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Abstract 

When listening to music, we form implicit expectations about 
the forthcoming temporal sequence. Listeners acquire 
knowledge of music through processes such as statistical 
learning, but how do different types of statistical information 
affect listeners’ learning and memory? To investigate this, we 
conducted a behavioral study in which participants repeatedly 
heard tone sequences varying within a range of information-
theoretic measures. Expectedness ratings of tones were 
collected during three listening sessions, and a recognition 
memory test was given after each session. This enabled us to 
examine how statistical information affects expectation and 
memory for tone sequences over a period of increasing 
exposure. We found significant correlations between 
listeners’ expectedness ratings and measures of information 
theory (IT), and although listeners demonstrated poor overall 
memory performance, the IT properties significantly impacted 
on musical memory. Generally, simple sequences yielded 
increasingly better memory performance. High-information 
sequences, for which making accurate predictions is difficult, 
resulted in consistently poor recognition memory. 

Keywords: Music cognition; information theory; 
computational approach; predictive models. 

Introduction 

Music is a fruitful domain for exploring the mechanisms 

responsible for learning structured temporal sequences, a 

type of learning that subserves a wide range of human 

behaviors. Research by Krumhansl (1990), Pearce & 

Wiggins (2006), Huron (2006), and others shows that 

listeners implicitly acquire knowledge about the statistical 

structure of music. But is this implicit learning influenced 

by the information contained in the musical signal and, if so, 

how? Using computational methods, the pitch structure of 

music can be manipulated systematically to help reveal the 

ways in which various information-theoretic properties of 

melody interact and influence human learning and memory. 

This paper examines the process of learning novel music 

over time, with a focus on mental anticipatory processing 

and musical structure. By using carefully constructed tone 

sequences, we are able to test how the statistical structure of 

music, as measured using information theory, affects the 

expectedness of tones, as well as memory for specific 

exemplars, over a period of increasing exposure. 

Information Theory and Music 

Information theory has contributed to fields as diverse as 

engineering and linguistics by describing and quantifying 

the information contained in a signal. This is especially 

useful for clarifying how the brain processes temporal 

signals; and indeed, information-theoretic measures such as 

entropy, a measure of uncertainty, have successfully 

described and predicted how the human brain anticipates 

forthcoming sensory input, such as music and language 

(e.g., Manning & Schutze, 1999; Abdallah & Plumbley, 

2009). Within the domain of music, there has been a long-

standing interest in anticipation and prediction, and 

statistical and probabilistic approaches to learning have been 

influential for decades (consider Krumhansl & Kessler, 

1982; and Saffran, Johnson, Aslin, & Newport, 1999). 

Computational models such as IDyOM (Pearce, 2005) 

derive information-theoretic properties of music that 

accurately reflect and predict listeners’ expectations during 

music listening (Pearce & Wiggins, 2006; Pearce et al., 

2010). 

While statistical and computational approaches have 

modeled human performance on a variety of music 

perception tasks, these approaches have not yet been 

extended to modeling the learning trajectory of listeners: we 

do not yet know how information-theoretic measures 

capture musical learning over increasing exposure to 

musical exemplars, and how much exposure is necessary to 
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learn the statistical regularities of novel music. The 

following research addresses these questions. 

Behavioral Experiment 

In the present study, computational techniques were used 

to create a set of tone sequences varying systematically 

across several information-theoretic measures. Varying the 

sequences’ statistical structure allows us to assess which 

factors have the greatest impact on listeners’ musical 

expectations and memory for tone. We focused on testing 

the relative influence of three information-theoretic factors 

based on the information theoretic concepts of entropy rate, 

multi-information rate (a kind of redundancy), and 

predictive information rate (see Abdallah & Plumbley, 

2009). These measures are defined for a random process 

with a known probability distribution, and hence thought of 

as 'objective'. However, listeners cannot know these 

probability distributions; they can only estimate them from 

observations, and so we defined variants of each measure 

appropriate for an observer processing events sequentially 

as they happen, updating its estimated probability model as 

it goes along: they are dynamic information measures based 

on an adaptive probabilistic model. Since they depend only 

on the actual observed sequences (rather than a theoretical 

statistical ensemble) and any prior expectations built into 

the listener model (which we may think of as summarizing 

the listener's previous musical experience), we can usefully 

think of these as 'subjective' information measures.  

In our experiments, the listener model was an adaptive 

first-order Markov chain, as described by Abdallah and 

Plumbley (2009), which assumes that notes are sampled 

from a Markov chain with an unknown transition matrix, 

and tries to estimate the transition matrix from the 

observations. The model is supplied with an initial 

expectation (a Bayesian prior) that the transition matrix is 

similar to a first-order transition matrix derived from a large 

corpus of Western tonal music in a major key. 

The three information measures examined in this paper 

are Information Content (IC), Coding Gain, and Predictive 

Information. IC is a measure of the subjective 

unexpectedness of an observation. Coding Gain measures 

how much temporal structure or pattern there is in the 

sequence. And Predictive Information quantifies how much 

the current observation improves the listener's predictions 

about future observations (assuming knowledge of the 

previous observations). High predictive information is also 

associated with temporal structure or pattern, but of the sort 

that has more variation, requiring the observer to continually 

pay attention in order to follow the pattern. 

These three measures are defined in the Markov model as 

follows: at any integer time t, let xt be the note occurring at 

that time, and Өt be the estimated transition matrix using 

information available before t. Then, the IC at time t is the 

negative log probability of xt given the context and the 

estimated model: -log p(xt|xt-1, Өt), where the relevant 

transition probability is extracted from the matrix Өt. 

Coding Gain at time t quantifies how much the model's 

ability to predict the current observation depends on having 

observed the preceding observations, and is a difference of 

log probabilities: log p(xt|xt-1, Өt) - log p(xt|Өt), where the 

latter term is derived from the stationary distribution of the 

transition matrix. Predictive Information is quantified as the 

distance between two probability distributions over the next 

symbol xt+1, representing the observer's probabilistic beliefs 

about xt+1 before and after the observation of xt. The average 

of each of these three measures was computed for every 

tone sequence in the present study, henceforth referred to as 

sequence statistics. 

To investigate the processes underlying musical learning, 

listeners were exposed to tone sequences and tested on 

recognition memory over several listening sessions. In each 

listening session, participants heard tone sequences and 

rated the expectedness of a tone (termed the “probe tone”) 

within each sequence. Probe tones varied in terms of 

information content (representing unexpectedness) across 

sequences. A recognition memory test followed each 

listening session. This format enabled us to compute 

information-theoretic measures for every tone sequence, and 

compare the effect of these measures on probe tone ratings.  

We also examined how IT measures impacted on 

recognition performance in the test sessions. We 

hypothesized that sequences featuring generally high-

entropy would be difficult to remember, and probe tones 

would be rated with lower expectedness. Because each tone 

sequence was presented in every listening session, we also 

aimed to clarify the learning trajectory for the different 

classes of tone sequence; that is, how music represented in 

short-term memory gradually becomes more richly encoded 

in long-term memory, and how musical information and 

complexity, as measured using IT, influence this process 

over time.  

Method 

Participants 

Twenty-three students (12 female and 11 male; mean age 

= 21.0 yrs) at Cornell University participated in this study 

for extra credit in a psychology course. The participants had 

an average of 1.61 years (SD = 1.88 yrs) playing music in 

the previous five years, and an average of 5.82 years (SD = 

4.54 yrs) of lifetime experience playing an instrument. 

Materials and Procedure 

After receiving written and verbal instructions, participants 

listened to tone sequences in three sessions, each lasting 

approximately 15 minutes and followed by a brief test 

session. In the listening sessions, participants heard each of 

the 24 tone sequences (presented in a different order in each 

session) and were asked to rate the expectedness of a 

particular tone (the probe tone) within each sequence. This 

tone was identified visually on the computer screen via a 

clock counting down on the subsequent tones of the 

sequence. When the clock returned to midnight, participants 

rated the expectedness of the concurrently sounding tone on 
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a scale from 1 to 5, where ‘1’ represented highly unexpected 

and ‘5’ represented highly expected.  

Each listening session was followed by a test session. 

Sixteen test stimuli were presented in each of the three test 

sessions, where 8 sequences were Old (had been presented 

previously) and 8 were New. After each test sequence, 

participants responded “Yes” or “No” to whether they had 

heard the sequence before. Upon responding, the listener 

made a confidence rating on a scale from 1 to 5 where ‘1’ 

represented not confident and ‘5’ represented very 

confident.  

The 24 sequences of the listening sessions each comprised 

24 isochronous tones, played in a piano timbre. Each tone 

was 500 ms in duration, yielding sequences that were 12-

seconds-long each. The sequences were generated with an 

alphabet of 7 pitches (representing one octave of the 

diatonic scale). A first-order Markov transition matrix was 

derived (Pearce, 2005) from the scale degrees of Canadian 

folk songs/ballads, Chorale melodies, and German folk 

songs in a major key (the same corpus described in Table 2 

of Pearce and Wiggins, 2006). To construct the tone 

sequences, many transition matrices were generated 

randomly using a process biased towards the tonal transition 

matrix. From each matrix, one sequence of 24 notes was 

sampled. A subset of these was then selected manually to 

ensure a good spread in the 3-dimensional subjective 

information space formed by the information theoretic 

measures described above.   

A distinct 500 ms white noise clip was played after every 

tone sequence in the listening and test sessions as a 

perceptual “reset” to ensure that expectedness ratings and 

memory judgments were based only on the current trial. The 

study was administered on a MacBook Pro laptop, and 

stimuli were presented and responses collected using 

Psychophysics Toolbox (Version 3) within the 

programming environment of MATLAB 2010a 

(MathWorks, Inc). Participants listened to stimuli over 

headphones set to a comfortable listening volume. 

Results and Discussion 

Whole-Sequence IT measures and Expectedness 

During Listening Sessions 

To examine how the information-theoretic properties of 

each sequence influenced the expectedness of probe tones, 

correlations were analyzed between the IT factors and 

Average Expectedness Ratings. In terms of whole-sequence 

statistics, both Sequence IC and Sequence Predictive 

Information were significant predictors of Average 

Expectedness Ratings. As shown in the top graph of Figure 

1, Sequence IC was correlated with Average Expectedness 

Ratings such that more predictable sequences (lower 

Sequence IC values) yielded higher expectedness ratings of 

probe tones, R
2
 = .29, F = 28.87, p < .01. The second graph 

of Figure 1 displays the correlation between Sequence 

Predictive Information and Average Expectedness Ratings, 

R
2
 = .34, F = 36.23, p < .01. The third graph shows 

Sequence Coding Gain and Average Expectedness Ratings, 

also significant in this analysis, R
2
 = .37, F = 41.54, p < .01.  

 

 

 

 
 

Figure 1: The main effects of Sequence IC, Sequence 

Predictive Information,    and Sequence Coding Gain (in 

nats, where 1 nat = 1.44 bits) on average expectedness 

ratings during the    listening sessions. 

 

Sequences with high average IC values contain 

unexpectedness; the tones comprising these sequences have 

high average Information Content. Therefore, it is logical 

that sequences containing many unexpected, unpredictable 

tones would yield lower expectedness ratings as shown 

below. 

Regarding the effects of Sequence Predictive Information, 

information is inextricably associated with unexpectedness: 

an event cannot be informative if the observer knew it was 

going to happen, because it will not change the observer's 

beliefs about the future. (Mathematically, Predictive 
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Information is upper-bounded by the Information Content.) 

Hence, sequences with higher average Predictive 

Information will necessarily have moderately high average 

information content and thus we would expect the probe 

tones to see relatively lower expectedness ratings. 

Coding Gain is a measure of how much information was 

gained about the current observation from the preceding 

context. Therefore, the greater the average Coding Gain of 

the sequence, the greater the predictability of the sequence 

and so we would predict higher expectedness ratings in such 

cases. 

 

Expectedness and Probe Tone IC To examine which 

factors in the listening sessions had the greatest impact on 

expectation, a multiple regression analysis was performed 

with Probe Tone IC, Sequence IC, Sequence Coding Gain, 

Sequence Predictive Information, and Listening Session as 

independent measures, and Expectedness Ratings as the 

dependent measure (note that all expectedness ratings were 

used, not the average rating for each stimulus). Listeners 

were included as a random effect in the analysis. There was 

a significant main effect of Probe Tone IC, F = 181.74, p < 

.001, with high-IC tones rated as less expected. As for the 

whole-sequence IT measures, there were also main effects 

of Sequence IC, F = 3.92, p < .05, and Sequence Predictive 

Information, F = 9.67, p < .01. In addition to these main 

effects, there were also significant interactions between 

Probe Tone IC and all three of the IT measures of sequences 

statistics: Sequence IC X Probe Tone IC, F = 22.34, p < 

.001, and Sequence Coding Gain X Probe Tone IC, F = 

35.72, p < .001, and Sequence Predictive Information X 

Probe Tone IC, F = 91.65, p < .001. Listening Session did 

not contribute significantly to the results indicating that 

pitch expectation remained constant overall during the 

study. 

 

 
 

Figure 2: Probe Tone IC as a predictor of average 

expectedness ratings of probe tones. 

 

Probe Tone IC had the largest effect in the listening 

sessions, with a significant linear relationship with 

Expectedness Ratings, R
2
 = .69, F = 154.20, p < .01. In 

Figure 2, the average expectedness rating for each melody is 

shown to display more clearly the main effect on a 

continuous rather than discrete scale. Low IC tones do 

receive reliably higher expectedness ratings than high-IC 

probe tones over the course of listening. 

Recognition Memory in Test Sessions 

Data from the test sessions are reported in Table 1 as 

Proportion Correct Response. Chance performance is 0.5, 

and the similarity of performance for Old and New items 

indicates little bias towards either response. 

 

Table 1: Recognition memory test performance (proportion 

correct) for Old and New sequences across listening 

sessions. 
 

 

Listening 

Session 

Old/ 

Correct 

(Hits) 

Old/ 

Incorrect 

(Misses) 

New/Correct 

(Correct 

Rejections) 

New/Incorrect 

(False Alarms) 

Session 1 0.67 0.33 0.64 0.36 

Session 2 0.63 0.37 0.65 0.35 

Session 3 0.70 0.30 0.65 0.35 

 

Despite little evidence for an increase in overall memory 

performance over the course of the experiment, we 

investigated whether certain types of statistical information 

were being learned, and examine whether performance 

differed depending on the properties of the individual 

sequences. Therefore, to examine the effects of the IT 

measures on recognition scores across listening sessions, a 

logistic regression was performed with Sequence IC, 

Sequence Coding Gain, Sequence Predictive information, 

Familiarity (Old or New stimulus), and Listening Session as 

factors, and Correct Response as the binary dependent 

variable.   

All three whole-sequence statistics showed significant 

main effects: Sequence IC,  χ² = 16.21, p < .01; Sequence 

Predictive Information, χ² = 12.09, p < .01; and Sequence 

Coding Gain, χ² = 4.27, p < .05. Listening Session interacted 

with each of the whole-sequence IT measures: Sequence IC 

X Listening Session, χ² = 6.14, p < .05, Sequence Predictive 

Information X Listening Session, χ² = 7.98, p <.05, and 

Sequence Coding Gain X Listening Session, χ² = 6.53, p < 

.05, were all significant interactions. 

The only significant interaction including Familiarity was 

with Sequence Predictive Information, χ² = 12.15, p < .01. 

As shown in the top plot of Figure 3 below, New sequences 

that are high in Predictive Information yield more correct 

responses than those with low Predictive Information. 

Conversely, Old sequences show the opposite trend, with 

worse recognition memory performance on high Predictive 

Information sequences. Note that Proportion Correct 

Response is used in Figure 3 rather than the categorical 

variable Correct Response for clarity of illustration. 
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New/Unfamiliar Sequences  

 
 

Old/Familiar Sequences 

 
 

Figure 3: The differential effect of Sequence Predictive 

Information on Proportion Correct Response during 

recognition memory tests for New and Old sequences. 

 

Confidence Ratings Confidence ratings of recognition 

memory judgments were collected after every test sequence; 

responses were made on a 1-5 scale where on a where ‘1’ 

represented not confident and ‘5’ represented very confident. 

A logistic regression was performed with the same factors 

as those used above: Sequence IC, Sequence Coding Gain, 

Sequence Predictive Information, Familiarity (Old or New 

stimulus), and Listening Session. This analysis yielded 

significant effects of Sequence IC, χ² = 16.44, p < .01, and 

Sequence Coding Gain, χ² = 15.33, p < .01, and interactions 

of these two factors with Listening Session: Sequence IC X 

Listening Session, χ² = 21.94, p < .01, and Sequence Coding 

Gain X Listening Session, χ² = 23.10, p < .01. 

As expected, listeners made more confident memory 

judgments when sequences had lower IC and higher Coding 

Gain. For Sequence IC, there was a decrease in confidence 

(fewer 4 and 5 responses) over the course of the experiment, 

which was especially noticeable for low-IC sequences 

(because high-IC sequences rarely received 5 responses 

throughout the study). Similarly, there was also a decrease 

in highly confident ratings (4 and 5 responses) for Sequence 

Coding Gain over the course of the experiment, which was 

more apparent in the high-Coding Gain sequences (low-

Coding Gain sequences elicited few 5 responses). 

Conclusion 

The analyses above highlight the significant roles that 

measures of entropy and predictability have on musical 

learning and memory. The three information-theoretic 

measures examined here, Sequence IC, Sequence Predictive 

Information, and Sequence Coding Gain, all impacted on 

learning over time (as evinced by their significant 

interactions with Listening Session). In the first memory 

test, Sequence IC had little effect on the correctness of 

participants’ responses. In the subsequent listening sessions, 

a trend was displayed between increasing Sequence IC and 

number of incorrect responses (p < .01). Similarly, 

Sequence Coding Gain did not have a significant effect on 

response in the first listening session, but was positively 

correlated (p < .01) with correct response in the second and 

third listening sessions. Sequences with high average 

Coding Gain were more likely to yield correct responses in 

the memory tests. In addition, Sequence Predictive 

Information did not impact on memory performance 

initially, but by the third listening session, this measure was 

negatively correlated with Correct Response such that 

greater Predictive Information led to fewer correct responses 

(p < .05). Again, Predictive Information is upper-bounded 

by Information Content (unexpectedness); therefore, high 

Predictive Information sequences sound relatively 

unpredictable. To summarize, these results suggest that the 

global statistical properties of the tone sequences had little 

bearing on recognition memory judgments initially, but over 

repeated listenings, sequences higher in information and 

entropy (those that sounded less predictable) produced both 

lower expectedness ratings and poorer recognition memory. 

As displayed by the interaction between Familiarity and 

Sequence Predictive Information, New sequences that are 

high in Predictive Information tend to yield more correct 

responses (Correct Rejections) compared with Old 

sequences that are high in Predictive Information, which 

yield fewer correct responses (Misses). We suggest that 

sequences with high Predictive information are surprising 

but also distinctive, making them easier to correctly reject 

on New trials but harder to remember on Old trials. 

Listeners display poor recognition memory performance for 

individual sequences, and appear to respond based on the 

statistical properties of the sequence. Follow-up studies 

need to be conducted to explore these complex information 

dynamics, but it is clear that the information-theoretic 

measures investigated in this study interact dynamically 

with both expectedness and learning over a period of 

increasing exposure to novel tone sequences. 

General Discussion 

Information-theoretic approaches have elucidated various 

aspects of music perception, such as melodic expectation 

(e.g., Pearce et al., 2010). In the IT study described above, 

three subjective information-theoretic factors, Sequence IC, 

Sequence Predictive Information, and Sequence Coding 

Gain, all significantly influenced expectedness ratings of 

probe tones during the listening sessions. This reveals that 
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the perceived expectedness of events is influenced not only 

by properties of the event itself, but also by properties of the 

sequence within which it is embedded. These factors also 

impacted on nuanced memory performance during the 

recognition tests. It was also interesting to discover a 

significant interaction between Familiarity and Sequence 

Predictive Information for memory performance. The 

increasing effect of IT measures on recognition accuracy 

may result from listeners gradually learning the underlying 

Markov model: Upon gleaning the basic information 

structure of the melodies, Predictive Information has a 

greater effect on recognition memory. Additionally, 

sequences that have high average IC can also vary in 

Predictive Information; that is, tones may be perceived as 

unexpected, but they can be surprising in either a way that 

increases listeners’ predictions of forthcoming tones, or in a 

way that is surprising but does not increase predictive 

accuracy. The significant interaction between Familiarity 

and Sequence Predictive Information, but not Familiarity 

and Sequence IC, demonstrates that it is not simply the 

high-information content of sequences, but rather the 

Predictive Information of these sequences that listeners can 

successfully use when making memory judgments. 

Generally, sequences that were more difficult to predict 

(higher IC/Predictive Information) gave rise to worse 

memory performance. There was also an increasing impact 

of these factors on memory as exposure increased. The 

effect of Sequence IC became more pronounced as listeners 

repeatedly heard melodies (e.g., sequences with low average 

IC were more likely to be remembered by the third listening 

session). To our knowledge, this research is the first 

investigation of the time course of music learning using an 

information-theoretic approach. 

Although listeners struggled with the difficulty of the 

recognition memory task, they responded differentially 

based on the statistical properties of the sequences. Listeners 

may be more adept at learning the statistical rules 

underlying musical sequences than the specific exemplars 

themselves, especially with non-stylistic music such as the 

sequences used in this study (see Saffran et al., 1999; Loui, 

Wessel, & Kam, 2010; Halpern & Bartlett, 2010). Listeners 

are capable of learning a vast number of songs and themes, 

therefore more ecological stimuli may lead to better learning 

and memory performance. Language research (a domain in 

which listeners have been shown to be proficient in 

statistical learning of phonological sequences) has 

historically revealed that people tend to remember the 

semantics of what is said, not a verbatim account (e.g., 

Bartlett, 1932). Therefore, it may prove more insightful to 

test listeners’ learning of semantics (musical structure and 

underlying statistics) across exemplars rather than the 

individual exemplars themselves. 

We see from this IT study that learning individual 

sequences is possible, but challenging. Because we see 

effects of the IT properties of the stimuli but no significant 

effect of Listening Session, it is likely that participants were 

learning the rules describing the underlying transition 

matrices rather than the particular exemplars themselves. 

Because it is impossible to perform an exhaustive 

behavioral investigation into which exemplars and rules 

listeners learn, future work will develop computer models to 

simulate and predict the process of musical learning. 

Computational models can offer insight into this process by 

analyzing information-theoretic measures to predict human 

listeners’ performance. Future work will also test memory 

differences between ecological melodies and experimentally 

controlled tone sequences with an expectation that stylistic, 

ecological exemplars will aid memory performance. 
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