories for sound pat-

terns is not fully automatic, or does not immediately translate to behaviour. Whether this is driven by

absence of attention per se or other factors is difficult to determine. For example, it is possible that

the reduced memory effect when sounds are not behaviourally relevant is driven by decreased

arousal or reward, known to substantially modulate learning (Beste and Dinse, 2013; Braun et al.,

2018; Polley, 2006; Yebra et al., 2019), and which likely distinguish active detection (where feed-

back was provided after each trial) from passive listening.

Importantly, we showed that though implicit memory was not present at the onset of the test

block, learning occurred more rapidly in the pre-exposed listeners, hinting at the presence of pre-

exposure-related latent traces that may contribute to faster instantiation of representations in mem-

ory once the sequences become behaviourally relevant (Frankland et al., 2019).

Conclusion
Uncovering how memory traces are encoded and preserved by the brain is crucial for understanding

subsequent learning operations which drive pattern recognition and generalization. We showed that

representations of sporadically reoccurring rapid sound patterns are retained in memory, thus facili-

tating detection when previously encountered patterns reoccur. In spite of the fact that the patterns

were relatively featureless and undistinctive compared to real-world stimuli, this memory was robust,

implicit, remarkably resistant to interruption, and persisted over long durations, revealing human lis-

teners’ astonishing sensitivity to reoccurring structure in the auditory environment. Important ques-

tions for future work include understanding the neurobiological foundations of these behavioural

effects, the limits on the capacity of the memory store(s) involved and the factors which might affect

subsequent forgetting.

Materials and methods

Stimuli
Stimuli were sequences of 50 ms tone-pips of different frequencies generated at a sampling rate of

44.1 kHz and gated on and off with 5 ms raised cosine ramps; the total sequence duration was 7

s (140 tones). Frequencies were drawn from a pool of twenty values logarithmically spaced between

222 and 2000 Hz; 12% steps. The order in which these frequencies were successively distributed

defined different conditions that were otherwise identical in their spectral and timing profiles (see

Figure 1). RAN sequences consisted of tone-pips arranged in random order, with the constraint that

adjacent tones were not of the same frequency. Each frequency occurred equiprobably across the

sequence duration. The RANREG condition contained a transition between a random (RAN), and a

regularly repeating pattern (REG): sequences with initially randomly ordered tones changed into reg-

ularly repeating cycles of 20 frequencies (an overall cycle duration of 1000 ms; new on each trial).

The change occurred between 3000 and 4000 ms after sequence onset such that each RANREG

sequence contained between 3 to 4 REG cycles (only two in Exp. 2, see below). RAN and RANREG
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conditions were generated anew for each trial and occurred equiprobably. Thus, each trial contained

exactly the same frequency ‘building blocks’, with the same overall distribution, and only varied in

the specific order of tone-pips. The inter-trial interval was jittered between 1400 and 1800 ms.

Unbeknown to participants, a few different REG patterns (different for each participant) reoc-

curred identically several times within the session (RANREGr condition). Reoccurrences happened

three times per block (every ~3 min), and 9–15 times per session, depending on the number of

blocks in the specific experiment. Note that the RAN part preceding each REGr was always novel.

Reoccurrences were distributed within each block such that they occurred at the beginning (first

third), middle and end of each block.

Two control conditions were also included within each block: sequences of tones of a fixed fre-

quency (CONT), and sequences with a step change in frequency partway through the trial (STEP).

The STEP condition served as a measure of individuals’ reaction time to simple acoustic changes.

The RT to STEP was subtracted from the RT to RANREG sequences to obtain a lower bound mea-

sure of computation time required to detect the transition.

Participants were instructed to respond, by pressing a keyboard button, as soon as possible after

detecting a RANREG transition. Feedback about response accuracy and speed was delivered at the

end of each trial. Since RT is a key performance measure in these experiments, it was important to

motivate the participants to respond as quickly as possible. The feedback was given based on our

previous work (Barascud et al., 2016), and consisted of a green circle if the response fell within

2200 ms from the regularity onset in the RANREG conditions, or within 300 ms from the change of

tone in the STEP condition. For slower RTs, an orange circle (between 2200 and 2600 ms in the RAN-

REG conditions, and between 300 and 600 ms in the STEP condition) or a red circle were displayed.

It was explained to participants that they should strive to obtain as much ‘green’ or ‘orange’ feed-

back as possible. The experimental session was delivered in ~8 min blocks, separated by brief

breaks. Stimuli were presented with PsychToolBox in MATLAB (9.2.0, R2017a) in an acoustically

shielded room and at a comfortable listening level (self-adjusted by each listener).

Participant numbers
We initially ran a pilot experiment (N = 20, 16 females, age 23.5 ± 2.95 years) which consisted of five

consecutive blocks as in Exp. 1A. The effect size for the main effect of condition (RANREG vs. RAN-

REGr) was hp
2 = .48 and hp

2 = .79 after the first 3 and 5 blocks respectively. Using hp
2 = 0.48 for a pro-

spective power calculation (beta = 0.8; alpha = 0.05) yielded a required sample size of N = 13. We

decided to increase our sample size up to N = 20 to account for possible drop outs due to low accu-

racy. The research ethics committee of University College London approved the experiment [Project

ID Number]: 1490/009, and written informed consent was obtained from each participant.

Experiment 1a
The transition detection task was performed in three sessions: five blocks on day one (‘day1’), one

block after 24 hr (‘24 hr’) and another block after 7 weeks (‘7 w’). Each block consisted of 60 stimuli

(~8 min duration; 3 RANREGr x three reoccurrences per block, 18 RANREG, 27 RAN, 3 STEP, and 3

CONT). Feedback about the response accuracy and speed was delivered after each trial. Before

starting, a short training block of 12 trials (with the same conditions as in the main experiment, but

no RANREGr) was performed to acquaint participants with the task.

The familiarity task was performed at the end of each session (day1, 24 hr, 7 w). In these tests the

three REGr patterns were randomly intermixed with 18 novel REG sequences. Participants were

informed that a ‘handful’ of patterns reoccurred during the just completed session and asked to indi-

cate, by means of a button press, if each presented pattern sounded ‘familiar’.

Participants. Twenty paid individuals (ten females; average age, 24.4 ± 3.03 years) took part in

the experiment. Because of poor accuracy (d’ < 2 after the first block), one participant was excluded

from the analysis. We were able to test only 14 participants after 7 weeks (eight females; average

age, 24.7 ± 3.02 years). No participant reported hearing difficulties.

Experiment 1b
Participants performed the transition detection task for six consecutive blocks consisting of the same

set of stimuli described for Exp. 1A. In the 5th block, each REGr was time reversed.
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Participants. Twenty paid individuals (13 females; average age = 24.25 ± 3.58 years) took part in

the experiment. No participant reported hearing difficulties.

Experiment 2
The stimulus set in the initial four blocks contained RANREG and RANREGr stimuli, as before, except

they contained only two repeating cycles after the transition. To understand whether immediate rep-

etition is necessary for memory to be formed two further conditions were used: PATinRAN stimuli

contained two identical 20 tone patterns embedded amongst random tones (mean separation of 1.7

s; drawn randomly from a range. 5–2.9; the second appearance always occurred at the end of the

sequence as shown in Figure 3A). Similar to REGr, three different PAT were designated as reoccur-

ring across trials (different for each participant; three reoccurrences per block). The embedding RAN

sequence and the spacing between the two PAT patterns were randomly set for each reoccurrence.

Overall each block contained 82 stimuli (36 RAN, 9 RANREG, 9 RANREGr, 9 PATinRAN, 9 PATi-

nRANr, 5 STEP, 5 CONT), with ISI between 2.4 and 2.8 s. Reoccurrences of RANREGr and PATi-

nRANr occurred approximately every 3.6 min.

Participants were informed of the presence of PATinRAN and RANREG stimuli (but were naı̈ve

about RANREGr and PATinRANr) and were instructed to indicate, by button press, if they detected

the presence of a repeating pattern within the just-heard sequence. Feedback was provided at the

end of each trial as in the above experiments, except that in the PATinRAN conditions we delivered

a green circle if the response fell within 1200 ms from the second cycle onset, a red circle if the

response was slower that 1600 ms, and an orange one if it fell in between. It was explained to partic-

ipants that they should be fast but prioritise accuracy, given the generally difficult level of the task.

In order to quantify any memory effects, in the 5th block (‘test’ block) each of PATinRANr sequen-

ces were replaced by sequences with the two cycles set adjacently. We will refer to this condition as

RANREGr*. The test block contained 36 RAN, 18 RANREG, 9 RANREGr, 9 RANREGr*, 5 STEP, 5

CONT Stimuli were about 5.45 ms long (~109 tones).

Participants. Given the task complexity and expectation for a reduced SNR, we increased the

number of participants, a-priori, by 50% relative to the previous experiment. Thirty paid individuals

(twenty females; average age, 24.26 ± 3.8 years) took part in the experiment. No participants

reported hearing difficulties.

Experiment 3
This experiment consisted of two days of testing. On the first day participants performed a transition

detection task as in Exp. 1A, but two different sets of reoccurring patterns (REGr1 and REGr2; three

different patterns each) were presented. REGr1 was presented over the first three blocks, and

REGr2 over the subsequent three blocks. On day 2 (after 24 hr), participants returned to the lab to

perform two test blocks for the two sets of reoccurring regularities, REGr1 and REGr2 (order coun-

terbalanced across participants).

Participants. We initially ran 20 participants (one excluded from analysis), but decided to run an

additional 10 participants (+two excluded), to increase the SNR for the memory effects observed for

the RANREGr1 and RANREGr2 conditions on day two. The results with N = 19 yielded qualitatively

similar results (see Figure 6—figure supplement 1B). Thirty-two paid individuals (twenty females;

average age, 24.5 ± 3.8 years) took part in the experiment. No participant reported hearing difficul-

ties. Because of poor accuracy (d’ < 2 after the first block), three participants were excluded from

the analysis.

Experiment 4
Participants performed the detection task through four consecutive blocks of 82 stimuli each. The

stimulus set included the same conditions as described for Exp. 1A, but with six, instead of three,

REGr sequences, each presented three times within a block (6 RANREGr x three reoccurrences per

block, 18 RANREG, 36 RAN, 5 STEP, and 5 CONT). In block 4, REGr were phase shifted (see exam-

ples in Figure 7A). To ensure uniform sampling of possible phase shifts, for each REGr in block 4,

each of the three intra-block presentations was subject to pattern phase shift of 2 to 7, 8 to 13, or

14 to 19 tones from the onset of the original pattern. The phase shift was determined independently

for each REGr and each intra-block presentation. Stimulus duration was 6.5 s, and the transition time
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was between 3 and 3.5 s from the sequence onset. Different REGr patterns reoccurred sparsely

(every ~3.4 min) across trials and blocks.

Participants. Twenty paid individuals (fourteen females; average age, 23.5 ± 3.2 years) took part

in the experiment. No participant reported hearing difficulties.

Experiment 5
The experiment consisted of four blocks. The stimulus structure was as in Exp. 1A, except that for

the first three blocks participants were instructed to respond to STEP changes only. They received

no explanation about the regularity structure of the stimuli, and performed no practice. On the

fourth block, they were instructed to detect RANREG transitions in addition to STEP transitions.

Each block contained 72 stimuli (3 RANREGr x three reoccurrences per block, 18 RANREG, 27 RAN,

9 STEP, and 9 CONT; ISI between 900 and 1300); the number of STEP and CONT trials was

increased relative to that in Experiment 1A due to the task change. As in Exp. 1A, participants per-

formed the familiarity task at the end of the session.

Participants. Nineteen paid individuals (14 females; average age, 23.4 ± 3.1 years) took part in

the experiment. No participant reported hearing difficulties. One participant was excluded from the

analysis because of poor accuracy (d’ < 1).

Statistical analysis
In the transition detection task, two indexes of performance were computed: sensitivity (d’) and

reaction time (RT).

For each participant and each block, d’ was quantified over trials (collapsed over RANREG and

RANREGr) to give a general measure of sensitivity to the presence of regularities. Responses to

RANREG and RANREGr, which occurred after the nominal transition were considered hits;

Responses to RAN trials were considered false alarms. Participants who showed d’ < 2 after the first

block of the transition detection task were excluded from the analysis. Because Exp. five had only

one ‘active’ block and no previous training, we adopted a more lenient exclusion criterion of d’ < 1.

Note that d’ was not available in Exp. 2 because of the intermixed nature of the presentation of

RANREG and PATinRAN stimuli. To quantify performance, we therefore focus on hit rates and false

alarms. For the purpose of participant exclusion, we computed an overall d’ (collapsing across condi-

tions) and set the threshold at d’ < 1.5.

Only RTs of correct trials (hits) were analysed. In all experiments, RT was defined as the time dif-

ference between the onset of the regular pattern (‘nominal transition’ in Figure 1) and the partici-

pant’s button press. However, Exp. 2 contained conditions with non-contiguous pattern

presentations. RT was therefore computed from the onset of the second cycle (as indicated in

Figure 3A). Across all experiments, RTs which occurred before the transition to the regularity (see

Figure 1; ~1.3% of the trials) were considered to indicate a false positive and excluded from the

analysis. To control for individual latency of motor response to a simple acoustic change, RTs were

then ‘baselined’ by subtracting the individual mean RT to the STEP transition. Moreover, for each

participant and block, the RTs beyond 2 SD from the mean were discarded.

To quantify the formation of a memory trace over REGr presentations, RT were averaged to yield

a mean RT per condition per subject per block. Therefore, RT to RANREGr were based on nine trials

(3 REGr x three presentations per block). However, to evaluate the immediate presence of a memory

trace following certain experimental manipulations (e.g. in Exp. 2 and 5) or when re-testing after 24

hr or 7 weeks (as in Exp. 1A) we also analysed RT for each intra-block presentation (the first, second

and third intra-block instance of a REGr pattern; see Figure 2—figure supplement 1; Figure 2—fig-

ure supplement 3; Figure 6—figure supplement 1A; Figure 7—figure supplement 1; Appen-

dix 1—figure 1D; Appendix 1—figure 2D-J; Appendix 1—figure 3D). To calculate the ‘RT

advantage’ for each intra-block presentation, mean RTs of 1st, 2nd or 3rd intra-block presentation

(averaged across the different REGr) were subtracted from the mean RTs of novel REG which

occurred at the beginning (first third), middle or end of each block.

Performance was statistically tested with linear analyses of variance (ANOVA) implemented in the

R environment (version 0.99.320) using the ‘ezANOVA’ function (Michael Lawrence, 2016). The

analysis of d’ modelled the repeated measures factor block (1: N blocks). The analysis on RTs mod-

elled the repeated measures factors: condition (RANREG / RANREGr), block (1: N blocks), and their
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interaction term. P-values were Greenhouse-Geisser adjusted when sphericity assumptions were vio-

lated. Post hoc t-tests were used to test for differences in performance between conditions across

blocks or experiments. A Bonferroni correction was applied by multiplying p values by the number

of comparisons (resulting values were capped at 1.0).

As a benchmark (see Figure 9D) across which to compare the effect of various manipulations on

the RT advantage (i.e., Figure 8D, Appendix 1—figure 2C-G), we pooled data from several experi-

ments to obtain a distribution of RT advantage values after each block: Pooled data-block1, Pooled

data-block2, Pooled data-block3 were formed by pooling block 1, 2 or 3 data, respectively, from

Experiments 1A, 1B, 3, 4, S1, S3, and pilot experiment identical to Exp. 1 (total N = 147). Pooled

data-block4 was formed by pooling block four data from Experiments 1A, 1B, S1, S3 and the pilot

(total N = 98), and Pooled data-block5 by pooling block 5 from Experiments 1A, S1 and the pilot

(total N = 58). To obtain distributions of expected RT advantage values, data in each set were sub-

jected to bootstrap resampling (1000 iterations) where, on each iteration, N random participants

(N = number of participants in the experiment under examination) were drawn from the full pool,

and their mean RT advantage (RANREG- RANREGr) was computed. This procedure yielded a distri-

bution to which the actual data from the experiment under examination were compared. The p val-

ues provided (i.e., Figure 8D, Appendix 1—figure 2C-G) reflect the probability of the measured RT

advantage (red dots in the relevant figures) relative to the benchmark distribution.

Analysis of the familiarity task
The familiarity measurement required participants to categorize the presented patterns into ‘famil-

iar’ (REGr) or ‘new’ (REG). Each REGr was presented once only, to avoid learning during the testing

session and hence the ‘familiar’ category included only three items (six in Exp. S1, see Appendix1).

These were presented among a larger set of foils (18 in Exp. 1A and Exp. 5, 36 in Exp. S1). Due to

the small number of REGr, standard signal detection approaches are not useable. Instead, we com-

puted the MCC score, which is a measure of the quality of a binary classification, applicable even

when classes are of different sizes (Boughorbel et al., 2017; Powers, 2007). The coefficient ranges

between 1 (perfect classification) to �1 (total misclassification) and is calculated using the following

formula: MCC ¼ TP�TN�FP�FN
ffi

½
p

2� TPþFPð Þ TPþFNð Þ TNþFPð Þ TNþFNð Þ
. Where TP = number of true positives; TN = number

of true negatives; FP = number of false positives; FN = number of false negatives. The MCC scores

obtained for each participant in Exp. 1A are shown in Figure 2—figure supplement 2.

PPM-decay model
Prediction by Partial Matching (PPM) is a Markov modelling technique (Cleary and Witten, 1984)

that models statistical structure within symbolic sequences by tabulating occurrences of n-grams

within a training dataset. PPM is a variable-order Markov model, meaning that it generates predic-

tions by combining n-gram models of different orders; here we use a model combination technique

called ‘interpolated smoothing’ (Bunton, 1996; Bunton, 1997; see also Pearce and Wiggins, 2004;

Harrison et al., 2020; for more details). This approach combines the advantages of both the struc-

tural specificity afforded by high-order n-gram predictions and the statistical reliability afforded by

low-order n-gram predictions.

The PPM models used in prior cognitive research Barascud et al., 2016; Cheung et al., 2019;

Gold et al., 2019 have a ‘perfect’ memory, in that historic n-gram observations are preserved with

the same fidelity as recent events, and are weighted the same in prediction generation. Noting that

human memory exhibits clear capacity limitations and recency effects, Harrison et al., 2020 modi-

fied PPM to incorporate a customizable decay kernel, whereby historic n-gram observations are

down-weighted as a function of the time elapsed and the consequent n-grams observed since the

initial observation. Modelling reaction-time data from a RANREG paradigm similar to

Barascud et al., 2016, Harrison et al. concluded in favour of a capacity-limited high-fidelity echoic

memory buffer followed by a lower-fidelity short-term memory phase with exponential decay. We

likewise use an echoic-memory phase and a short-term memory phase in the present work, but add

a slower-decaying long-term memory phase in order to capture the long-term learning observed in

the present experiment.

The modelling aimed to reproduce behavioural performance qualitatively rather quantitatively.

Many simplifications are made including that inter-sequence intervals, and breaks between
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experimental blocks are modelled at a fixed rate of 1 s. We explored various parameter settings for

the model, and retained the configuration that best reproduced the observed behavioural patterns

in Experiments 1A, 2, and S2A (Figure 5, and Appendix 1—figure 2K), which represent the key

manipulations of memory duration. The resulting parameters are listed in Table 1; the decay kernel

is plotted in Figure 4A. Further implementation details are described in Harrison et al., 2020. The

model outputs a conditional probability estimate for each tone in each sequence experienced

throughout an experiment, which we convert to information content (the negative log probability in

base 2). An implementation of this model is freely available in our open-source R package ‘ppm’

(https://github.com/pmcharrison/ppm; Harrison, 2020).

To identify changes in the information content profile corresponding to the RANDREG transition

on a given trial, we use the nonparametric changepoint detection algorithm of Ross et al., 2011,

which sequentially applies the Mann-Whitney test to identify changes in a time series’ location while

controlling for Type I error. Here, the target Type I error rate was set to 1 in 10000 tones. Note that,

for simplicity, the change point detection algorithm is free of memory constraints. Human listeners

likely use a rougher (less detailed) statistical representation for transition detection.
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Appendix 1

Supplementary Experiments

Experiment S1: Implicit memory for six concurrent patterns
In this experiment (Appendix 1—figure 1) we probed implicit memory capacity by doubling

the number of regularities to be memorised (six different REGr per participant).

Appendix 1—figure 1. Experiment S1 (N = 19): implicit memory for six concurrent patterns. (A)

Sensitivity to emergence of regularity (d’) across blocks. (B) RT to the RAN to REG transition in

RANREG and RANREGr conditions across blocks. (C) The relationship between RTs to the

RANREG and RANREGr conditions in block 5. Each dot represents an individual participant.

All participants exhibited implicit memory of reoccurring patterns by the end of the 5th block.

(D) RT advantage for each intra-block presentation. A progressive RT advantage emergeed

even when six different REGr were presented. Plotted values correspond to the RT advantage

of REGr for each intra-block presentation. RTs of 1st, 2nd or 3rd intra-block presentations

were averaged across the different REGr, and RTs to novel REG were averaged across trials

which occurred at the beginning (first third), middle or end of each block. Note that this

analysis is based on a small number of trials per ‘intra-block’ presentation condition, and

effects are therefore somewhat noisy. Error bars indicate 1 s.e.m.

Methods: The transition detection task was identical to Exp. 1A, but six different REGr were

presented per participant. Similar to Exp. 1A, participants performed the familiarity task after

the transition detection task, in which the 6 REGr trials were randomly intermixed with 36

novel REG sequences.

Participants. Twenty paid individuals (seventeen females; average age, 24.5 ± 3.8 years)

took part in the study. No participant reported hearing difficulties. Because of poor accuracy

(d’ < 2 after the first block), one participant was excluded from the analysis.

Results: Overall, the same pattern of performance as in Exp. 1A was demonstrated.

Appendix 1—figure 1B and D reveals a progressively larger RT advantage for RANREGr

[main effect of condition: F(1, 18) = 71.76, p < 0.001, hp
2 = .80; main effect of block: F(4,

72) = 4.19, p = 0.045, hp
2 = .22; interaction condition by block: F(4, 72) = 7.26, p < 0.001, hp

2

= .29]. A significantly faster response (80 ms; 1.6 tones) for RANREGr relative to RANREG was

observed already by the end of the first block [t(18) = 3.512, p = 0.012]. It grew across the

following blocks (all ps < 0.001), and reached 244 ms (4.9 tones) in the fifth block, consistent

with Exp. 1A [RT advantage in Exp 1A vs. Exp.2: independent sample t(36) = .515, p = 0.609].

Appendix 1—figure 1C shows the mean RT advantage for RANREGr for each individual in

block 5. Implicit memory was exhibited by all participants by the end of the session.

Explicit memory (probed in the same way as described for Exp. 1A) was poor (mean

MCC = 0.178) and did not correlate with the RT advantage in block 5 (spearman’s

Rho = 0.091; p = 0.710).
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Experiment S2A, B: The memory trace is weakened, but not
abolished by interrupting blocks
Although reoccurrence of regularities was quite sparse in Exp. 1A (every ~2.7 min), they were

presented regularly over five blocks. Here, we asked whether memory formation can be

interrupted by introducing a delay of 10 min (‘interrupting blocks’ in which REGr were not

presented) between ‘standard blocks’.

Methods: These experiments involved the same transition detection task as in Exp. 1A, but

‘interrupting blocks’, in which RANREGr condition was not presented, were introduced

between ‘standard blocks’. The ‘interrupting blocks’ were block 2 and 4 in experiment S2A,

block 3 and 5 in experiment S2B. Across five blocks, in experiment S2A participants were

presented with 27 RANREGr, 108 RANREG, 135 RAN, 15 STEP, and 15 CONT. Across six

blocks, in experiment S2B participants were presented with 36 RANREGr, 126 RANREG, 162

RAN, 18 STEP, and 18 CONT.

Participants of experiment S2A. Nineteen paid individuals (13 females; average age,

23.8 ± 4.7 years) took part in the study. No participant reported hearing difficulties. Because

of poor accuracy (d’ < 2 after the first block), one participant was excluded from the analysis.

Participants of experiment S2B. Twenty paid individuals (10 females; average age,

23.8 ± 4.00 years) took part in the study. No participant reported hearing difficulties. Because

of poor accuracy (d’ < 2 after the first block), one participant was excluded from the analysis.

Results: In Exp. S2A, an interrupting block was inserted after each standard block

(Appendix 1—figure 2B). The RT data demonstrated an RT advantage to reoccurring vs.

novel regularities (~130 ms – 2.6 tones by the end of the third standard block), which did not

improve substantially between the second and third standard blocks [main effect of condition:

F(1, 17) = 35.03, p < 0.001, hp
2 = .67; main effect of block: F(2, 34) = 10.67, p < 0.001, hp

2

= .39; no interaction: F(2, 34) = 3.03, p = 0.061, hp
2 = .15]. The RT advantage here was smaller

than that typically observed after three consecutive blocks (~180 ms – 3.7 tones in Pooled

data-block3; Appendix 1—figure 2C; difference significant at p = 0.027 based on bootstrap

resampling; see Materials and methods in the main document).
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Appendix 1—figure 2. Experiment S2A (N = 18) and S2B (N = 19): the memory trace is weak-

ened, but not abolished, by interrupting blocks. (A–D) Exp. S2A: (A) Sensitivity to emergence of

regularity (d’) across blocks in experiment S2A. Error bars indicate 1 s.e.m. (B) RTs to transition

in RANREG and RANREGr across blocks. Error bars indicate 1 s.e.m. Yellow shading indicates

blocks where REGr were present. (C) Bootstrap resampling-based distributions of RT

advantage after three uninterrupted blocks (Pooled data-block3; see Materials and methods).

The red dot indicates the RT advantage measured after block three in the present experiment.

(D) RT advantage for each intra-block presentation. The RT advantage was preserved over

‘interrupting’ blocks. Plotted values correspond to the RT advantage of REGr for each intra-

block presentation. RTs of 1st, 2nd or 3rd intra-block presentations were averaged across the

different REGr, and RTs to novel REG were averaged across trials which occurred at the

beginning (first third), middle or end of each block. Note that the RT for REGr is computed

based on three trials and the effects are therefore rather noisy. Error bars indicate 1 s.e.m. (E–

J) Exp. S2B: (F) Sensitivity to emergence of regularity (d’) across blocks for experiment S2B

Error bars indicate 1 s.e.m. (F) RTs to the transition in RANREG and RANREGr across blocks.

Error bars indicate 1 s.e.m. Yellow shading indicates blocks where REGr were present. (G)

Bootstrap resampling-based distributions of RT advantage after 4th blocks (Pooled data-

block4; see Materials and methods). The red dot indicates the RT advantage measured after

block four in the present experiment. (J) The RT advantage was preserved over ‘interrupting’

blocks. (K) Unconstrained vs. Constrained memory model results for Exp. S2A. Error bars

indicate 1 s.e.m.

In Experiment S2B, we introduced the first interrupting block after block two in order to

allow for the memory trace to emerge (see Appendix 1—figure 2F). The RT advantage in the
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2nd block was similar to that observed in the control (Pooled data-block2: p=0.48), but no

considerable improvement was observed across blocks thereafter [main effect of condition: F

(1, 18) = 74.93, p < 0.001, hp
2 = .81; main effect of block: F(3, 54) = 11.19, p < 0.001, hp

2 = .38;

no interaction: F(2, 54) = 2.56, p = 0.064 hp
2 = .12]. The RT advantage in the blocks thereafter

was indeed smaller than under ‘uninterrupted’ control conditions (block three vs. Pooled data-

block3: p = 0.071; block four vs. Pooled data-block4: p = 0.013, see Appendix 1—figure 2G).

These results suggest that the memory trace for REGr can withstand quite substantial

interruptions: suspending the regular reoccurrences of REGr (by introducing ‘interrupting

blocks’) resulted in a largely maintained memory, though there was evidence for a somewhat

stagnated RT advantage.

Modelling Exp. S2A. The performance of the unconstrained PPM model (Appendix 1—

figure 2K), was not affected by the interruptions (also compare this figure with Figure 5-A in

the main text). In contrast, in the memory-decay PPM model inserting ‘interrupting’ blocks has

the effect of reducing the memory traces of previously heard regularities. The constrained

model shows somewhat worse performance relative to the constrained model in Exp. 1A,

consistent with human effects.

Experiment S3: Implicit memory is robust to pattern transposition
We tested whether the implicit memory for reoccurring sequences generalises to versions in

which relative relationships within the stimulus (pitch intervals) are preserved, while absolute

information (the frequency values themselves) are manipulated.

Methods: The stimulus set included the same conditions as described for Exp. 1A, but with

the following differences: RAN sequences were generated from a pool of twenty-six

frequencies (logarithmically-spaced values between 222 and 4004 Hz; 12% steps). REG

patterns consisted of 20 frequencies randomly selected from the pool. To allow for the

transposition, REGr patterns were drawn from a subset of 24 frequencies (i.e., not including

the highest and lowest frequency in the pool). In the 5th block, each REGr was randomly

transposed up or down by one tone (12%; shifted one place higher or lower in the frequency

pool than the original, see 3-A).

Participants. Twenty paid individuals (twelve females; average age, 24.75 ± 6.8 years) took

part in the study. No participant reported hearing difficulties.

Results: Overall, the same pattern of performance as in Exp. 1A was seen. Appendix 1—

figure 3C demonstrates progressively stronger implicit memory for REGr, as revealed by a

growing RT advantage over novel REG across blocks [main effect of condition: F(1, 19) =

47.31, p < 0.001, hp
2 = .71; main effect of block: F(4, 76) = 7.95, p < 0.001, hp

2 = .29;

interaction condition per block: F(4, 76) = 5.35, p = 0.003, hp
2 = .22]. Specifically, whilst in the

first block performance did not differ between RANREG and RANREGr conditions [t

(19) = 1.635, p = 0.59], a significantly faster response (186 ms; 3.7 tones) for RANREGr was

observed in the second block [t(19) = 4.302 p = . 001], and grew across the remaining blocks

(all ps < 0.004).

Appendix 1—figure 3. Experiment S3 (N = 20): implicit memory is robust to pattern transposi-

tion. (A) Schematic example of the transposition. Yellow squares indicate tones in a REGr

sequence; grey squares indicate the transposed version (in this example, the tones were
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shifted downwards by one step in the frequency pool; 12%). The red line indicates the

transition from RAN (light blue area) to REGr. (B) d’ across all blocks. Error bars indicate 1 s.

e.m. (C) RT to the transition in RANREG and RANREGr across blocks. In block 5 (yellow

shading) the originally learned REGr were replaced by transposed versions. Error bars indicate

1 s.e.m. (D) RT advantage for each intra-block presentation. The RT advantage was preserved

following frequency transposition of the REGr pattern. Plotted values correspond to the RT

advantage of REGr for each intra-block presentation. RTs of 1st, 2nd or 3rd intra-block

presentations were averaged across the different REGr, and RTs to novel REG were averaged

across trials which occurred at the beginning (first third), middle or end of each block. Note

that the RT for REGr is computed based on three trials and the effects are therefore rather

noisy. Error bars indicate 1 s.e.m.

Importantly, this RT advantage (205 ms – 4.1 tones) in block 5 (transposed REGr) did not

differ from the RT advantage on block 4 (272 ms; 5.4 tones) [t(19) = 1.541, p = 0.14]. To

confirm the immediacy of the transfer we compared the RT advantage in the first intra-block

presentation in block 5, where the transposition was introduced, with the third (last) intra-

block presentation in block 4 (Appendix 1—figure 3D). No difference was observed [t

(19) = 1.26, p = 0.223], suggesting that the generalization to the transposed pattern was

instantaneous.

The observation of a transfer of RT advantage to the transposed sequences may suggest

that the formed representation is not precisely echoic: instead of the specific frequency

pattern, the auditory system might be maintaining a representation of the contour, or inter-

tone interval within the REGr pattern. Another possibility is that the tolerance reflects a noisy

frequency representation, though we note that the frequency steps here (12%) are large

enough to be discriminable by most listeners.
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